Autonomous Driving in Agricultural Machinery: Advancing the Frontier of Precision Agriculture
Abstract
1. Introduction
2. Literature Review and Analysis Methods
2.1. Overview of the Search Strategy
2.2. Literature Classification and Focus Analysis
2.3. Literature Selection Bias
2.4. Year of Publication
2.5. Country
2.6. Keywords
3. Key Technologies
3.1. Positioning Technology
3.1.1. Absolute Positioning
3.1.2. Relative Positioning
3.1.3. Fusion Positioning
3.2. Perception Technology
3.2.1. Visible-Spectrum Imaging Technology
3.2.2. Multispectral Imaging Technology
3.2.3. Hyperspectral Imaging Technology
3.2.4. Two-Dimensional Cameras
3.2.5. Three-Dimensional Camera
3.2.6. Fusion of Multi-Perception Technologies
3.2.7. Deep Learning Training Methods for Environments with Scarce Labels
3.3. Motion Planning and Control Technology
3.3.1. Motion Planning
3.3.2. Motion Control
Category | Algorithm | Applicable Scenarios | Example Reference |
---|---|---|---|
Model-Based Control | Pure Pursuit Control | Low-speed path tracking in structured environments such as dry farmland and livestock barns (e.g., AGV linear navigation, agricultural vehicle straight-line guidance). | [228,229] |
Backstepping Control | Multi-degree-of-freedom coupled systems (e.g., UAV attitude control, robotic arm trajectory tracking). | [230,231] | |
MPC | High-precision dynamic trajectory tracking (e.g., cornering maneuvers, dynamic obstacle avoidance), multi-constraint optimization tasks (e.g., spray painting, sorting operations). | [232,233] | |
Adaptive Control | Systems with uncertain parameters (e.g., agricultural machinery or robotic arms with varying payloads). | [234,235] | |
Model-Free Control | Fuzzy Control | Unstructured environments (e.g., muddy farmland, poultry house robot navigation), robotic arm vibration suppression. | [197,236] |
PID | Steady-state environments (fixed-trajectory tracking), low-speed low-disturbance scenarios (e.g., cage chicken house inspection). | [43,237] | |
SMC | High-disturbance environments (e.g., paddy field skidding), scenarios requiring rapid response (e.g., emergency vehicle obstacle avoidance). | [238,239] | |
Neural Network Control | Complex dynamic tasks (e.g., lettuce sorting, apple picking), end-to-end control (e.g., autonomous driving vision navigation). | [240,241] |
Algorithm | Advantages | Disadvantages |
---|---|---|
Pure Pursuit Control | ① Simple implementation with low computational cost | ① Performance highly sensitive to lookahead distance parameter tuning |
② Well-suited for low-speed structured path tracking | ② Degraded performance under dynamic disturbances | |
Backstepping Control | ① Naturally adapted for nonlinear systems | ① High computational complexity requiring recursive derivation |
② Flexible hierarchical design, compatible with adaptive/robust strategies | ② Moderate dependence on model accuracy | |
MPC | ① Multi-step predictive optimization with explicit constraint handling | ① High computational overhead requiring real-time solvers |
② Adaptable to dynamic changes and complex paths | ② Performance degradation under model mismatch | |
Adaptive Control | ① Online parameter adjustment for time-varying disturbance rejection | ① Convergence depends on parameter estimation accuracy |
② No requirement for prior disturbance boundary information | ② Difficulty in stability analysis for complex systems | |
Fuzzy Control | ① No requirement for precise mathematical models, relies on expert knowledge | ① Time-consuming rule base design process |
② Strong capability in handling nonlinearities | ② Limited adaptability without sufficient data validation | |
PID | ① Simple structure, easily implemented into engineering | ① Poor performance in nonlinear/time-varying systems |
② Low computational cost, suitable for embedded systems | ② Dependence on manual parameter tuning with weak robustness | |
SMC | ① Strong robustness against disturbances and parameter variations | ① High-frequency chattering in traditional SMC implementations |
② Fast convergence, well-suited for nonlinear systems | ② Requirement for disturbance boundary information (mitigated in improved versions) | |
Neural Network Control | ① Model-free, data-driven approach | ① Requirement for large amounts of training data |
② Capable of handling high-dimensional nonlinearities and dynamic changes | ② High computational resource demands and poor interpretability |
3.4. Actuator Technology
3.4.1. Drive Actuator
3.4.2. Manipulator Actuator
3.4.3. Actuator Fault Detection and Fault-Tolerant Control
4. Application Status
4.1. Autonomous Driving in Farmland
4.1.1. Autonomous Driving for Farming and Land Preparation
4.1.2. Autonomous Driving for Sowing
4.1.3. Autonomous Driving for Field Management
Weeding Type | Technical Principle | Performance | Ref. | Schematic Diagram |
---|---|---|---|---|
Chemical spraying | Directional herbicide spraying to inhibit weed growth | ① Overall success rate of weed detection and classification exceeds 90%. ② Weed control operation costs reduced by approximately 90%. | [358] | |
Chemical spraying | AI-controlled nozzle for precise micro-dosing of herbicides | ① Spraying frequency: 20 times per second, with millimeter-level precision. ② Throughput: Processes over 500,000 plants per hour. ③ Herbicide usage reduced by 95%. | [22] | |
Chemical spraying | GPS-RTK, camera, and sensor-based weed localization and identification with articulated arm for micro-dose herbicide spraying | Herbicide reduction: 95%. | [381] | |
Chemical spraying | High-precision large-scale herbicide spraying | - | [362] | |
Chemical spraying | Automatic calibration of target crop images and low-altitude fixed-point precise spraying | ① Control response time: ≤0.2 s. ② Spraying flow rate: 0.5–10 L per minute. ③ Spraying radius accuracy: ≤0.5 m. ④ Operational efficiency improved by over 30%. | [363] | |
Mechanical weeding | Computer vision-based weed identification with steering hoe weeding | Weed reduction within a 240 mm radius around crops: 62–87%. | [366] | |
Mechanical weeding | Soil tillage and sunlight blocking to suppress weeds | Compared to traditional farming: ① Rice plant height in weed-controlled areas: 920 mm vs. 760 mm. ② Single-plant rice grain weight: four-fold increase (46.5 g vs. 9.5 g). ③ Yield per unit area: 20,440 g/m2. | [367] | |
Mechanical weeding | Computer vision-based weed identification with rotating rack for cutting, uprooting, and burying weeds | Plow depth: 2 cm below ground. | [368] | |
Mechanical weeding | Static and dynamic hoes for weed chopping between and within rows | - | [382] | |
Thermal weeding | Computer vision-based weed identification with laser weeding | ① Mean Average Precision (mAP) for area and point target detection: 88.5% and 85.0%, respectively. ② Weed control rate: 92.6%. ③ Seedling damage rate: 1.2%. | [373] | |
Thermal weeding | Deep learning system for weed detection/identification with laser weeding | ① Annual weed control cost reduction: 80%. | [383] | |
② Weed kill rate: 99% for tested weed types. | ||||
Thermal weeding | Camera + GPS monitoring with laser precision weeding | - | [374] | |
Thermal weeding | Machine vision-based weed identification with laser pointer for targeted weed elimination | ① Average weeding position error: 1.97 mm (standard deviation: 0.88 mm). ② Hit rate: 97%. | [376] |
4.1.4. Autonomous Driving for Crop Harvesting
4.1.5. Summary of Performance and Benefits
4.2. Autonomous Driving in Orchards
4.2.1. Autonomous Driving for Transplanting
4.2.2. Autonomous Driving for Fruit Tree Pruning
4.2.3. Autonomous Driving for Monitoring
4.2.4. Autonomous Driving for Picking
4.2.5. Summary of Performance and Benefits
4.3. Autonomous Driving in Livestock and Poultry Breeding
4.3.1. Autonomous Driving for Animal Feeding
4.3.2. Autonomous Driving for Monitoring
4.3.3. Autonomous Driving for Environmental Cleaning
4.3.4. Autonomous Driving for Livestock Production Collection
4.3.5. Summary of Performance and Benefits
4.4. UAV-UGV Cooperative Operations
5. Existing Challenges and Future Prospects
5.1. Existing Challenges
5.1.1. Developmental Challenges in Key Areas
5.1.2. Technical Transfer Barriers
5.1.3. Regulatory, Ethical, and Safety Standard Deficiency
5.2. Future Prospects
5.2.1. Core Research Gaps and Future Directions
5.2.2. Cost and Practicality Optimization
5.2.3. Standards and Ecosystem Construction
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghobadpour, A.; Monsalve, G.; Cardenas, A.; Mousazadeh, H. Off-road electric vehicles and autonomous robots in agricultural sector: Trends, challenges, and opportunities. Vehicles 2022, 4, 843–864. [Google Scholar] [CrossRef]
- Reid, J.; Moorehead, S.; Foessel, A.; Sanchez, J. Autonomous driving in agriculture leading to autonomous worksite solutions. In The Best of COMVEC 2016 Select Technical Papers from the SAE Commercial Vehicle Engineering Congress; SAE International: Warrendale, PA, USA, 2016; p. 1. [Google Scholar] [CrossRef]
- Yaghoubi, S.; Akbarzadeh, N.A.; Bazargani, S.S.; Bazargani, S.S.; Bamizan, M.; Asl, M.I. Autonomous robots for agricultural tasks and farm assignment and future trends in agro robots. Int. J. Mech. Mechatron. Eng. 2013, 13, 1–6. [Google Scholar]
- Thomasson, J.A.; Baillie, C.P.; Antille, D.L.; Lobsey, C.R.; McCarthy, C.L. Autonomous technologies in agricultural equipment: A review of the state of the art. In Proceedings of the 2019 Agricultural Equipment Technology Conference, Louisville, KY, USA, 11–13 February 2019; ASABE Technical Library: St. Joseph, MI, USA, 2019; Volume 40, pp. 1–17. [Google Scholar] [CrossRef]
- Reid, J.F. Establishing automated vehicle navigation as a reality for production agriculture. IFAC Proc. Vol. 2000, 33, 31–38. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS-Wagening. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Grosse, E.H.; Sgarbossa, F.; Berlin, C.; Neumann, W.P. Human-centric production and logistics system design and management: Transitioning from Industry 4.0 to Industry 5.0, 2023. Int. J. Prod. Res. 2023, 61, 7749–7759. [Google Scholar] [CrossRef]
- Iqbal, B.; Alabbosh, K.F.; Jalal, A.; Suboktagin, S.; Elboughdiri, N. Sustainable food systems transformation in the face of climate change: Strategies, challenges, and policy implications. Food Sci. Biotechnol. 2025, 34, 871–883. [Google Scholar] [CrossRef] [PubMed]
- Darko, R.O.; Yuan, S.Q.; Hong, L.; Liu, J.P.; Yan, H.F. Irrigation, a productive tool for food security—A review. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2016, 66, 191–206. [Google Scholar] [CrossRef]
- Duckett, T.; Pearson, S.; Blackmore, S.; Grieve, B.; Chen, W.H.; Cielniak, G.; Cleaversmith, J.; Dai, J.; Davis, S.; Fox, C. Agricultural robotics: The future of robotic agriculture. arXiv 2018, arXiv:1806.06762. [Google Scholar] [CrossRef]
- Oliveira, L.F.; Moreira, A.P.; Silva, M.F. Advances in agriculture robotics: A state-of-the-art review and challenges ahead. Robotics 2021, 10, 52. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, J.; Xu, Z.; Yuan, S.; Li, P.; Wang, J. Development status and trend of agricultural robot technology. Int. J. Agric. Biol. Eng. 2021, 14, 1–19. [Google Scholar] [CrossRef]
- Rosell-Polo, J.R.; Cheein, F.A.; Gregorio, E.; Andújar, D.; Puigdomènech, L.; Masip, J.; Escolà, A. Advances in structured light sensors applications in precision agriculture and livestock farming. Adv. Agron. 2015, 133, 71–112. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef]
- Zambon, I.; Cecchini, M.; Egidi, G.; Saporito, M.G.; Colantoni, A. Revolution 4.0: Industry vs. agriculture in a future development for SMEs. Processes 2019, 7, 36. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Wang, A.C.; Zhang, H.Y.; Zhu, Q.Z.; Zhang, H.H.; Sun, W.H.; Niu, Y.X. Estimating leaf chlorophyll content of winter wheat from uav multispectral images using machine learning algorithms under different species, growth stages, and nitrogen stress conditions. Agriculture 2024, 14, 1064. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Abdollahi, A.; Hassoun, A. Precision agriculture: A bibliometric analysis and research agenda. Smart Agric. Technol. 2024, 9, 100684. [Google Scholar] [CrossRef]
- Sørensen, C.G.; Madsen, N.A.; Jacobsen, B.H. Organic farming scenarios: Operational analysis and costs of implementing innovative technologies. Biosyst. Eng. 2005, 91, 127–137. [Google Scholar] [CrossRef]
- Pedersen, S.M.; Fountas, S.; Have, H.; Blackmore, B. Agricultural robots—System analysis and economic feasibility. Precis. Agric. 2006, 7, 295–308. [Google Scholar] [CrossRef]
- Hussain, A.; Fatima, H.S.; Zia, S.M.; Hasan, S.; Khurram, M.; Stricker, D.; Afzal, M.Z. Development of cost-effective and easily replicable robust weeding machine—Premiering precision agriculture in Pakistan. Machines 2023, 11, 287. [Google Scholar] [CrossRef]
- Al-Amin, A.A.; Lowenberg-DeBoer, J.; Franklin, K.; Dickin, E.; Monaghan, J.M.; Behrendt, K. Autonomous regenerative agriculture: Swarm robotics to change farm economics. Smart Agric. Technol. 2025, 11, 101005. [Google Scholar] [CrossRef]
- Robotics, V. Sharp-Shooting Farm Robot. Available online: https://www.techbriefs.com/component/content/article/47381-sharp-shooting-farm-robot (accessed on 10 January 2023).
