Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies
Abstract
:1. Introduction
- Piezoelectric strain (unit: pm/V) and charge (unit: pC/N) constantx = dE (d = piezoelectric strain and charge constant)
- Piezoelectric voltage constant (unit: Vm/N)E = gX (g = d/ε0εr) <g = piezoelectric voltage constant>
- Electromechanical coupling factork2 = (Stored mechanical energy/Input electrical energy)k2 = (Stored electrical energy/Input mechanical energy)Since the input electrical energy is (1/2)ε0εrE2 per unit volume and the stored mechanical energy per unit volume under zero external stress is given by (1/2)x2/s = (1/2)(dE)2/s, k2 can be calculated ask2 = [(1/2)(dE)2/s]/[(1/2)ε0εrE2] = d2/ε0εrs
- Mechanical quality factorQm = ω0/2Δω
2. Bulk Type Piezoelectric Energy Harvesters
2.1. Cantilever Type Piezoelectric Energy Harvesters
2.2. Various Types of Bulk Piezoelectric Energy Harvesters
3. MEMS Piezoelectric Energy Harvesters
4. Flexible Piezoelectric Energy Harvesters
4.1. Nanotubes
4.2. Nanorods and Nanowires
4.3. Nanofibers
4.4. Nanoparticles
4.5. Thin Films
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Park, S.E.; Shrout, T.R. Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1997, 44, 1140–1147. [Google Scholar] [CrossRef]
- Dubois, M.A.; Muralt, P. Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications. Appl. Phys. Lett. 1999, 74, 3032–3034. [Google Scholar] [CrossRef]
- Wang, X.D.; Zhou, J.; Song, J.H.; Liu, J.; Xu, N.S.; Wang, Z.L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 2006, 6, 2768–2772. [Google Scholar] [CrossRef] [PubMed]
- Giurgiutiu, V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 1–1012. [Google Scholar]
- Ihn, J.B.; Chang, F.K. Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics. Smart Mater. Struct. 2004, 13, 609–620. [Google Scholar] [CrossRef]
- Uchino, K. Materials issues in design and performance of piezoelectric actuators: An overview. Acta Mater. 1998, 46, 3745–3753. [Google Scholar] [CrossRef]
- Wang, Q.M.; Zhang, Q.M.; Xu, B.M.; Liu, R.B.; Cross, L.E. Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. J. Appl. Phys. 1999, 86, 3352–3360. [Google Scholar] [CrossRef]
- Chu, S.Y.; Chen, T.Y.; Tsai, I.T.; Water, W. Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on saw device. Sens. Actuators A Phys. 2004, 113, 198–203. [Google Scholar] [CrossRef]
- Tang, I.T.; Chen, H.J.; Hwang, W.C.; Wang, Y.C.; Houng, M.P.; Wang, Y.H. Applications of piezoelectric ZnO film deposited on diamond-like carbon coated onto Si substrate under fabricated diamond saw filter. J. Cryst. Growth 2004, 262, 461–466. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, J.H.; Kim, J. A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Man. 2011, 12, 1129–1141. [Google Scholar] [CrossRef]
- Beeby, S.P.; Tudor, M.J.; White, N.M. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 2006, 17, R175–R195. [Google Scholar] [CrossRef]
- Uchino, K. Ferroelectric Devices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 161–169. [Google Scholar]
- Ouyang, J.; Ramesh, R.; Roytburd, A.L. Intrinsic effective piezoelectric coefficient e31,f for ferroelectric thin films. Appl. Phys. Lett. 2005, 86, 152901. [Google Scholar] [CrossRef]
- Maria, J.P.; Shepard, J.F.; Trolier-McKinstry, S.; Watkins, T.R.; Payzant, A.E. Characterization of the piezoelectric properties of Pb0.98Ba0.02(Mg1/3Nb2/3)O3-PbTiO3 epitaxial thin films. Int. J. Appl. Ceram. Technol. 2005, 2, 51–58. [Google Scholar] [CrossRef]