- Robotics, S. SwarmFarm SwarmBot. 2019. Available online: https://www.swarmfarm.com/s (accessed on 10 January 2023).
- Naim, M.; Rizzo, D.; Sauvée, L.; Medici, M. Advancing agroecology and sustainability with agricultural robots at field level: A scoping review. Comput. Electron. Agric. 2025, 237, 110650. [Google Scholar] [CrossRef]
- Santos, L.; Santos, F.N.; Magalhães, S.; Costa, P.; Reis, R. Path planning approach with the extraction of topological maps from occupancy grid maps in steep slope vineyards. In Proceedings of the 2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Porto, Portugal, 24–26 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Bechar, A.; Vigneault, C. Agricultural robots for field operations: Concepts and components. Biosyst. Eng. 2016, 149, 94–111. [Google Scholar] [CrossRef]
- Yang, Z.; Ouyang, L.; Zhang, Z.; Duan, J.; Yu, J.; Wang, H. Visual navigation path extraction of orchard hard pavement based on scanning method and neural network. Comput. Electron. Agric. 2022, 197, 106964. [Google Scholar] [CrossRef]
- Sun, H.; Slaughter, D.; Ruiz, M.P.; Gliever, C.; Upadhyaya, S.; Smith, R. RTK GPS mapping of transplanted row crops. Comput. Electron. Agric. 2010, 71, 32–37. [Google Scholar] [CrossRef]
- Koo, G.; Kim, K.; Chung, J.Y.; Choi, J.; Kwon, N.Y.; Kang, D.Y.; Sohn, H. Development of a high precision displacement measurement system by fusing a low cost RTK-GPS sensor and a force feedback accelerometer for infrastructure monitoring. Sensors 2017, 17, 2745. [Google Scholar] [CrossRef]
- Dabove, P.; Manzino, A.M. Artificial neural network for detecting incorrectly fixed phase ambiguities for L1 mass-market receivers. GPS Solut. 2017, 21, 1213–1219. [Google Scholar] [CrossRef]
- Chou, H.Y.; Khorsandi, F.; Vougioukas, S.G.; Fathallah, F.A. Developing and evaluating an autonomous agricultural all-terrain vehicle for field experimental rollover simulations. Comput. Electron. Agric. 2022, 194, 106735. [Google Scholar] [CrossRef]
- Bin, X.; Junxiong, Z.; Feng, Q.; Zhiqi, F.; Dashuai, W.; Wei, L. Navigation control system for orchard spraying machine based on Beidou navigation satellite system. Trans. Chin. Soc. Agric. Mach. 2017, 48, 45–50. [Google Scholar] [CrossRef]
- Perez-Ruiz, M.; Slaughter, D.C.; Gliever, C.; Upadhyaya, S.K. Tractor-based real-time kinematic-global positioning system (RTK-GPS) guidance system for geospatial mapping of row crop transplant. Biosyst. Eng. 2012, 111, 64–71. [Google Scholar] [CrossRef]
- Consoli, A.; Ayadi, J.; Bianchi, G.; Pluchino, S.; Piazza, F.; Baddour, R.; Parés, M.E.; Navarro, J.; Colomina, I.; Gameiro, A. A multi-antenna approach for UAV’s attitude determination. In Proceedings of the 2015 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 4–5 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 401–405. [Google Scholar] [CrossRef]
- Eling, C.; Klingbeil, L.; Kuhlmann, H. Real-time single-frequency GPS/MEMS-IMU attitude determination of lightweight UAVs. Sensors 2015, 15, 26212–26235. [Google Scholar] [CrossRef]
- Galati, R.; Mantriota, G.; Reina, G. RoboNav: An affordable yet highly accurate navigation system for autonomous agricultural robots. Robotics 2022, 11, 99. [Google Scholar] [CrossRef]
- Mousazadeh, H. A technical review on navigation systems of agricultural autonomous off-road vehicles. J. Terramech. 2013, 50, 211–232. [Google Scholar] [CrossRef]
- Valente, D.S.M.; Momin, A.; Grift, T.; Hansen, A. Accuracy and precision evaluation of two low-cost RTK global navigation satellite systems. Comput. Electron. Agric. 2020, 168, 105142. [Google Scholar] [CrossRef]
- Lyle, S.D. Experiment to test RTK GPS with satellite “internet to tractor” for precision agriculture. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 2013, 4, 1–13. [Google Scholar] [CrossRef]
- Li, Q.; Nevalainen, P.; Peña Queralta, J.; Heikkonen, J.; Westerlund, T. Localization in unstructured environments: Towards autonomous robots in forests with delaunay triangulation. Remote Sens. 2020, 12, 1870. [Google Scholar] [CrossRef]
- Cong, C.; Guangqiao, C.; Jinlong, Z.; Jianping, H. Dynamic monitoring of harvester working progress based on traveling trajectory and header status. Eng. Agric. 2023, 43, e20220196. [Google Scholar] [CrossRef]
- Hao, H.; Fang, P.; Duan, E.; Yang, Z.; Wang, L.; Wang, H. A dead broiler inspection system for large-scale breeding farms based on deep learning. Agriculture 2022, 12, 1176. [Google Scholar] [CrossRef]
- Jan, M.S.; Ke, J.Y.; Chang, C.L. Integrated positioning method based on UWB and RTK-GNSS for seamless navigation of poultry robots. In Proceedings of the 2022 International Automatic Control Conference (CACS), Kaohsiung, Taiwan, China, 3–6 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, B.; Zhang, W.; Li, X. Development and test of spraying robot for anti-epidemic and disinfection in animal housing. In Proceedings of the 2021 WRC Symposium on Advanced Robotics and Automation (WRC SARA), Beijing, China, 11 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 24–29. [Google Scholar] [CrossRef]
- Li, M.H.; Gao, H.Y.; Zhao, M.X.; Mao, H.P. Development and experimentation of a real-time greenhouse positioning system based on IUKF-UWB. Agriculture 2024, 14, 1479. [Google Scholar] [CrossRef]
- Radcliffe, J.; Cox, J.; Bulanon, D.M. Machine vision for orchard navigation. Comput. Ind. 2018, 98, 165–171. [Google Scholar] [CrossRef]
- Åstrand, B.; Baerveldt, A.J. A vision based row-following system for agricultural field machinery. Mechatronics 2005, 15, 251–269. [Google Scholar] [CrossRef]
- Zheng, K.; Zhao, X.G.; Han, C.J.; He, Y.K.; Zhai, C.Y.; Zhao, C.J. Design and experiment of an automatic row-oriented spraying system based on machine vision for early-stage maize corps. Agriculture 2023, 13, 691. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Zhu, Z.; Li, Z.; Du, Y.; Mao, E. Tractor path tracking control based on binocular vision. Inf. Process. Agric. 2018, 5, 422–432. [Google Scholar] [CrossRef]
- Hiremath, S.; Van Evert, F.K.; ter Braak, C.; Stein, A.; van der Heijden, G. Image-based particle filtering for navigation in a semi-structured agricultural environment. Biosyst. Eng. 2014, 121, 85–95. [Google Scholar] [CrossRef]
- Chen, S.; Noguchi, N. Remote safety system for a robot tractor using a monocular camera and a YOLO-based method. Comput. Electron. Agric. 2023, 215, 108409. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, S.Y.; Li, J.B.; Qi, J.T. Research on SLAM localization algorithm for orchard dynamic vision based on YOLOD-SLAM2. Agriculture 2024, 14, 1622. [Google Scholar] [CrossRef]
- Song, Y.; Xu, F.; Yao, Q.; Liu, J.; Yang, S. Navigation algorithm based on semantic segmentation in wheat fields using an RGB-D camera. Inf. Process. Agric. 2023, 10, 475–490. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, A.C.; Liu, J.Z.; Faheem, M. A comparative study of semantic segmentation models for identification of grape with different varieties. Agriculture 2021, 11, 997. [Google Scholar] [CrossRef]
- Liu, H.; Zeng, X.; Shen, Y.; Xu, J.; Khan, Z. A single-stage navigation path extraction network for agricultural robots in orchards. Comput. Electron. Agric. 2025, 229, 109687. [Google Scholar] [CrossRef]
- Upadhyay, A.; Zhang, Y.; Koparan, C.; Rai, N.; Howatt, K.; Bajwa, S.; Sun, X. Advances in ground robotic technologies for site-specific weed management in precision agriculture: A review. Comput. Electron. Agric. 2024, 225, 109363. [Google Scholar] [CrossRef]
- Jiang, B.; He, J.; Yang, S.; Fu, H.; Li, T.; Song, H.; He, D. Fusion of machine vision technology and AlexNet-CNNs deep learning network for the detection of postharvest apple pesticide residues. Artif. Intell. Agric. 2019, 1, 1–8. [Google Scholar] [CrossRef]
- Abbas, I.; Liu, J.; Faheem, M.; Noor, R.S.; Shaikh, S.A.; Solangi, K.A.; Raza, S.M. Different sensor based intelligent spraying systems in Agriculture. Sens. Actuators A Phys. 2020, 316, 112265. [Google Scholar] [CrossRef]
- Liu, Y.; Noguchi, N.; Ishii, K. Attitude angle estimation for agricultural robot navigation based on sensor fusion with a low-cost IMU. IFAC Proc. Vol. 2013, 46, 130–134. [Google Scholar] [CrossRef]
- Hoang, M.L.; Pietrosanto, A. Yaw/Heading optimization by drift elimination on MEMS gyroscope. Sens. Actuators A Phys. 2021, 325, 112691. [Google Scholar] [CrossRef]
- Leanza, A.; Galati, R.; Ugenti, A.; Cavallo, E.; Reina, G. Where am I heading? A robust approach for orientation estimation of autonomous agricultural robots. Comput. Electron. Agric. 2023, 210, 107888. [Google Scholar] [CrossRef]
- Haixia, Q.; Banhazi, T.M.; Zhigang, Z.; Low, T.; Brookshaw, I.J. Preliminary laboratory test on navigation accuracy of an autonomous robot for measuring air quality in livestock buildings. Int. J. Agric. Biol. Eng. 2016, 9, 29–39. [Google Scholar] [CrossRef]
- Iqbal, J.; Xu, R.; Sun, S.; Li, C. Simulation of an autonomous mobile robot for LiDAR-based in-field phenotyping and navigation. Robotics 2020, 9, 46. [Google Scholar] [CrossRef]
- Grimaldi, V.; Simon, L.S.; Sans, M.; Courtois, G.; Lissek, H. Human head yaw estimation based on two 3-axis accelerometers. IEEE Sensors J. 2022, 22, 16963–16974. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Zhang, H.; Jia, P.; Zou, F.; Lyu, W.; Sang, S. A heading correction technology based on magnetometer calibration and adaptive anti-interference algorithm. Sens. Actuators A Phys. 2023, 363, 114726. [Google Scholar] [CrossRef]
- Jones, M.H.; Bell, J.; Dredge, D.; Seabright, M.; Scarfe, A.; Duke, M.; MacDonald, B. Design and testing of a heavy-duty platform for autonomous navigation in kiwifruit orchards. Biosyst. Eng. 2019, 187, 129–146. [Google Scholar] [CrossRef]
- Mueller-Sim, T.; Jenkins, M.; Abel, J.; Kantor, G. The Robotanist: A ground-based agricultural robot for high-throughput crop phenotyping. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May 2017–3 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 3634–3639. [Google Scholar] [CrossRef]
- Higuti, V.A.; Velasquez, A.E.; Magalhaes, D.V.; Becker, M.; Chowdhary, G. Under canopy light detection and ranging-based autonomous navigation. J. Field Robot. 2019, 36, 547–567. [Google Scholar] [CrossRef]
- Bell, J.; MacDonald, B.A.; Ahn, H.S. Row following in pergola structured orchards. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 640–645. [Google Scholar] [CrossRef]
- Gasparino, M.V.; Higuti, V.A.; Velasquez, A.E.; Becker, M. Improved localization in a corn crop row using a rotated laser rangefinder for three-dimensional data acquisition. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 592. [Google Scholar] [CrossRef]
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 2016, 32, 1309–1332. [Google Scholar] [CrossRef]
- Sukvichai, K.; Thongton, N.; Yajai, K. Implementation of a monocular orb slam for an indoor agricultural drone. In Proceedings of the 2023 Third International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand, 18–20 January 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 45–48. [Google Scholar] [CrossRef]
- Barth, R.; Hemming, J.; Van Henten, E.J. Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation. Biosyst. Eng. 2016, 146, 71–84. [Google Scholar] [CrossRef]
- Kemper, R.J.H.; Gonzalez, C.; Gardini, S.R.P. Autonomous navigation of a four-wheeled robot in a simulated blueberry farm environment. In Proceedings of the 2022 IEEE ANDESCON, Barranquilla, Colombia, 16–19 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Tan, H.; Zhao, X.; Zhai, C.; Fu, H.; Chen, L.; Yang, M. Design and experiments with a SLAM system for low-density canopy environments in greenhouses based on an improved Cartographer framework. Front. Plant Sci. 2024, 15, 1276799. [Google Scholar] [CrossRef] [PubMed]
- Yudanto, R.; Ompusunggu, A.P.; Bey-Temsamani, A. On improving low-cost IMU performance for online trajectory estimation. In Proceedings of the Smart Sensors, Actuators, and MEMS VII; and Cyber Physical Systems, Barcelona, Spain, 21 May 2015; SPIE: Bellingham, WA, USA, 2015; Volume 9517, pp. 639–650. [Google Scholar] [CrossRef]
- Fei, K.; Mai, C.; Jiang, R.; Zeng, Y.; Ma, Z.; Cai, J.; Li, J. Research on a Low-Cost High-Precision Positioning System for Orchard Mowers. Agriculture 2024, 14, 813. [Google Scholar] [CrossRef]
- Fu, Z.; Shi, Y.; Si, P.; Gao, S.; Yang, Y. Tightly coupled visual-inertial fusion with image enhancement for robust positioning. Meas. Sci. Technol. 2024, 35, 096311. [Google Scholar] [CrossRef]
- Qu, J.; Qiu, Z.; Li, L.; Guo, K.; Li, D. Map Construction and Positioning Method for LiDAR SLAM-Based Navigation of an Agricultural Field Inspection Robot. Agronomy 2024, 14, 2365. [Google Scholar] [CrossRef]
- Hiremath, S.A.; Van Der Heijden, G.W.; Van Evert, F.K.; Stein, A.; Ter Braak, C.J. Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter. Comput. Electron. Agric. 2014, 100, 41–50. [Google Scholar] [CrossRef]
- Carvalho, G.S.; Silva, F.O.; Pacheco, M.V.O.; Campos, G.A. Performance analysis of relative GPS positioning for low-cost receiver-equipped agricultural rovers. Sensors 2023, 23, 8835. [Google Scholar] [CrossRef]
- Li, C.Q.; Wu, J.G.; Pan, X.Y.; Dou, H.J.; Zhao, X.G.; Gao, Y.Y.; Yang, S.; Zhai, C.Y. Design and experiment of a breakpoint continuous spraying system for automatic-guidance boom sprayers. Agriculture 2023, 13, 2203. [Google Scholar] [CrossRef]
- Rigatos, G.; Tzafestas, S. Extended Kalman filtering for fuzzy modelling and multi-sensor fusion. Math. Comput. Model. Dyn. Syst. 2007, 13, 251–266. [Google Scholar] [CrossRef]
- Nubert, J.; Khattak, S.; Hutter, M. Graph-based multi-sensor fusion for consistent localization of autonomous construction robots. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 10048–10054. [Google Scholar] [CrossRef]
- Tian, Y.; Mai, Z.; Zeng, Z.; Cai, Y.; Yang, J.; Zhao, B.; Zhu, X.; Qi, L. Design and experiment of an integrated navigation system for a paddy field scouting robot. Comput. Electron. Agric. 2023, 214, 108336. [Google Scholar] [CrossRef]
- Gai, J.; Xiang, L.; Tang, L. Using a depth camera for crop row detection and mapping for under-canopy navigation of agricultural robotic vehicle. Comput. Electron. Agric. 2021, 188, 106301. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, B.; Zhou, J.; Zhang, Y.; Liu, X. Real-time localization and mapping utilizing multi-sensor fusion and visual–IMU–wheel odometry for agricultural robots in unstructured, dynamic and GPS-denied greenhouse environments. Agronomy 2022, 12, 1740. [Google Scholar] [CrossRef]
- Miao, C.; Chu, H.; Cao, J.; Sun, Z.; Yi, R. Steering angle adaptive estimation system based on GNSS and MEMS gyro. Comput. Electron. Agric. 2018, 153, 196–201. [Google Scholar] [CrossRef]
- Li, S.; Zhang, M.; Ji, Y.; Zhang, Z.; Cao, R.; Chen, B.; Li, H.; Yin, Y. Agricultural machinery GNSS/IMU-integrated navigation based on fuzzy adaptive finite impulse response Kalman filtering algorithm. Comput. Electron. Agric. 2021, 191, 106524. [Google Scholar] [CrossRef]
- Ban, C.; Wang, L.; Su, T.; Chi, R.; Fu, G. Fusion of monocular camera and 3D LiDAR data for navigation line extraction under corn canopy. Comput. Electron. Agric. 2025, 232, 110124. [Google Scholar] [CrossRef]
- Vroegindeweij, B.A.; IJsselmuiden, J.; van Henten, E.J. Probabilistic localisation in repetitive environments: Estimating a robot’s position in an aviary poultry house. Comput. Electron. Agric. 2016, 124, 303–317. [Google Scholar] [CrossRef]
- Moura, M.S.; Ruiz, X.; Serrano, D.; Rizzo, C. A multisensor factor-graph SLAM framework for steep slope vineyards. In Proceedings of the Iberian Robotics Conference, Coimbra, Portugal, 22–24 November 2023; Springer: Berlin/Heidelberg, Germany, 2024; pp. 386–397. [Google Scholar] [CrossRef]
- Zhang, W.; Gong, L.; Huang, S.; Wu, S.; Liu, C. Factor graph-based high-precision visual positioning for agricultural robots with fiducial markers. Comput. Electron. Agric. 2022, 201, 107295. [Google Scholar] [CrossRef]
- Jiang, A.; Ahamed, T. Development of an autonomous navigation system for orchard spraying robots integrating a thermal camera and LiDAR using a deep learning algorithm under low-and no-light conditions. Comput. Electron. Agric. 2025, 235, 110359. [Google Scholar] [CrossRef]
- Teng, H.; Wang, Y.; Chatziparaschis, D.; Karydis, K. Adaptive LiDAR odometry and mapping for autonomous agricultural mobile robots in unmanned farms. Comput. Electron. Agric. 2025, 232, 110023. [Google Scholar] [CrossRef]
- Yang, D.; Cui, D.; Ying, Y. Development and trends of chicken farming robots in chicken farming tasks: A review. Comput. Electron. Agric. 2024, 221, 108916. [Google Scholar] [CrossRef]
- Jiang, S.; Qi, P.; Han, L.; Liu, L.; Li, Y.; Huang, Z.; Liu, Y.; He, X. Navigation system for orchard spraying robot based on 3D LiDAR SLAM with NDT_ICP point cloud registration. Comput. Electron. Agric. 2024, 220, 108870. [Google Scholar] [CrossRef]
- Zhu, F.H.; Chen, J.; Guan, Z.H.; Zhu, Y.H.; Shi, H.; Cheng, K. Development of a combined harvester navigation control system based on visual simultaneous localization and mapping-inertial guidance fusion. J. Agric. Eng. 2024, 55. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Long, L.; Lu, Z.; Shi, J. Efficient and adaptive lidar–visual–inertial odometry for agricultural unmanned ground vehicle. Int. J. Adv. Robot. Syst. 2022, 19, 17298806221094925. [Google Scholar] [CrossRef]
- Joffe, B.P.; Usher, C.T. Autonomous robotic system for picking up floor eggs in poultry houses. In Proceedings of the 2017 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2017, Spokane, WA, USA, 16–19 July 2017; p. 1. [Google Scholar] [CrossRef]
- Ren, G.; Lin, T.; Ying, Y.; Chowdhary, G.; Ting, K.C. Agricultural robotics research applicable to poultry production: A review. Comput. Electron. Agric. 2020, 169, 105216. [Google Scholar] [CrossRef]
- Gronewold, A.M.; Mulford, P.; Ray, E.; Ray, L.E. Tactile sensing & visually-impaired navigation in densely planted row crops, for precision fertilization by small ugvs. Comput. Electron. Agric. 2025, 231, 110003. [Google Scholar] [CrossRef]
- Shi, H.; Xu, G.; Lu, W.; Ding, Q.; Chen, X. An electric gripper for picking brown mushrooms with flexible force and in situ measurement. Agriculture 2024, 14, 1181. [Google Scholar] [CrossRef]
- Istiak, M.A.; Syeed, M.M.; Hossain, M.S.; Uddin, M.F.; Hasan, M.; Khan, R.H.; Azad, N.S. Adoption of Unmanned Aerial Vehicle (UAV) imagery in agricultural management: A systematic literature review. Ecol. Inform. 2023, 78, 102305. [Google Scholar] [CrossRef]
- Hua, W.; Zhang, Z.; Zhang, W.; Liu, X.; Hu, C.; He, Y.; Mhamed, M.; Li, X.; Dong, H.; Saha, C.K. Key technologies in apple harvesting robot for standardized orchards: A comprehensive review of innovations, challenges, and future directions. Comput. Electron. Agric. 2025, 235, 110343. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, J.; Fu, L.; Majeed, Y.; Feng, Y.; Li, R.; Cui, Y. Improved kiwifruit detection using pre-trained VGG16 with RGB and NIR information fusion. IEEE Access 2019, 8, 2327–2336. [Google Scholar] [CrossRef]
- Yang, L.; Noguchi, T.; Hoshino, Y. Development of a pumpkin fruits pick-and-place robot using an RGB-D camera and a YOLO based object detection AI model. Comput. Electron. Agric. 2024, 227, 109625. [Google Scholar] [CrossRef]
- Chen, H.Y.; Sang, I.C.; Norris, W.R.; Soylemezoglu, A.; Nottage, D. Terrain classification method using an NIR or RGB camera with a CNN-based fusion of vision and a reduced-order proprioception model. Comput. Electron. Agric. 2024, 227, 109539. [Google Scholar] [CrossRef]
- Nguyen, A.H.; Holt, J.P.; Knauer, M.T.; Abner, V.A.; Lobaton, E.J.; Young, S.N. Towards rapid weight assessment of finishing pigs using a handheld, mobile RGB-D camera. Biosyst. Eng. 2023, 226, 155–168. [Google Scholar] [CrossRef]
- Tu, S.; Xue, Y.; Zheng, C.; Qi, Y.; Wan, H.; Mao, L. Detection of passion fruits and maturity classification using Red-Green-Blue Depth images. Biosyst. Eng. 2018, 175, 156–167. [Google Scholar] [CrossRef]
- Hu, T.T.; Wang, W.B.; Gu, J.A.; Xia, Z.L.; Zhang, J.; Wang, B. Research on apple object detection and localization method based on improved YOLOX and RGB-D images. Agronomy 2023, 13, 1816. [Google Scholar] [CrossRef]
- Arad, B.; Balendonck, J.; Barth, R.; Ben-Shahar, O.; Edan, Y.; Hellström, T.; Hemming, J.; Kurtser, P.; Ringdahl, O.; Tielen, T. Development of a sweet pepper harvesting robot. J. Field Robot. 2020, 37, 1027–1039. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.; Zhao, D.; Gao, P.; Duan, K. Segmentation of apple point clouds based on ROI in RGB images. INMATEH-Agric. Eng. 2019, 58, 209–218. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; Iqbal, N.; Zaidi, S.M.H.; Zaidi, S.A.R.; Hussain, I.; Mahmood, Z. A multi-modal approach for crop health mapping using low altitude remote sensing, internet of things (IoT) and machine learning. IEEE Access 2020, 8, 112708–112724. [Google Scholar] [CrossRef]
- Guo, Y.; Ren, H. Remote sensing monitoring of maize and paddy rice planting area using GF-6 WFV red edge features. Comput. Electron. Agric. 2023, 207, 107714. [Google Scholar] [CrossRef]
- Scutelnic, D.; Muradore, R.; Daffara, C. A multispectral camera in the VIS–NIR equipped with thermal imaging and environmental sensors for non invasive analysis in precision agriculture. HardwareX 2024, 20, e00596. [Google Scholar] [CrossRef]
- Zhang, S.C.; Xue, X.Y.; Chen, C.; Sun, Z.; Sun, T. Development of a low-cost quadrotor UAV based on ADRC for agricultural remote sensing. Int. J. Agric. Biol. Eng. 2019, 12, 82–87. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, H.; Zhang, C.; Hao, Z.; Chen, A.; Xu, R.; He, J. Development of soil water content retrieving method for irrigation agriculture areas using the red-edge band of Gaofen-6 satellite. Agric. Water Manag. 2024, 303, 109045. [Google Scholar] [CrossRef]