- Shrout, T.R.; Zhang, S.J. Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 2007, 19, 113–126. [Google Scholar] [CrossRef]
- Tao, H.; Wu, J.G.; Xiao, D.Q.; Zhu, J.G.; Wang, X.J.; Lou, X.J. High strain in (K,Na)NbO3-based lead-free piezoceramics. ACS Appl. Mater. Inter. 2014, 6, 20358–20364. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Marcos, F.; Ochoa, P.; Fernandez, J.F. Sintering and properties of lead-free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics. J. Eur. Ceram. Soc. 2007, 27, 4125–4129. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, J.; Si, C.W.; Han, G.W.; Zhao, Y.M.; Ning, J. Research on the piezoelectric properties of AlN thin films for MEMS applications. Micromachines 2015, 6, 1236–1248. [Google Scholar] [CrossRef]
- Zhao, M.H.; Wang, Z.L.; Mao, S.X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 2004, 4, 587–590. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J.H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Kim, S.W. Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy 2012, 1, 342–355. [Google Scholar] [CrossRef]
- Kim, K.B.; Kim, C.I.; Jeong, Y.H.; Lee, Y.J.; Cho, J.H.; Paik, J.H.; Nahm, S. Performance of unimorph cantilever generator using Cr/Nb doped Pb(Zr0.54Ti0.46)O3 thick film for energy harvesting device applications. J. Eur. Ceram. Soc. 2013, 33, 305–311. [Google Scholar] [CrossRef]
- Choi, C.H.; Seo, I.T.; Song, D.; Jang, M.S.; Kim, B.Y.; Nahm, S.; Sung, T.H.; Song, H.C. Relation between piezoelectric properties of ceramics and output power density of energy harvester. J. Eur. Ceram. Soc. 2013, 33, 1343–1347. [Google Scholar] [CrossRef]
- Kim, S.B.; Park, J.H.; Ahn, H.; Liu, D.; Kim, D.J. Temperature effects on output power of piezoelectric vibration energy harvesters. Microelectron. J. 2011, 42, 988–991. [Google Scholar] [CrossRef]
- Song, H.C.; Kang, C.Y.; Yoon, S.J.; Jeong, D.Y. Engineered domain configuration and piezoelectric energy harvesting in 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 single crystals. Metals Mater. Int. 2012, 18, 499–503. [Google Scholar] [CrossRef]
- Karami, M.A.; Bilgen, O.; Inman, D.J.; Friswell, M.I. Experimental and analytical parametric study of single-crystal unimorph beams for vibration energy harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 1508–1520. [Google Scholar] [CrossRef] [PubMed]
- Priya, S.; Inman, D.J. Energy Harvesting Technologies; Springer: New York, NY, USA, 2009; p. 517. [Google Scholar]
- Berdy, D.F.; Srisungsitthisunti, P.; Jung, B.; Xu, X.F.; Rhoads, J.F.; Peroulis, D. Low-frequency meandering piezoelectric vibration energy harvester. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 846–858. [Google Scholar] [CrossRef] [PubMed]
- Shindo, Y.; Narita, F. Dynamic bending/torsion and output power of s-shaped piezoelectric energy harvesters. Int. J. Mech. Mater. Des. 2014, 10, 305–311. [Google Scholar] [CrossRef]
- Sobocinski, M.; Leinonen, M.; Juuti, J.; Jantunen, H. Monomorph piezoelectric wideband energy harvester integrated into LTCC. J. Eur. Ceram. Soc. 2011, 31, 789–794. [Google Scholar] [CrossRef]
- Park, J.C.; Park, J.Y. Asymmetric PZT bimorph cantilever for multi-dimensional ambient vibration harvesting. Ceram. Int. 2013, 39, S653–S657. [Google Scholar] [CrossRef]
- Hashimoto, S.; Zhang, Y.; Nagai, N.; Fujikura, Y.; Takahashi, J.; Kumagai, S.; Kasai, M.; Suto, K.; Okada, H.; Jiang, W. Multi-mode and multi-axis vibration power generation effective for vehicles. In Proceedings of the 2013 IEEE International Symposium on Industrial Electronics, Taipei, Taiwan, 28–31 May 2013.