- Gozukara, G.; Akça, E.; Dengiz, O.; Kapur, S.; Adak, A. Soil particle size prediction using Vis-NIR and pXRF spectra in a semiarid agricultural ecosystem in Central Anatolia of Türkiye. Catena 2022, 217, 106514. [Google Scholar] [CrossRef]
- Sun, Y.; Qin, Q.; Zhang, Y.; Ren, H.; Han, G.; Zhang, Z.; Zhang, T.; Wang, B. A leaf chlorophyll vegetation index with reduced LAI effect based on Sentinel-2 multispectral red-edge information. Comput. Electron. Agric. 2025, 236, 110500. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, M.; Yan, L.; Yao, Y.; Fu, Y.; Luo, S.; Lin, Y. Angular effect in proximal sensing of leaf-level chlorophyll content using low-cost DIY visible/near-infrared camera. Comput. Electron. Agric. 2020, 178, 105765. [Google Scholar] [CrossRef]
- Andritoiu, D.; Bazavan, L.C.; Besnea, F.L.; Roibu, H.; Bizdoaca, N.G. Agriculture autonomous monitoring and decisional mechatronic system. In Proceedings of the 2018 19th International Carpathian Control Conference (ICCC), Szilvasvarad, Hungary, 28–31 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 241–246. [Google Scholar] [CrossRef]
- Sun, Q.; Gu, X.; Chen, L.; Xu, X.; Wei, Z.; Pan, Y.; Gao, Y. Monitoring maize canopy chlorophyll density under lodging stress based on UAV hyperspectral imagery. Comput. Electron. Agric. 2022, 193, 106671. [Google Scholar] [CrossRef]
- Liang, L.; Zhao, S.H.; Qin, Z.H.; He, K.X.; Chong, C.; Luo, Y.X.; Zhou, X.D. Drought change trend using MODIS TVDI and its relationship with climate factors in China from 2001 to 2010. J. Integr. Agric. 2014, 13, 1501–1508. [Google Scholar] [CrossRef]
- Guo, J.; Bai, Q.; Guo, W.; Bu, Z.; Zhang, W. Soil moisture content estimation in winter wheat planting area for multi-source sensing data using CNNR. Comput. Electron. Agric. 2022, 193, 106670. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, J.; Yue, H. Comprehensive evaluation of Sentinel-2 red edge and shortwave-infrared bands to estimate soil moisture. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7448–7465. [Google Scholar] [CrossRef]
- Santasup, N.; Theanjumpol, P.; Santasup, C.; Kittiwachana, S.; Mawan, N.; Prantong, L.; Khongdee, N. Development of near-infrared spectroscopy (NIRS) for estimating organic matter, total carbon, and total nitrogen in agricultural soil. MethodsX 2024, 13, 102798. [Google Scholar] [CrossRef]
- Munawar, A.A.; Yunus, Y.; Satriyo, P. Calibration models database of near infrared spectroscopy to predict agricultural soil fertility properties. Data Brief 2020, 30, 105469. [Google Scholar] [CrossRef] [PubMed]
- Havens, K.J.; Sharp, E.J. Thermal Imaging Techniques to Survey and Monitor Animals in the Wild: A Methodology; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar] [CrossRef]
- Das, S.; Christopher, J.; Apan, A.; Choudhury, M.R.; Chapman, S.; Menzies, N.W.; Dang, Y.P. UAV-thermal imaging: A robust technology to evaluate in-field crop water stress and yield variation of wheat genotypes. In Proceedings of the 2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS), Ahmedabad, India, 1–4 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 138–141. [Google Scholar] [CrossRef]
- Naik, S.; Patel, B. Thermal imaging with fuzzy classifier for maturity and size based non-destructive mango (Mangifera indica L.) grading. In Proceedings of the 2017 International Conference on Emerging Trends & Innovation in ICT (ICEI), Pune, India, 3–5 February 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 15–20. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, W.; Liu, F.; Zhang, Y.; Chen, X.; Wei, Z.; Li, X. Field collaborative recognition method and experiment for thermal infrared imaging of damaged potatoes. Comput. Electron. Agric. 2024, 223, 109096. [Google Scholar] [CrossRef]
- Gräf, M.; Immitzer, M.; Hietz, P.; Stangl, R. Water-stressed plants do not cool: Leaf surface temperature of living wall plants under drought stress. Sustainability 2021, 13, 3910. [Google Scholar] [CrossRef]
- Zhou, Z.; Majeed, Y.; Naranjo, G.D.; Gambacorta, E.M. Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Comput. Electron. Agric. 2021, 182, 106019. [Google Scholar] [CrossRef]
- Gómez-Candón, D.; Virlet, N.; Labbé, S.; Jolivot, A.; Regnard, J.L. Field phenotyping of water stress at tree scale by UAV-sensed imagery: New insights for thermal acquisition and calibration. Precis. Agric. 2016, 17, 786–800. [Google Scholar] [CrossRef]
- Ribeiro-Gomes, K.; Hernández-López, D.; Ortega, J.F.; Ballesteros, R.; Poblete, T.; Moreno, M.A. Uncooled thermal camera calibration and optimization of the photogrammetry process for UAV applications in agriculture. Sensors 2017, 17, 2173. [Google Scholar] [CrossRef]
- Esposito, M.; Crimaldi, M.; Cirillo, V.; Sarghini, F.; Maggio, A. Drone and sensor technology for sustainable weed management: A review. Chem. Biol. Technol. Agric. 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Sousa, J.J.; Toscano, P.; Matese, A.; Di Gennaro, S.F.; Berton, A.; Gatti, M.; Poni, S.; Pádua, L.; Hruška, J.; Morais, R. UAV-based hyperspectral monitoring using push-broom and snapshot sensors: A multisite assessment for precision viticulture applications. Sensors 2022, 22, 6574. [Google Scholar] [CrossRef]
- Du, B.; Mao, D.; Wang, Z.; Qiu, Z.; Yan, H.; Feng, K.; Zhang, Z. Mapping wetland plant communities using unmanned aerial vehicle hyperspectral imagery by comparing object/pixel-based classifications combining multiple machine-learning algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8249–8258. [Google Scholar] [CrossRef]
- Bourriz, M.; Hajji, H.; Laamrani, A.; Elbouanani, N.; Abdelali, H.A.; Bourzeix, F.; El-Battay, A.; Amazirh, A.; Chehbouni, A. Integration of hyperspectral imaging and ai techniques for crop type mapping: Present status, trends, and challenges. Remote Sens. 2025, 17, 1574. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, L.; Gu, X.; Zhang, S.; Dai, M.; Zhou, J.; Gu, L.; Zhen, W. Estimation of canopy nitrogen nutrient status in lodging maize using unmanned aerial vehicles hyperspectral data. Ecol. Inform. 2023, 78, 102315. [Google Scholar] [CrossRef]
- Meiyan, S.; Qizhou, D.; ShuaiPeng, F.; Xiaohong, Y.; Jinyu, Z.; Lei, M.; Baoguo, L.; Yuntao, M. Improved estimation of canopy water status in maize using UAV-based digital and hyperspectral images. Comput. Electron. Agric. 2022, 197, 106982. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Li, J.; Wu, X.; Dai, C. Quantitative analysis of cadmium content in tomato leaves based on hyperspectral image and feature selection. Appl. Eng. Agric. 2018, 34, 789–798. [Google Scholar] [CrossRef]
- Li, Y.; Al-Sarayreh, M.; Irie, K.; Hackell, D.; Bourdot, G.; Reis, M.M.; Ghamkhar, K. Identification of weeds based on hyperspectral imaging and machine learning. Front. Plant Sci. 2021, 11, 611622. [Google Scholar] [CrossRef]
- Xiao, Z.T.; Yin, K.; Geng, L.; Wu, J.; Zhang, F.; Liu, Y.B. Pest identification via hyperspectral image and deep learning. Signal Image Video Process. 2022, 16, 873–880. [Google Scholar] [CrossRef]
- Wan, L.; Li, H.; Li, C.S.; Wang, A.C.; Yang, Y.H.; Wang, P. Hyperspectral sensing of plant diseases: Principle and methods. Agronomy 2022, 12, 1451. [Google Scholar] [CrossRef]
- Henila, M.; Chithra, P. Segmentation using fuzzy cluster-based thresholding method for apple fruit sorting. IET Image Process. 2020, 14, 4178–4187. [Google Scholar] [CrossRef]
- He, Z.; Xiong, J.; Chen, S.; Li, Z.; Chen, S.; Zhong, Z.; Yang, Z. A method of green citrus detection based on a deep bounding box regression forest. Biosyst. Eng. 2020, 193, 206–215. [Google Scholar] [CrossRef]
- Qu, H.; Du, H.; Tang, X.; Zhai, S. Citrus fruit diameter estimation in the field using monocular camera. Biosyst. Eng. 2025, 252, 47–60. [Google Scholar] [CrossRef]
- Niu, Y.X.; Han, W.T.; Zhang, H.H.; Zhang, L.Y.; Chen, H.P. Estimating maize plant height using a crop surface model constructed from UAV RGB images. Biosyst. Eng. 2024, 241, 56–67. [Google Scholar] [CrossRef]
- Parrish, E.; Goksel, A. Pictorial pattern recognition applied to fruit harvesting. Trans. ASAE 1977, 20, 0822–0827. [Google Scholar] [CrossRef]
- Liu, B.; Gould, S.; Koller, D. Single image depth estimation from predicted semantic labels. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1253–1260. [Google Scholar] [CrossRef]
- Khan, F.; Salahuddin, S.; Javidnia, H. Deep learning-based monocular depth estimation methods—A state-of-the-art review. Sensors 2020, 20, 2272. [Google Scholar] [CrossRef] [PubMed]
- Masoumian, A.; Rashwan, H.A.; Cristiano, J.; Asif, M.S.; Puig, D. Monocular depth estimation using deep learning: A review. Sensors 2022, 22, 5353. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.S.; Wei, L.L.; Xu, L.Z.; Zhang, Q.; Liu, J.Y.; Cai, Q.B.; Zhang, W.B. Stereo-vision-based multi-crop harvesting edge detection for precise automatic steering of combine harvester. Biosyst. Eng. 2022, 215, 115–128. [Google Scholar] [CrossRef]
- Ji, W.; Meng, X.; Qian, Z.; Xu, B.; Zhao, D. Branch localization method based on the skeleton feature extraction and stereo matching for apple harvesting robot. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417705276. [Google Scholar] [CrossRef]
- Li, T.; Fang, W.; Zhao, G.; Gao, F.; Wu, Z.; Li, R.; Fu, L.; Dhupia, J. An improved binocular localization method for apple based on fruit detection using deep learning. Inf. Process. Agric. 2023, 10, 276–287. [Google Scholar] [CrossRef]
- Atif, M.; Lee, S. Adaptive pattern resolution for structured light 3D camera system. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, N.; Zhang, L.; Lin, J.; Gao, X.; Chen, G. A review on the recent developments in vision-based apple-harvesting robots for recognizing fruit and picking pose. Comput. Electron. Agric. 2025, 231, 109968. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, H.; Liu, X.; Li, H.; Wu, Z.; Sun, X.; He, L.; Mao, W.; Majeed, Y.; Li, R. Improved binocular localization of kiwifruit in orchard based on fruit and calyx detection using YOLOv5x for robotic picking. Comput. Electron. Agric. 2024, 217, 108621. [Google Scholar] [CrossRef]
- Wang, B.; Chen, Z.; Gao, J.; Fu, L.; Su, B.; Cui, Y. The acquisition of kiwifruit feature point coordinates based on the spatial coordinates of image. In Proceedings of the Computer and Computing Technologies in Agriculture IX, Beijing, China, 27–30 September 2015; Springer: Berlin/Heidelberg, Germany, 2016; pp. 399–411. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, H.; Wang, H.; Zhang, Y. Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision. Expert Syst. Appl. 2023, 211, 118573. [Google Scholar] [CrossRef]
- Perez, R.M.; Cheein, F.A.; Rosell-Polo, J.R. Flexible system of multiple RGB-D sensors for measuring and classifying fruits in agri-food Industry. Comput. Electron. Agric. 2017, 139, 231–242. [Google Scholar] [CrossRef]
- Mack, J.; Lenz, C.; Teutrine, J.; Steinhage, V. High-precision 3D detection and reconstruction of grapes from laser range data for efficient phenotyping based on supervised learning. Comput. Electron. Agric. 2017, 135, 300–311. [Google Scholar] [CrossRef]
- Yi, W.; Xia, S.; Kuzmin, S.; Gerasimov, I.; Cheng, X. RTFVE-YOLOv9: Real-time fruit volume estimation model integrating YOLOv9 and binocular stereo vision. Comput. Electron. Agric. 2025, 236, 110401. [Google Scholar] [CrossRef]
- Andujar, D.; Ribeiro, A.; Fernández-Quintanilla, C.; Dorado, J. Using depth cameras to extract structural parameters to assess the growth state and yield of cauliflower crops. Comput. Electron. Agric. 2016, 122, 67–73. [Google Scholar] [CrossRef]
- Vázquez-Arellano, M.; Reiser, D.; Paraforos, D.S.; Garrido-Izard, M.; Burce, M.E.C.; Griepentrog, H.W. 3-D reconstruction of maize plants using a time-of-flight camera. Comput. Electron. Agric. 2018, 145, 235–247. [Google Scholar] [CrossRef]
- Xiao, L.; Ding, K.; Gao, Y.; Rao, X. Behavior-induced health condition monitoring of caged chickens using binocular vision. Comput. Electron. Agric. 2019, 156, 254–262. [Google Scholar] [CrossRef]
- Salau, J.; Haas, J.H.; Junge, W.; Thaller, G. Automated calculation of udder depth and rear leg angle in Holstein-Friesian cows using a multi-Kinect cow scanning system. Biosyst. Eng. 2017, 160, 154–169. [Google Scholar] [CrossRef]
- Yin, L.; Cai, G.; Tian, X.; Sun, A.; Shi, S.; Zhong, H.; Liang, S. Three dimensional point cloud reconstruction and body size measurement of pigs based on multi-view depth camera. Trans. Chin. Soc. Agric. Eng. 2019, 35, 201–208. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, B.; Shen, C.; Liu, H.L.; Huang, J.C.; Tian, K.P.; Tang, Z. Review of the field environmental sensing methods based on multi-sensor information fusion technology. Int. J. Agric. Biol. Eng. 2024, 17, 1–13. [Google Scholar] [CrossRef]
- Liu, Q.C.; Yu, R.H.; Cai, Y.F.; Yuan, Q.; Wei, H.L.; Lv, C. Collision risk prediction and takeover requirements assessment based on radar-video integrated sensors data: A system framework based on LLM. Accid. Anal. Prev. 2025, 218, 108041. [Google Scholar] [CrossRef]
- Kang, H.; Wang, X.; Chen, C. Accurate fruit localisation using high resolution LiDAR-camera fusion and instance segmentation. Comput. Electron. Agric. 2022, 203, 107450. [Google Scholar] [CrossRef]
- Zhang, F.; Hassanzadeh, A.; Letendre, P.; Kikkert, J.; Pethybridge, S.; van Aardt, J. Enhancing snap bean yield prediction through synergistic integration of UAS-Based LiDAR and multispectral imagery. Comput. Electron. Agric. 2025, 230, 109923. [Google Scholar] [CrossRef]
- Dash, S.K.; Sembhi, H.; Langsdale, M.; Wooster, M.; Dodd, E.; Ghent, D.; Sinha, R. Assessing the field-scale crop water condition over an intensive agricultural plain using UAV-based thermal and multispectral imagery. J. Hydrol. 2025, 655, 132966. [Google Scholar] [CrossRef]
- Javidan, S.M.; Banakar, A.; Vakilian, K.A.; Ampatzidis, Y.; Rahnama, K. Early detection and spectral signature identification of tomato fungal diseases (Alternaria alternata, Alternaria solani, Botrytis cinerea, and Fusarium oxysporum) by RGB and hyperspectral image analysis and machine learning. Heliyon 2024, 10, e38017. [Google Scholar] [CrossRef] [PubMed]
- Bhole, A.; Udmale, S.S.; Falzon, O.; Azzopardi, G. CORF3D contour maps with application to Holstein cattle recognition from RGB and thermal images. Expert Syst. Appl. 2022, 192, 116354. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Wendel, A.; Underwood, J. Spectral filter design based on in-field hyperspectral imaging and machine learning for mango ripeness estimation. Comput. Electron. Agric. 2019, 164, 104890. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; Cui, Y.; Xu, Y.; Zhou, Y.; Tang, X.; Jiang, C.; Song, Y.; Dong, H.; Yan, S. A Semi-Supervised Diffusion-Based Framework for Weed Detection in Precision Agricultural Scenarios Using a Generative Attention Mechanism. Agriculture 2025, 15, 434. [Google Scholar] [CrossRef]
- Li, Y.; Chao, X. Semi-supervised few-shot learning approach for plant diseases recognition. Plant Methods 2021, 17, 68. [Google Scholar] [CrossRef]
- Benchallal, F.; Hafiane, A.; Ragot, N.; Canals, R. ConvNeXt based semi-supervised approach with consistency regularization for weeds classification. Expert Syst. Appl. 2024, 239, 122222. [Google Scholar] [CrossRef]
- Hamdan, M.K.; Rover, D.T.; Darr, M.J.; Just, J. Generalizable semi-supervised learning method to estimate mass from sparsely annotated images. Comput. Electron. Agric. 2020, 175, 105533. [Google Scholar] [CrossRef]
- Li, J.; Zhao, X.; Xu, H.; Zhang, L.; Xie, B.; Yan, J.; Zhang, L.; Fan, D.; Li, L. An interpretable high-accuracy method for rice disease detection based on multisource data and transfer learning. Plants 2023, 12, 3273. [Google Scholar] [CrossRef]
- Simhadri, C.G.; Kondaveeti, H.K. Automatic recognition of rice leaf diseases using transfer learning. Agronomy 2023, 13, 961. [Google Scholar] [CrossRef]
- Buchke, P.; Mayuri, A. Recognize and classify illnesses on tomato leaves using EfficientNet’s Transfer Learning Approach with different size dataset. Signal Image Video Process. 2024, 18, 731–746. [Google Scholar] [CrossRef]
- Emmi, L.; Le Flécher, E.; Cadenat, V.; Devy, M. A hybrid representation of the environment to improve autonomous navigation of mobile robots in agriculture. Precis. Agric. 2021, 22, 524–549. [Google Scholar] [CrossRef]
- Wang, Z.; Bian, Y.; Shladover, S.E.; Wu, G.; Li, S.E.; Barth, M.J. A survey on cooperative longitudinal motion control of multiple connected and automated vehicles. IEEE Intell. Transp. Syst. Mag. 2019, 12, 4–24. [Google Scholar] [CrossRef]
- Le, W.; Xue, Z.; Chen, J.; Zhang, Z. Coverage path planning based on the optimization strategy of multiple solar powered unmanned aerial vehicles. Drones 2022, 6, 203. [Google Scholar] [CrossRef]
- Zeeshan, S.; Aized, T. Performance analysis of path planning algorithms for fruit harvesting robot. J. Biosyst. Eng. 2023, 48, 178–197. [Google Scholar] [CrossRef]
- Zhou, M.; Sun, H.; Xu, X.; Yang, J.; Wang, G.; Wei, Z.; Xu, T.; Yin, J. Study on the method and mechanism of seedling picking for pepper (Capsicum annuum L.) plug seedlings. Agriculture 2023, 14, 11. [Google Scholar] [CrossRef]
- Kok, E.; Chen, C. Occluded apples orientation estimator based on deep learning model for robotic harvesting. Comput. Electron. Agric. 2024, 219, 108781. [Google Scholar] [CrossRef]
- Kang, H.; Zhou, H.; Chen, C. Visual perception and modeling for autonomous apple harvesting. IEEE Access 2020, 8, 62151–62163. [Google Scholar] [CrossRef]
- Li, T.; Xie, F.; Zhao, Z.; Zhao, H.; Guo, X.; Feng, Q. A multi-arm robot system for efficient apple harvesting: Perception, task plan and control. Comput. Electron. Agric. 2023, 211, 107979. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Yang, X.; Liu, H.; Li, J.; Wang, P. Path planning techniques for mobile robots: Review and prospect. Expert Syst. Appl. 2023, 227, 120254. [Google Scholar] [CrossRef]
- Ahmed, S.; Qiu, B.J.; Kong, C.W.; Xin, H.; Ahmad, F.; Lin, J.L. A Data-Driven Dynamic Obstacle Avoidance Method for Liquid-Carrying Plant Protection UAVs. Agronomy 2022, 12, 873. [Google Scholar] [CrossRef]
- Quan, L.; Han, L.; Zhou, B.; Shen, S.; Gao, F. Survey of UAV motion planning. IET Cyber-Systems Robot. 2020, 2, 14–21. [Google Scholar] [CrossRef]
- Cui, B.B.; Cui, X.Y.; Wei, X.H.; Zhu, Y.Y.; Ma, Z.; Zhao, Y.; Liu, Y.F. Design and testing of a tractor automatic navigation system based on dynamic path search and a fuzzy stanley model. Agriculture 2024, 14, 2136. [Google Scholar] [CrossRef]
- Yao, Z.; Zhao, C.; Zhang, T. Agricultural machinery automatic navigation technology. Iscience 2024, 27, 108714. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, Z.; Liu, Y.; Zhang, B.; Sui, J.; Jiang, K. Structure design and application of combination track intelligent inspection robot used in substation indoor. Procedia Comput. Sci. 2017, 107, 190–195. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, W.; Yang, J.; Wu, W.; Miao, H.; Zhang, S. An approach for autonomous feeding robot path planning in poultry smart farm. Animals 2022, 12, 3089. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Guo, Z.W.; Li, T.; Feng, Q.C.; Zhao, C.J. Dynamic task planning for multi-arm harvesting robots under multiple constraints using deep reinforcement learning. Horticulturae 2025, 11, 88. [Google Scholar] [CrossRef]
- Li, H. A Visual Recognition and Path Planning Method for Intelligent Fruit-Picking Robots. Sci. Program. 2022, 2022, 1297274. [Google Scholar] [CrossRef]
- Li, Y.; Wu, T.; Xiao, Y.; Gong, L.; Liu, C. Path planning in continuous adjacent farmlands and robust path-tracking control of a rice-seeding robot in paddy field. Comput. Electron. Agric. 2023, 210, 107900. [Google Scholar] [CrossRef]
- Lei, T.; Li, G.; Luo, C.; Zhang, L.; Liu, L.; Gates, R.S. An informative planning-based multi-layer robot navigation system as applied in a poultry barn. Intell. Robot. 2022, 2, 313–332. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Q.; Lin, Y.; Ma, Z.; Sun, L.; Yu, G. Path tracking control of paddy field weeder integrated with satellite and visual methods. Comput. Electron. Agric. 2025, 234, 110257. [Google Scholar] [CrossRef]
- Vroegindeweij, B.A.; van Willigenburg, G.L.; Koerkamp, P.W.G.; van Henten, E.J. Path planning for the autonomous collection of eggs on floors. Biosyst. Eng. 2014, 121, 186–199. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, Y.; Wu, H.; Tao, K.; Qian, M. In different weed distributions, the dynamic coverage algorithm for mechanical selective weeding robot. Comput. Electron. Agric. 2024, 226, 109486. [Google Scholar] [CrossRef]
- Ma, Z.; Qiu, H.; Wang, H.; Yang, L.; Huang, L.; Qiu, R. A* algorithm path planning and minimum snap trajectory generation for mobile robot. In Proceedings of the 2021 4th International Conference on Robotics, Control and Automation Engineering (RCAE), Wuhan, China, 4–6 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 284–288. [Google Scholar] [CrossRef]
- Webb, D.J.; Van Den Berg, J. Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 5054–5061. [Google Scholar] [CrossRef]
- Petereit, J.; Emter, T.; Frey, C.W.; Kopfstedt, T.; Beutel, A. Application of hybrid A* to an autonomous mobile robot for path planning in unstructured outdoor environments. In Proceedings of the ROBOTIK 2012; 7th German conference on Robotics, Munich, Germany, 21–22 May 2012; VDE: Hong Kong, China, 2012; pp. 1–6. [Google Scholar]
- Zucker, M.; Ratliff, N.; Dragan, A.D.; Pivtoraiko, M.; Klingensmith, M.; Dellin, C.M.; Bagnell, J.A.; Srinivasa, S.S. Chomp: Covariant hamiltonian optimization for motion planning. Int. J. Robot. Res. 2013, 32, 1164–1193. [Google Scholar] [CrossRef]
- Wang, N.; Li, X.; Zhang, K.; Wang, J.; Xie, D. A survey on path planning for autonomous ground vehicles in unstructured environments. Machines 2024, 12, 31. [Google Scholar] [CrossRef]
- Chen, C.; Song, Z.; Li, X.; Chen, C.; Yang, F.; Wang, Z. Research status of apple picking robotic arm picking strategy and end-effector. Comput. Electron. Agric. 2025, 235, 110349. [Google Scholar] [CrossRef]