- Ethem Erkan Aktakka, K.N. Three-axis piezoelectric vibration energy harvester. In Proceedings of 28th IEEE International Conference on Micro Electro Mechanical Systems, Estoril, Portugal, 18–22 January 2015.
- Khameneifar, F.; Arzanpour, S.; Moallem, M. A piezoelectric energy harvester for rotary motion applications: Design and experiments. IEEE ASME Trans. Mechatron. 2013, 18, 1527–1534. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, Q.L.; Jin, J.M.; Wang, Y.P.; Qian, W.J.; Yuan, D.W. Rotational piezoelectric wind energy harvesting using impact-induced resonance. Appl. Phys. Lett. 2014, 105, 053901. [Google Scholar] [CrossRef]
- Pozzi, M.; Aung, M.S.H.; Zhu, M.L.; Jones, R.K.; Goulermas, J.Y. The pizzicato knee-joint energy harvester: Characterization with biomechanical data and the effect of backpack load. Smart Mater. Struct. 2012, 21, 076023. [Google Scholar] [CrossRef]
- Li, B.; You, J.H.; Kim, Y.J. Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator. Smart Mater. Struct. 2013, 22, 055013. [Google Scholar] [CrossRef]
- Palosaari, J.; Leinonen, M.; Hannu, J.; Juuti, J.; Jantunen, H. Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression. J. Electroceram. 2012, 28, 214–219. [Google Scholar] [CrossRef]
- Chen, X.R.; Yang, T.Q.; Wang, W.; Yao, X. Vibration energy harvesting with a clamped piezoelectric circular diaphragm. Ceram. Int. 2012, 38, S271–S274. [Google Scholar] [CrossRef]
- Zhao, S.; Erturk, A. Deterministic and band-limited stochastic energy harvesting from uniaxial excitation of a multilayer piezoelectric stack. Sens. Actuators. A Phys. 2014, 214, 58–65. [Google Scholar] [CrossRef]
- Xu, T.B.; Siochi, E.J.; Kang, J.H.; Zuo, L.; Zhou, W.L.; Tang, X.D.; Jiang, X.N. Energy harvesting using a PZT ceramic multilayer stack. Smart Mater. Struct. 2013, 22, 065015. [Google Scholar] [CrossRef]
- Makki, N.; Pop-Iliev, R. Battery- and wire-less tire pressure measurement systems (TPMS) sensor. Microsyst. Technol. 2012, 18, 1201–1212. [Google Scholar] [CrossRef]
- Roundy, S.; Wright, P.K. A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 2004, 13, 1131–1142. [Google Scholar] [CrossRef]
- Renaud, M.; Karakaya, K.; Sterken, T.; Fiorini, P.; Van Hoof, C.; Puers, R. Fabrication, modelling and characterization of mems piezoelectric vibration harvesters. Sens. Actuators A Phys. 2008, 145, 380–386. [Google Scholar] [CrossRef]
- Shen, D.; Park, J.H.; Ajitsaria, J.; Choe, S.Y.; Wikle, H.C.; Kim, D.J. The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J. Micromech. Microeng. 2008, 18, 055017. [Google Scholar] [CrossRef]
- Janphuang, P.; Lockhart, R.; Uffer, N.; Briand, D.; de Rooij, N.F. Vibrational piezoelectric energy harvesters based on thinned bulk PZT sheets fabricated at the wafer level. Sens. Actuators A Phys. 2014, 210, 1–9. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, Q.Y.; Yao, M.L.; Dong, W.J.; Gao, S.Q. Vibration piezoelectric energy harvester with multi-beam. AIP Adv. 2015, 5, 041332. [Google Scholar] [CrossRef]
- Deng, L.C.; Wen, Z.Y.; Zhao, X.Q.; Yuan, C.W.; Luo, G.X.; Mo, J.K. High voltage output MEMS vibration energy harvester in d31 mode with PZT thin film. J. Microelectromech. Syst. 2014, 23, 855–861. [Google Scholar] [CrossRef]