- Zhuang, M.; Li, G.; Ding, K. Obstacle avoidance path planning for apple picking robotic arm incorporating artificial potential field and A* algorithm. IEEE Access 2023, 11, 100070–100082. [Google Scholar] [CrossRef]
- Wang, B.; Du, X.X.; Wang, Y.N.; Mao, H.P. Multi-machine collaboration realization conditions and precise and efficient production mode of intelligent agricultural machinery. Int. J. Agric. Biol. Eng. 2024, 17, 27–36. [Google Scholar] [CrossRef]
- Gao, B.; Liu, Y.J.; Liu, L. Adaptive neural fault-tolerant control of a quadrotor UAV via fast terminal sliding mode. Aerosp. Sci. Technol. 2022, 129, 107818. [Google Scholar] [CrossRef]
- Ji, X.; He, X.; Lv, C.; Liu, Y.; Wu, J. Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at driving limits. Control Eng. Pract. 2018, 76, 41–53. [Google Scholar] [CrossRef]
- Ren, Z.; Zheng, H.; Chen, J.; Chen, T.; Xie, P.; Xu, Y.; Deng, J.; Wang, H.; Sun, M.; Jiao, W. Integrating UAV, UGV and UAV-UGV collaboration in future industrialized agriculture: Analysis, opportunities and challenges. Comput. Electron. Agric. 2024, 227, 109631. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; He, X. An adaptive composite disturbance rejection for attitude control of the agricultural quadrotor UAV. ISA Trans. 2022, 129, 564–579. [Google Scholar] [CrossRef]
- Kraus, T.; Ferreau, H.J.; Kayacan, E.; Ramon, H.; De Baerdemaeker, J.; Diehl, M.; Saeys, W. Moving horizon estimation and nonlinear model predictive control for autonomous agricultural vehicles. Comput. Electron. Agric. 2013, 98, 25–33. [Google Scholar] [CrossRef]
- Tang, L.D.; Wang, W.; Zhang, C.J.; Wang, Z.Y.; Ge, Z.Y.; Yuan, S.Q. Linear active disturbance rejection control system for the travel speed of an electric reel sprinkling irrigation machine. Agriculture 2024, 14, 1544. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, J.; Li, K.; Chen, H. Integrated design of control allocation and triple-step control for over-actuated electric ground vehicles with actuator faults. J. Frankl. Inst. 2020, 357, 3150–3167. [Google Scholar] [CrossRef]
- Jiang, Y.; Meng, H.; Chen, G.; Yang, C.; Xu, X.; Zhang, L.; Xu, H. Differential-steering based path tracking control and energy-saving torque distribution strategy of 6WID unmanned ground vehicle. Energy 2022, 254, 124209. [Google Scholar] [CrossRef]
- Yue, M.; Wu, X.; Guo, L.; Gao, J. Quintic polynomial-based obstacle avoidance trajectory planning and tracking control framework for tractor-trailer system. Int. J. Control. Autom. Syst. 2019, 17, 2634–2646. [Google Scholar] [CrossRef]
- Sun, M.; Liu, D. Two-loop control of harvesting mechanical arm base on adaptive input shaping algorithm. In Proceedings of the 2022 International Conference on Virtual Reality, Human-Computer Interaction and Artificial Intelligence (VRHCIAI), Changsha, China, 28–30 October 2022; IEEE: Piscataway, NJ, USA, 2023; pp. 182–188. [Google Scholar] [CrossRef]
- Yin, X.; Yang, L.; Yao, D.; Yang, X.; Bian, Y.; Gong, Y. Improved DeepLabV3+ and GR-ConvNet for shiitake mushroom harvest robots flexible grasping of mimicry. Comput. Electron. Agric. 2025, 236, 110449. [Google Scholar] [CrossRef]
- Chen, K.W.; Li, T.; Yan, T.J.; Xie, F.; Feng, Q.C.; Zhu, Q.Z.; Zhao, C.J. A soft gripper design for apple harvesting with force feedback and fruit slip detection. Agriculture 2022, 12, 1802. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, W.; Wen, L.; Chen, Z.; Wu, S.; Zhou, K.; Sun, M.; Xu, L.; Hu, B.; Wu, C. Digital twins in smart farming: An autoware-based simulator for autonomous agricultural vehicles. Int. J. Agric. Biol. Eng. 2023, 16, 184–189. [Google Scholar] [CrossRef]
- Li, J.Y.; Wu, Z.Z.; Li, M.Q.; Shang, Z.J. Dynamic measurement method for steering wheel angle of autonomous agricultural vehicles. Agriculture 2024, 14, 1602. [Google Scholar] [CrossRef]
- Koksal, N.; An, H.; Fidan, B. Backstepping-based adaptive control of a quadrotor UAV with guaranteed tracking performance. ISA Trans. 2020, 105, 98–110. [Google Scholar] [CrossRef]
- Lu, E.; Ma, Z.; Li, Y.M.; Xu, L.Z.; Tang, Z. Adaptive backstepping control of tracked robot running trajectory based on real-time slip parameter estimation. Int. J. Agric. Biol. Eng. 2020, 13, 178–187. [Google Scholar] [CrossRef]
- He, J.; Hu, L.; Wang, P.; Liu, Y.; Man, Z.; Tu, T.; Yang, L.; Li, Y.; Yi, Y.; Li, W. Path tracking control method and performance test based on agricultural machinery pose correction. Comput. Electron. Agric. 2022, 200, 107185. [Google Scholar] [CrossRef]
- Liu, H.; Yan, S.C.; Shen, Y.; Li, C.H.; Zhang, Y.F.; Hussain, F. Model predictive control system based on direct yaw moment control for 4WID self-steering agriculture vehicle. Int. J. Agric. Biol. Eng. 2021, 14, 175–181. [Google Scholar] [CrossRef]
- Jing, Y.; Li, Q.; Ye, W.; Liu, G. Development of a GNSS/INS-based automatic navigation land levelling system. Comput. Electron. Agric. 2023, 213, 108187. [Google Scholar] [CrossRef]
- Wang, W.; Yang, S.; Zhang, X.; Xia, X. Research on the smart broad bean harvesting system and the self-adaptive control method based on CPS technologies. Agronomy 2024, 14, 1405. [Google Scholar] [CrossRef]
- An, G.; Zhong, Z.; Yang, S.; Yang, L.; Jin, C.; Du, J.; Yin, X. EASS: An automatic steering system for agricultural wheeled vehicles using fuzzy control. Comput. Electron. Agric. 2024, 217, 108544. [Google Scholar] [CrossRef]
- Ding, F.; Zhang, W.; Luo, X.; Hu, L.; Zhang, Z.; Wang, M.; Li, H.; Peng, M.; Wu, X.; Hu, L. Gain self-adjusting single neuron PID control method and experiments for longitudinal relative position of harvester and transport vehicle. Comput. Electron. Agric. 2023, 213, 108215. [Google Scholar] [CrossRef]
- Ji, X.; Ding, S.; Wei, X.; Cui, B. Path tracking of unmanned agricultural tractors based on a novel adaptive second-order sliding mode control. J. Frankl. Inst. 2023, 360, 5811–5831. [Google Scholar] [CrossRef]
- Sun, J.L.; Wang, Z.; Ding, S.H.; Xia, J.; Xing, G.Y. Adaptive disturbance observer-based fixed time nonsingular terminal sliding mode control for path-tracking of unmanned agricultural tractors. Biosyst. Eng. 2024, 246, 96–109. [Google Scholar] [CrossRef]
- Zhang, W.; Gai, J.; Zhang, Z.; Tang, L.; Liao, Q.; Ding, Y. Double-DQN based path smoothing and tracking control method for robotic vehicle navigation. Comput. Electron. Agric. 2019, 166, 104985. [Google Scholar] [CrossRef]
- Sierra-García, J.E.; Santos, M. Intelligent control of an UAV with a cable-suspended load using a neural network estimator. Expert Syst. Appl. 2021, 183, 115380. [Google Scholar] [CrossRef]
- Etezadi, H.; Eshkabilov, S. A comprehensive overview of control algorithms, sensors, actuators, and communication tools of autonomous all-terrain vehicles in agriculture. Agriculture 2024, 14, 163. [Google Scholar] [CrossRef]
- Ly, T.T.K. Neural controller design of unmanned ground vehicle with four-wheel independent drive in agricultural farming. In Proceedings of the 2023 Asia Meeting on Environment and Electrical Engineering, Hanoi, Vietnam, 13–15 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 01–06. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Meng, X.; Song, W.; Chen, Z. Electronic sheepdog: A novel method in with UAV-Assisted wearable grazing Monitoring. IEEE Internet Things J. 2023, 10, 16036–16047. [Google Scholar] [CrossRef]
- Ge, Z.; Man, Z.; Wang, Z.; Bai, X.; Wang, X.; Xiong, F.; Li, D. Robust adaptive sliding mode control for path tracking of unmanned agricultural vehicles. Comput. Electr. Eng. 2023, 108, 108693. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Feng, K.Y.; Yang, S.; Han, X.; Wei, X.H.; Zhu, Q.Z.; Chen, L.P. Design and experiment of an unmanned variable-rate fertilization control system with self-calibration of fertilizer discharging shaft speed. Agronomy 2024, 14, 2336. [Google Scholar] [CrossRef]
- Tzafestas, S.G. Mobile robot control and navigation: A global overview. J. Intell. Robot. Syst. 2018, 91, 35–58. [Google Scholar] [CrossRef]
- Chen, J.; Ning, X.; Li, Y.; Yang, G.; Wu, P.; Chen, S. A fuzzy control strategy for the forward speed of a combine harvester based on KDD. Appl. Eng. Agric. 2017, 33, 15–22. [Google Scholar] [CrossRef]
- Liu, Z.; Xia, J.; Liu, G.; Cheng, J.; Wei, Y.; Xie, D. Design and analysis of a pneumatic automatic compensation system for miss-seeding based on speed synchronization. Agriculture 2023, 13, 1232. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L.; Zheng, Q.; Dou, X.; Yang, L. Control of a path following caterpillar robot based on a sliding mode variable structure algorithm. Biosyst. Eng. 2019, 186, 293–306. [Google Scholar] [CrossRef]
- Nan, Y.; Zhang, H.; Zheng, J.; Yang, K.; Ge, Y. Low-volume precision spray for plant pest control using profile variable rate spraying and ultrasonic detection. Front. Plant Sci. 2023, 13, 1042769. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Ge, Y.; Grimstad, L.; From, P.J. An autonomous strawberry-harvesting robot: Design, development, integration, and field evaluation. J. Field Robot. 2020, 37, 202–224. [Google Scholar] [CrossRef]
- Roshanianfard, A.; Noguchi, N.; Kamata, T. Design and performance of a robotic arm for farm use. Int. J. Agric. Biol. Eng. 2019, 12, 146–158. [Google Scholar] [CrossRef]
- Mirzakhaninafchi, H.; Singh, M.; Dixit, A.K.; Prakash, A.; Sharda, S.; Kaur, J.; Nafchi, A.M. Performance assessment of a sensor-based variable-rate real-time fertilizer applicator for rice crop. Sustainability 2022, 14, 11209. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, G.; Chen, Z.; Wen, X.; Cheng, S.; Ma, Q.; Qi, J.; Zhou, Y.; Chen, L. An independent steering driving system to realize headland turning of unmanned tractors. Comput. Electron. Agric. 2022, 201, 107278. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, F.; Zhang, J.; Yuan, T.; Yin, J.; Guo, H.; Yang, C. Development and evaluation of a pneumatic finger-like end-effector for cherry tomato harvesting robot in greenhouse. Comput. Electron. Agric. 2022, 197, 106879. [Google Scholar] [CrossRef]
- Shao, Y.; Han, X.; Xuan, G.; Liu, Y.; Gao, C.; Wang, G.; Hu, Z. Development of a multi-adaptive feeding device for automated plug seedling transplanter. Int. J. Agric. Biol. Eng. 2021, 14, 91–96. [Google Scholar] [CrossRef]
- Tu, X.; Gai, J.; Tang, L. Robust navigation control of a 4WD/4WS agricultural robotic vehicle. Comput. Electron. Agric. 2019, 164, 104892. [Google Scholar] [CrossRef]
- Zeng, H.; Yang, J.; Yang, N.; Huang, J.; Long, H.; Chen, Y. A review of the research progress of pruning robots. In Proceedings of the 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA), Dalian, China, 28–30 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1069–1073. [Google Scholar] [CrossRef]
- Tang, Z.; Li, Y.M.; Cheng, C. Development of multi-functional combine harvester with grain harvesting and straw baling. Span. J. Agric. Res. 2017, 15, e0202. [Google Scholar] [CrossRef]