- Liu, H.C.; Zhang, S.S.; Kobayashi, T.; Chen, T.; Lee, C. Flow sensing and energy harvesting characteristics of a wind-driven piezoelectric Pb(Zr0.52, Ti0.48)O3 microcantilever. Micro Nano Lett. 2014, 9, 286–289. [Google Scholar] [CrossRef]
- Kim, M.; Hwang, B.; Min, N.K.; Jeong, J.; Kwon, K.H.; Park, K.B. Design and fabrication of a PZT cantilever for low frequency vibration energy harvesting. J. Nanosci. Nanotechnol. 2011, 11, 6510–6513. [Google Scholar] [CrossRef] [PubMed]
- Kuehne, I.; Schreiter, M.; Seidel, J.; Seidel, H.; Frey, A. A novel MEMS design of a piezoelectric generator for fluid-actuated energy conversion. Proc. SPIE 2011, 8066, 806617. [Google Scholar]
- Hajati, A.; Kim, S.G. Ultra-wide bandwidth piezoelectric energy harvesting. Appl. Phys. Lett. 2011, 99, 083105. [Google Scholar] [CrossRef]
- Kim, M.; Hwang, B.; Jeong, J.; Min, N.K.; Kwon, K.H. Micromachining of a bimorph Pb(Zr,Ti)O3 (PZT) cantilever using a micro-electromechanical systems (MEMS) process for energy harvesting application. J. Nanosci. Nanotechnol. 2012, 12, 6011–6015. [Google Scholar] [PubMed]
- Kim, S.B.; Park, H.; Kim, S.H.; Wikle, H.C.; Park, J.H.; Kim, D.J. Comparison of MEMS PZT cantilevers based on d(31) and d(33) modes for vibration energy harvesting. J. Microelectromech. Syst. 2013, 22, 26–33. [Google Scholar] [CrossRef]
- Tang, G.; Liu, J.Q.; Yang, B.; Luo, J.B.; Liu, H.S.; Li, Y.G.; Yang, C.S.; He, D.N.; Dao, V.D.; Tanaka, K.; et al. Fabrication and analysis of high-performance piezoelectric MEMS generators. J. Micromech. Microeng. 2012, 22, 065017. [Google Scholar] [CrossRef]
- Tang, G.; Liu, J.Q.; Liu, H.S.; Li, Y.G.; Yang, C.S.; He, D.N.; DzungDao, V.; Tanaka, K.; Sugiyama, S. Piezoelectric MEMS generator based on the bulk PZT/silicon wafer bonding technique. Phys. Status Solidi A 2011, 208, 2913–2919. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, Z.P.; Kuwano, H. Metal-based piezoelectric energy harvesters by direct deposition of PZT thick films on stainless steel. Micro Nano Lett. 2012, 7, 1158–1161. [Google Scholar] [CrossRef]
- Lin, S.C.; Wu, W.J. Piezoelectric micro energy harvesters based on stainless-steel substrates. Smart Mater. Struct. 2013, 22, 045016. [Google Scholar] [CrossRef]
- Liu, H.C.; Tay, C.J.; Quan, C.G.; Kobayashi, T.; Lee, C. Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J. Microelectromech. Syst. 2011, 20, 1131–1142. [Google Scholar] [CrossRef]
- Liu, H.C.; Quan, C.G.; Tay, C.J.; Kobayashi, T.; Lee, C. A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations. Phys. Proc. 2011, 19, 129–133. [Google Scholar] [CrossRef]
- Liu, H.C.; Lee, C.; Kobayashi, T.; Tay, C.J.; Quan, C.G. A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst. Technol. 2012, 18, 497–506. [Google Scholar] [CrossRef]
- Liu, H.C.; Zhang, S.S.; Kathiresan, R.; Kobayashi, T.; Lee, C. Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability. Appl. Phys. Lett. 2012, 100, 223905. [Google Scholar] [CrossRef]
- Liu, H.C.; Lee, C.; Kobayashi, T.; Tay, C.J.; Quan, C.G. A MEMS-based wideband piezoelectric energy harvester system using mechanical stoppers. In Proceedings of the 2011 IEEE International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011.