- Zhu, Q.Z.; Zhu, Z.H.; Zhang, H.Y.; Gao, Y.Y.; Chen, L.P. Design of an electronically controlled fertilization system for an air-assisted side-deep fertilization machine. Agriculture 2023, 13, 2210. [Google Scholar] [CrossRef]
- Yao, M.; Hu, J.; Liu, W.; Shi, J.; Jin, Y.; Lv, J.; Sun, Z.; Wang, C. Precise Servo-Control System of a Dual-Axis Positioning Tray Conveying Device for Automatic Transplanting Machine. Agriculture 2024, 14, 1431. [Google Scholar] [CrossRef]
- Ye, S.; Xue, X.; Si, S.; Xu, Y.; Le, F.; Cui, L.; Jin, Y. Design and testing of an elastic comb reciprocating a soybean plant-to-plant seedling avoidance and weeding device. Agriculture 2023, 13, 2157. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, X.; Huang, J.; Huang, J.; Xie, J.; Xiao, X.; Yin, G.; Wang, X.; Li, M.; Fang, K. BDS/IMU integrated auto-navigation system of orchard spraying robot. Appl. Sci. 2022, 12, 8173. [Google Scholar] [CrossRef]
- Ramon Soria, P.; Sukkar, F.; Martens, W.; Arrue, B.C.; Fitch, R. Multi-view probabilistic segmentation of pome fruit with a low-cost RGB-D camera. In Proceedings of the ROBOT 2017: Third Iberian Robotics Conference, Sevilla, Spain, 22–24 November 2017; Springer: Berlin/Heidelberg, Germany, 2017; Volume 2, pp. 320–331. [Google Scholar] [CrossRef]
- Ye, L.; Duan, J.; Yang, Z.; Zou, X.; Chen, M.; Zhang, S. Collision-free motion planning for the litchi-picking robot. Comput. Electron. Agric. 2021, 185, 106151. [Google Scholar] [CrossRef]
- Shi, Y.; Jin, S.; Zhao, Y.; Huo, Y.; Liu, L.; Cui, Y. Lightweight force-sensing tomato picking robotic arm with a “global-local” visual servo. Comput. Electron. Agric. 2023, 204, 107549. [Google Scholar] [CrossRef]
- Liu, J.Z.; Liang, J.; Zhao, S.Y.; Jiang, Y.X.; Wang, J.; Jin, Y.C. Design of a virtual multi-interaction operation system for hand-eye coordination of grape harvesting robots. Agronomy 2023, 13, 829. [Google Scholar] [CrossRef]
- Wu, Q.; Gu, J. Design and research of robot visual servo system based on artificial intelligence. Agro Food Ind. Hi-Tech 2017, 28, 125–128. [Google Scholar]
- Koivumäki, J.; Zhu, W.H.; Mattila, J. Energy-efficient and high-precision control of hydraulic robots. Control Eng. Pract. 2019, 85, 176–193. [Google Scholar] [CrossRef]
- Hu, J.P.; Pan, J.H.; Dai, B.W.; Chai, X.Y.; Sun, Y.X.; Xu, L.Z. Development of an attitude adjustment crawler chassis for combine harvester and experiment of adaptive leveling system. Agronomy 2022, 12, 717. [Google Scholar] [CrossRef]
- Xie, D.; Chen, L.; Liu, L.; Chen, L.; Wang, H. Actuators and sensors for application in agricultural robots: A review. Machines 2022, 10, 913. [Google Scholar] [CrossRef]
- Jin, T.; Han, X. Robotic arms in precision agriculture: A comprehensive review of the technologies, applications, challenges, and future prospects. Comput. Electron. Agric. 2024, 221, 108938. [Google Scholar] [CrossRef]
- Pi, J.; Liu, J.; Zhou, K.H.; Qian, M.Y. An octopus-inspired bionic flexible gripper for apple grasping. Agriculture 2021, 11, 1014. [Google Scholar] [CrossRef]
- Gandomzadeh, D.; Abbaspour-Fard, M.H. Numerical study of the effect of core geometry on the performance of a magnetostrictive transducer. J. Magn. Magn. Mater. 2020, 513, 166823. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, X.; Xiao, Z.; Zhang, Z.; Zhou, S.; Hong, C.; Chen, X.; Zeng, L.; Wang, Y.; Wu, J. A novel fractional-order framework for creep nonlinearity in piezoelectric actuators. Sens. Actuators A Phys. 2025, 391, 116639. [Google Scholar] [CrossRef]
- Liao, W.; Yang, Z. 3D printing programmable liquid crystal elastomer soft pneumatic actuators. Mater. Horizons 2023, 10, 576–584. [Google Scholar] [CrossRef]
- Brown, E.; Rodenberg, N.; Amend, J.; Mozeika, A.; Steltz, E.; Zakin, M.R.; Lipson, H.; Jaeger, H.M. Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. USA 2010, 107, 18809–18814. [Google Scholar] [CrossRef]
- Zhou, K.H.; Xia, L.R.; Liu, J.; Qian, M.Y.; Pi, J. Design of a flexible end-effector based on characteristics of tomatoes. Int. J. Agric. Biol. Eng. 2022, 15, 13–24. [Google Scholar] [CrossRef]
- Kalulu, M.; Mwanza, C.; Hussain, M.; Fu, G. Design and fabrication of anisotropic bilayer hydrogels with gradient structures: Enhanced swelling, conductivity, and programmable shape deformation for smart actuator applications. Sens. Actuators A Phys. 2025, 392, 116710. [Google Scholar] [CrossRef]
- Kozuki, H.; Yoshida, K.; Yasuga, H.; Kurashina, Y. Hydrogel-polymer hybrid actuator with soft lattice skeleton for excellent connectivity. Sens. Actuators B Chem. 2025, 430, 137377. [Google Scholar] [CrossRef]
- Liu, J.; Ding, L.; Pan, C.; Lai, X.; Wu, J.; Ding, Z.; Wang, L.; Jing, X.; Wang, Y.; Lv, L. A centipede-inspired bonded-type ultrasonic actuator with high thrust force density driven by dual-torsional-vibration-induced flexural traveling waves. Sens. Actuators A Phys. 2024, 377, 115733. [Google Scholar] [CrossRef]
- Tian, Z.; Xue, J.; Xiao, X.; Du, C.; Han, Z.; Liu, Y. Untethered multifunctional biomimetic soft actuator with programmable shape deformation capabilities and localized maneuverability. Sens. Actuators B Chem. 2024, 410, 135678. [Google Scholar] [CrossRef]
- Zhang, Z.; Jia, X.; Yang, T.; Gu, Y.; Wang, W.; Chen, L. Multi-objective optimization of lubricant volume in an ELSD considering thermal effects. Int. J. Therm. Sci. 2021, 164, 106884. [Google Scholar] [CrossRef]
- Li, Y.M.; Liu, Y.B.; Ji, K.Z.; Zhu, R.H. A fault diagnosis method for a differential inverse gearbox of a crawler combine harvester based on order analysis. Agriculture 2022, 12, 1300. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, Y.; Fu, S.; Feng, K.; Han, X.; Hu, Y.; Zhu, Q.; Wei, X. Analysis of vibration characteristics of tractor–rotary cultivator combination based on time domain and frequency domain. Agriculture 2024, 14, 1139. [Google Scholar] [CrossRef]
- Kisiel, M.; Szpica, D.; Czaban, J.; Köten, H. Pneumatic brake valves used in vehicle trailers–A review. Eng. Fail. Anal. 2024, 158, 107942. [Google Scholar] [CrossRef]
- Ahmed, S.; Reza, M.N.; Karim, M.R.; Jin, H.; Kim, H.; Chung, S.O. Abnormal Operation Detection of Automated Orchard Irrigation System Actuators by Power Consumption Level. Sensors 2025, 25, 331. [Google Scholar] [CrossRef]
- Conesa-Muñoz, J.; Gonzalez-de Soto, M.; Gonzalez-de Santos, P.; Ribeiro, A. Distributed multi-level supervision to effectively monitor the operations of a fleet of autonomous vehicles in agricultural tasks. Sensors 2015, 15, 5402–5428. [Google Scholar] [CrossRef]
- Hussain, M.; He, L.; Schupp, J.; Heinemann, P. Green fruit removal dynamics for development of robotic green fruit thinning end-effector. J. ASABE 2022, 65, 779–788. [Google Scholar] [CrossRef]
- Roshanıanfard, A.R.; Noguchı, N. Kinematics analysis and simulation of a 5DOF articulated robotic arm applied to heavy products harvesting. J. Agric. Sci. 2018, 24, 90–104. [Google Scholar] [CrossRef]
- Li, K.; Huo, Y.; Liu, Y.; Shi, Y.; He, Z.; Cui, Y. Design of a lightweight robotic arm for kiwifruit pollination. Comput. Electron. Agric. 2022, 198, 107114. [Google Scholar] [CrossRef]
- Yang, Q.; Du, X.; Wang, Z.; Meng, Z.; Ma, Z.; Zhang, Q. A review of core agricultural robot technologies for crop productions. Comput. Electron. Agric. 2023, 206, 107701. [Google Scholar] [CrossRef]
- Jianping, H.; Xiaoyue, Y.; Jun, M.; Chunhui, Q.; Kumi, F.; Hanping, M. Dimensional synthesis and trajectory planning of plug seedling transplanting robot based on delta parallel mechanism. Comput. Electron. Agric. 2014, 107, 64–72. [Google Scholar] [CrossRef]
- Li, Z.; Luo, Y.; Shi, Z.; Xie, D.; Li, C. Design and research of end-effector for naval orange harvesting. J. Mech. Transm. 2020, 44, 67–73. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, L.; Liu, C.; Huang, Y. Dual-arm robot design and testing for harvesting tomato in greenhouse. IFAC-Pap. 2016, 49, 161–165. [Google Scholar] [CrossRef]
- Feng, Q.; Zou, W.; Fan, P.; Zhang, C.; Wang, X. Design and test of robotic harvesting system for cherry tomato. Int. J. Agric. Biol. Eng. 2018, 11, 96–100. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Yang, C.; Zhao, H.; Chen, G.; Zhang, Z.; Fu, S.; Zhang, M.; Xu, H. End-effector with a bite mode for harvesting citrus fruit in random stalk orientation environment. Comput. Electron. Agric. 2019, 157, 454–470. [Google Scholar] [CrossRef]
- Bu, L.; Chen, C.; Hu, G.; Sugirbay, A.; Sun, H.; Chen, J. Design and evaluation of a robotic apple harvester using optimized picking patterns. Comput. Electron. Agric. 2022, 198, 107092. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, X.; Wang, C. A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots. Int. J. Adv. Robot. Syst. 2022, 19, 17298806221104906. [Google Scholar] [CrossRef]
- Hohimer, C.J.; Wang, H.; Bhusal, S.; Miller, J.; Mo, C.; Karkee, M. Design and field evaluation of a robotic apple harvesting system with a 3D-printed soft-robotic end-effector. Trans. ASABE 2019, 62, 405–414. [Google Scholar] [CrossRef]
- Salem, M.E.; Wang, Q.; Wen, R.; Xiang, M. Design and characterization of soft pneumatic actuator for universal robot gripper. In Proceedings of the 2018 International Conference on Control and Robots (ICCR), Hong Kong, China, 15–17 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 6–10. [Google Scholar] [CrossRef]
- Zou, X.; Ye, M.; Luo, C.; Xiong, J.; Luo, L.; Wang, H.; Chen, Y. Fault-tolerant design of a limited universal fruit-picking end-effector based on vision-positioning error. Appl. Eng. Agric. 2016, 32, 5–18. [Google Scholar] [CrossRef]
- Wang, D.; Dong, Y.; Lian, J.; Gu, D. Adaptive end-effector pose control for tomato harvesting robots. J. Field Robot. 2023, 40, 535–551. [Google Scholar] [CrossRef]
- Liu, L.; Yang, F.; Liu, X.; Du, Y.; Li, X.; Li, G.; Chen, D.; Zhu, Z.; Song, Z. A review of the current status and common key technologies for agricultural field robots. Comput. Electron. Agric. 2024, 227, 109630. [Google Scholar] [CrossRef]
- Hua, W.; Zhang, W.; Zhang, Z.; Liu, X.; Huang, M.; Igathinathane, C.; Vougioukas, S.; Saha, C.K.; Mustafa, N.; Salama, D.S. Vacuum suction end-effector development for robotic harvesters of fresh market apples. Biosyst. Eng. 2025, 249, 28–40. [Google Scholar] [CrossRef]
- Zhai, L.Y.; Khoo, L.P.; Fok, S.C. Knowledge acquisition and uncertainty in fault diagnosis: A rough sets perspective. In Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques; Springer: Berlin/Heidelberg, Germany, 2006; pp. 359–394. [Google Scholar] [CrossRef]
- Paul, S.; Chang, J. Consequent pole flux modulated linear actuator under winding chang and field oriented control driving conditions for long track and multi-track agricultural robot. Comput. Electron. Agric. 2024, 217, 108582. [Google Scholar] [CrossRef]
- Chen, J.; Wang, S.; Li, P.; Tan, Y.; Zheng, Y.; Ren, Z. Fault-tolerant control of a multi-actuator agricultural aircraft against actuator failures. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 7327–7332. [Google Scholar] [CrossRef]