- Xu, G.; Ren, Z.H.; Du, P.Y.; Weng, W.J.; Shen, G.; Han, G.R. Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires. Adv. Mater. 2005, 17, 907–910. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhao, X.; Lai, C.W.; Wang, J.; Tang, X.G.; Dai, J.Y. Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays. Appl. Phys. Lett. 2004, 85, 4190–4192. [Google Scholar] [CrossRef]
- Xu, S.Y.; Shi, Y. Power generation from piezoelectric lead zirconate titanate nanotubes. J. Phys. D Appl. Phys. 2009, 42, 085301. [Google Scholar] [CrossRef]
- Jung, W.S.; Do, Y.H.; Kang, M.G.; Kang, C.Y. Energy harvester using PZT nanotubes fabricated by template-assisted method. Curr. Appl. Phys. 2013, 13, S131–S134. [Google Scholar] [CrossRef]
- Xu, S.; Hansen, B.J.; Wang, Z.L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 2010, 1, 1098. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.W.; Bai, S.; Yuan, M.M.; Qin, Y.; Wang, Z.L.; Jing, T. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 2012, 6, 6231–6235. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Tang, H.X.; Sodano, H.A. Scalable synthesis of morphotropic phase boundary lead zirconium titanate nanowires for energy harvesting. Adv. Mater. 2014, 26, 7547–7554. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Jafferis, N.T.; Lyons, K.; Lee, C.M.; Ahmad, H.; McAlpine, M.C. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett. 2010, 10, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Kim, J.; Nguyen, T.D.; Lisko, B.; Purohit, P.K.; McAlpine, M.C. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 2011, 11, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, S.Y.; Yao, N.; Shi, Y. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 2010, 10, 2133–2137. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Guo, S.; Li, J.; Zhang, G.T.; Lu, M.; Shi, Y. Flexible piezoelectric nanofiber composite membranes as high performance acoustic emission sensors. Sens. Actuators A Phys. 2013, 199, 372–378. [Google Scholar] [CrossRef]
- Gu, L.; Cui, N.Y.; Cheng, L.; Xu, Q.; Bai, S.; Yuan, M.M.; Wu, W.W.; Liu, J.M.; Zhao, Y.; Ma, F.; et al. Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett. 2013, 13, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Park, K.I.; Jeong, C.K.; Ryu, J.; Hwang, G.T.; Lee, K.J. Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv. Energy Mater. 2013, 3, 1539–1544. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.J.; Xue, X.Y.; Cui, C.X.; He, B.; Nie, Y.X.; Deng, P.; Wang, Z.L. PVDF-PZT nanocomposite film based self-charging power cell. Nanotechnology 2014, 25, 105401. [Google Scholar] [CrossRef] [PubMed]
- Do, Y.H.; Jung, W.S.; Kang, M.G.; Kang, C.Y.; Yoon, S.J. Preparation on transparent flexible piezoelectric energy harvester based on PZT films by laser lift-off process. Sens. Actuators A Phys. 2013, 200, 51–55. [Google Scholar] [CrossRef]
- Park, K.I.; Son, J.H.; Hwang, G.T.; Jeong, C.K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S.H.; Byun, M.; Wang, Z.L.; et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 2014, 26, 2514–2520. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.K.; Park, K.I.; Son, J.H.; Hwang, G.T.; Lee, S.H.; Park, D.Y.; Lee, H.E.; Lee, H.K.; Byun, M.; Lee, K.J. Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energ. Environ. Sci. 2014, 7, 4035–4043. [Google Scholar] [CrossRef]
- Hwang, G.T.; Byun, M.; Jeong, C.K.; Lee, K.J. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv. Healthc. Mater. 2015, 4, 646–658. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.; Kang, N.R.; Kim, J.Y.; Noh, M.S.; Kang, C.Y.; Choi, D.; Kim, S.W.; Wang, Z.L.; Baik, J.M. Highly anisotropic power generation in piezoelectric hemispheres composed stretchable composite film for self-powered motion sensor. Nano Energy 2015, 11, 1–10. [Google Scholar] [CrossRef]
Structure | Power Density (mW/cm3) | Normalized Power (mW/g2) | Frequency (Hz) | Ref. |
---|---|---|---|---|
Cr and Nb doped PZT cantilever | 2.1 | 1.1 | 20 | [22] |
PZNN cantilever | 231 | 11.7 | 84 | [23] |
<110> oriented single crystalline PMN-PT cantilever | - | 3.8 | 84 | [25] |
<001> oriented single crystalline PMN-PT cantilever | - | 1.4 | 86 | [25] |
PMN-PZT single crystalline cantilever | - | 0.2 | 819 | [26] |
Meandering structured cantilever | 0.2 | 2.9 | 50 | [28] |
S-shape bulk cantilever | 8.5 | - | 40 | [29] |
Wideband LTCC cantilever arrays | - | 0.03 | 1100–1165 | [30] |
Structure | Power Density (µW/cm3) | Normalized Power (µW/g2) | Frequency (Hz) | Ref. |
---|---|---|---|---|
Unimorph cantilever (d31 mode) | - | 0.0061 | 89.4 | [53] |
Unimorph cantilever (d33 mode) | - | 0.0335 | 89.4 | [53] |
Bimorph cantilever (d31 mode) | - | 0.015 | 89.4 | [53] |
Bimorph cantilever (d33 mode) | - | 0.035 | 89.4 | [53] |
Micro-cantilever using bulk PZT | 28,856 | 11.6 | 520 | [55] |
Metal-based MEMS cantilever | 98 | 15.4 | 89 | [57] |
Metal-based MEMS cantilever | 15,453 | 89.0 | 112.4 | [58] |
Wideband cantilever | - | 0.032–0.085 | 30–47 | [59] |
S-shape MEMS cantilever | - | 0.31 | 27.4 | [61] |
Structure | Max. Voltage | Max. Current | Max. Power | Ref. |
---|---|---|---|---|
Freestanding PZT nanotube | 0.495 V | - | - | [66] |
PZT nanotube composite | 2 V | 60 nA | - | [67] |
PZT nanorod arrays | 1 V | 200 nA | - | [68] |
PZT nanowire textile | 6 V | 45 nA | - | [69] |
PZT nanowire composite | 4 V | 88 nA | 2.4 µW/cm3 | [70] |
Buckled PZT nano-ribbons | - | 100 pA | - | [72] |
PZT nano fibers | 1.63 V | - | 0.03 µW | [73] |
Vertically aligned PZT nanofiber arrays | 209 V | 53 µA | 4.9 mW/cm2 | [75] |
PZT nanoparticle composite | 10 V | 1.3 µA | 13 µW | [76] |
Transparent PZT thin film harvester (sandwich structure) | 0.28 V | 30 nA | 8.4 nW/cm2 | [78] |
PZT thin film harvester (planar structure) | 200 V | 150 µA/cm2 | 30 mW/cm2 | [79] |
Hemisphere PZT thin film composite | 4 V | 0.13 µA/cm2 | 0.52 µW/cm2 | [82] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, M.-G.; Jung, W.-S.; Kang, C.-Y.; Yoon, S.-J. Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies. Actuators 2016, 5, 5. https://doi.org/10.3390/act5010005
Kang M-G, Jung W-S, Kang C-Y, Yoon S-J. Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies. Actuators. 2016; 5(1):5. https://doi.org/10.3390/act5010005
Chicago/Turabian StyleKang, Min-Gyu, Woo-Suk Jung, Chong-Yun Kang, and Seok-Jin Yoon. 2016. "Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies" Actuators 5, no. 1: 5. https://doi.org/10.3390/act5010005
APA StyleKang, M.-G., Jung, W.-S., Kang, C.-Y., & Yoon, S.-J. (2016). Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies. Actuators, 5(1), 5. https://doi.org/10.3390/act5010005