- Isermann, R. Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Zhang, B.; Bai, T.; Wu, G.; Wang, H.; Zhu, Q.; Zhang, G.; Meng, Z.; Wen, C. Fatigue Analysis of Shovel Body Based on Tractor Subsoiling Operation Measured Data. Agriculture 2024, 14, 1604. [Google Scholar] [CrossRef]
- Rout, R.; Bera, T.K.; Chatti, N. Fault tolerant self-reconfigurable waypoint guidance for mobile robots under actuator faults. J. Frankl. Inst. 2025, 362, 107735. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Wang, Y.; Sun, Y.; Sun, G. Intelligent joint actuator fault diagnosis for heavy-duty industrial robots. IEEE Sens. J. 2024, 24, 5292–15301. [Google Scholar] [CrossRef]
- Hao, S.H.; Tang, Z.; Guo, S.B.; Ding, Z.; Su, Z. Model and method of fault signal diagnosis for blockage and slippage of rice threshing drum. Agriculture 2022, 12, 1968. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; An, Y.; Luo, H.; Yin, S. An integrated multitasking intelligent bearing fault diagnosis scheme based on representation learning under imbalanced sample condition. IEEE Trans. Neural Networks Learn. Syst. 2023, 35, 6231–6242. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Choi, Y.Y.; Kim, M.; Sohn, Y.J.; Kim, S.G.; Lee, W.Y. Experimental validation of passive and active fault-tolerant controls against sensor faults in a proton exchange membrane fuel cell system. J. Process Control 2023, 129, 103064. [Google Scholar] [CrossRef]
- Xu, D.; Jiang, B.; Shi, P. Robust NSV fault-tolerant control system design against actuator faults and control surface damage under actuator dynamics. IEEE Trans. Ind. Electron. 2015, 62, 5919–5928. [Google Scholar] [CrossRef]
- Liu, K.; Wang, R.; Wang, X.; Wang, X. Anti-saturation adaptive finite-time neural network based fault-tolerant tracking control for a quadrotor UAV with external disturbances. Aerosp. Sci. Technol. 2021, 115, 106790. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Y.; Jiang, B.; Yu, X.; Fu, J.; Jin, Y.; Chai, T. Distributed adaptive fault-tolerant close formation flight control of multiple trailing fixed-wing UAVs. ISA Trans. 2020, 106, 181–199. [Google Scholar] [CrossRef]
- Yu, Z.; Qu, Y.; Zhang, Y. Fault-tolerant containment control of multiple unmanned aerial vehicles based on distributed sliding-mode observer. J. Intell. Robot. Syst. 2019, 93, 163–177. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Zhang, O.; Zhao, Y.; Chen, W.; Gao, Y. Adaptive disturbance observer-based fixed-time tracking control for uncertain robotic systems. IEEE Trans. Ind. Electron. 2024, 71, 14823–14831. [Google Scholar] [CrossRef]
- Lien, Y.H.; Peng, C.C.; Chen, Y.H. Adaptive observer-based fault detection and fault-tolerant control of quadrotors under rotor failure conditions. Appl. Sci. 2020, 10, 3503. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Ijaz, S.; Javaid, U.; Hussain, S.; Anwaar, H.; Marey, M. A robust sensor and actuator fault tolerant control scheme for nonlinear system. IEEE Access 2021, 10, 626–637. [Google Scholar] [CrossRef]
- Ngo, V.T.; Tsai, C.T.; Liu, Y.C. Actuator fault-tolerant control allocation for cooperative transportation of multiple omnidirectional mobile robots. Adv. Robot. 2024, 38, 112–127. [Google Scholar] [CrossRef]
- Karras, G.C.; Fourlas, G.K. Model predictive fault tolerant control for omni-directional mobile robots. J. Intell. Robot. Syst. 2020, 97, 635–655. [Google Scholar] [CrossRef]
- Lao, L.; Ellis, M.; Christofides, P.D. Proactive fault-tolerant model predictive control: Concept and application. In Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 5140–5145. [Google Scholar] [CrossRef]
- Jia, F.; Cao, F.; Lyu, G.; He, X. A novel framework of cooperative design: Bringing active fault diagnosis into fault-tolerant control. IEEE Trans. Cybern. 2022, 53, 3301–3310. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Li, Z. Research on weakly conservative passive fault-tolerant control method considering the fault distribution. Eng. Sci. Technol. Int. J. 2025, 61, 101948. [Google Scholar] [CrossRef]
- Qiao, M.Y.; Chang, X.H. Quantified guaranteed cost fault-tolerant control for continuous-time fuzzy singular systems with sensor and actuator faults. IEEE Trans. Fuzzy Syst. 2023, 32, 660–670. [Google Scholar] [CrossRef]
- Wu, J.; Shi, H.; Jiang, X.; Su, C.; Li, P. Stochastic fuzzy predictive fault-tolerant control for time-delay nonlinear system with actuator fault under a certain probability. Optim. Control Appl. Methods 2023, 44, 1798–1827. [Google Scholar] [CrossRef]
- Fu, Z.; Wang, Y.; Tao, F.; Wang, N. Fixed-time trajectory tracking for multi-fault nonlinear systems: A passive fault-tolerant control scheme. Commun. Nonlinear Sci. Numer. Simul. 2025, 145, 108709. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, B.; Wang, J.; Gong, J. Adaptive fault-tolerant formation control for heterogeneous UAVs-UGVs systems with multiple actuator faults. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 6705–6716. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, S.; Shen, M.; Liu, X.; Wen, S. Fault-tolerant synchronization for memristive neural networks with multiple actuator failures. IEEE Trans. Cybern. 2024, 54, 5092–5101. [Google Scholar] [CrossRef]
- Wang, L.; Li, A.; Lu, H.; Wang, C.; Zabolotnov, Y. Distributed adaptive event-triggered finite-time fault-tolerant containment control for multi-UAVs with input constraints and actuator failures. J. Frankl. Inst. 2024, 361, 107308. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiao, T.; Li, Y.; Li, B.; Sun, H. Adaptive prescribed-time fault-tolerant control of robotic manipulators with actuator faults and unknown disturbances. Eur. J. Control. 2025, 84, 101234. [Google Scholar] [CrossRef]
- Liu, C.; Gong, L.; Yuan, J.; Li, Y. Current status and development trends of agricultural robots. Trans. Chin. Soc. Agric. Mach. 2022, 53, 1–22. [Google Scholar] [CrossRef]
- Zhao, C.; Fan, B.; Li, J.; Feng, Q. Agricultural robots: Technology progress, challenges and trends. Smart Agric. 2023, 5, 1–15. [Google Scholar] [CrossRef]
- AgXeed. AgBot. 2024. Available online: https://www.agxeed.com/our-solutions/agbot-2-055w3/ (accessed on 25 July 2025).
- Tamaki, K.; Nagasaka, Y.; Nishiwaki, K.; Saito, M.; Kikuchi, Y.; Motobayashi, K. A robot system for paddy field farming in Japan. IFAC Proc. Vol. 2013, 46, 143–147. [Google Scholar] [CrossRef]
- Matsuo, Y.; Yukumoto, O.; Noguchi, N. Enhanced adaptability of tilling robot (initial report)-outline of a tilling robot and enhanced adaptability of unmanned operation. Jarq-Jpn. Agric. Res. Q. 2012, 46, 295–303. [Google Scholar] [CrossRef]
- Zheng, W.Y.; Liang, Z.; Zhou, J. Research on combined noise reduction of GNSS elevation data of paddy field grader with EMD and SG filter. J. South China Agric. Univ. 2024, 45, 80–87. [Google Scholar] [CrossRef]
- Ahmad, F.; Adeel, M.; Qiu, B.J.; Ma, J.; Shoaib, M.; Shakoor, A.; Chandio, F.A. Sowing uniformity of bed-type pneumatic maize planter at various seedbed preparation levels and machine travel speeds. Int. J. Agric. Biol. Eng. 2021, 14, 165–171. [Google Scholar] [CrossRef]
- Bhimanpallewar, R.N.; Narasingarao, M.R. AgriRobot: Implementation and evaluation of an automatic robot for seeding and fertiliser microdosing in precision agriculture. Int. J. Agric. Resour. Gov. Ecol. 2020, 16, 33–50. [Google Scholar] [CrossRef]
- Kumar, P.; Ashok, G. Design and fabrication of smart seed sowing robot. Mater. Today Proc. 2021, 39, 354–358. [Google Scholar] [CrossRef]
- Qingzhen, Z.; Guangwei, W.; Zhihao, Z.; Hengyuan, Z.; Yuanyuan, G.; Liping, C. Design and test on winter wheat precision separated layer fertilization and wide-boundary sowing combined machine. Trans. Chin. Soc. Agric. Mach. 2022, 53, 25–35. [Google Scholar] [CrossRef]
- Shaikh, T.A.; Mir, W.A.; Rasool, T.; Sofi, S. Machine learning for smart agriculture and precision farming: Towards making the fields talk. Arch. Comput. Methods Eng. 2022, 29, 4557–4597. [Google Scholar] [CrossRef]
- Griepentrog, H.W.; Dühring Jaeger, C.; Paraforos, D. Robots for field operations with comprehensive multilayer control. KI-KüNstliche Intell. 2013, 27, 325–333. [Google Scholar] [CrossRef]
- Santhi, P.V.; Kapileswar, N.; Chenchela, V.K.; Prasad, C.V.S. Sensor and vision based autonomous AGRIBOT for sowing seeds. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 242–245. [Google Scholar] [CrossRef]
- Azmi, H.N.; Hajjaj, S.S.H.; Gsangaya, K.R.; Sultan, M.T.H.; Mail, M.F.; Hua, L.S. Design and fabrication of an agricultural robot for crop seeding. Mater. Today Proc. 2023, 81, 283–289. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Yan, H.F.; Zhang, C.; Wang, G.Q.; He, B.; Hao, B.B.; Han, Y.J.; Wang, B.Y.; Bao, R.X.; Syed, T.N.; et al. A review of precision irrigation water-saving technology under changing climate for enhancing water use efficiency, crop yield, and environmental footprints. Agriculture 2024, 14, 1141. [Google Scholar] [CrossRef]
- Huang, C.C.; Chang, C.L. Design and implementation of bio-inspired snake bone-armed robot for agricultural irrigation application. IFAC-Pap. 2019, 52, 98–101. [Google Scholar] [CrossRef]
- Lamsen, F.C.; Favi, J.C.; Castillo, B.H.F. Indoor gardening with automatic irrigation system using arduino microcontroller. ASEAN Multidiscip. Res. J. 2022, 10, 131–148. [Google Scholar]
- Bodunde, O.; Adie, U.; Ikumapayi, O.; Akinyoola, J.; Aderoba, A. Architectural design and performance evaluation of a ZigBee technology based adaptive sprinkler irrigation robot. Comput. Electron. Agric. 2019, 160, 168–178. [Google Scholar] [CrossRef]
- Cruz Ulloa, C.; Krus, A.; Barrientos, A.; Del Cerro, J.; Valero, C. Trend technologies for robotic fertilization process in row crops. Front. Robot. AI 2022, 9, 808484. [Google Scholar] [CrossRef]
- Mao, J.; Niu, W.; Wang, H.; Zhang, B.; Cao, Z.; Guo, Z.; Zhao, H.; Zhou, C.; Gong, X. A agricultural spraying and fertilization robot based on visual navigation. In Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 586–591. [Google Scholar] [CrossRef]
- Zhu, C.T.; Hao, S.H.; Liu, C.L.; Wang, Y.W.; Jia, X.; Xu, J.T.; Guo, S.B.; Huo, J.X.; Wang, W.M. An efficient computer vision-based dual-face target precision variable spraying robotic system for foliar fertilisers. Agronomy 2024, 14, 2770. [Google Scholar] [CrossRef]
- Robot, S. Tom Robot. 2023. Available online: https://smallrobotco.com/about.html (accessed on 25 July 2025).
- Queensland University of Technology. AgBot II Robotic Site-Specific Crop and Weed Management Tool. 2015. Available online: https://research.qut.edu.au/qcr/Projects/agbot-ii-robotic-site-specific-crop-and-weed-management-tool/#:~:text=AgBot%20II%20is%20a%20prototype%20agricultural%20robot (accessed on 25 July 2025).
- Özlüoymak, O. Design and development of a servo-controlled target-oriented robotic micro-dose spraying system in precision weed control. Semin. Cienc. Agrar. 2021, 42, 635–656. [Google Scholar] [CrossRef]
- Liu, J.Z.; Abbas, I.; Noor, R.S. Development of deep learning-based variable rate agrochemical spraying system for targeted weeds control in strawberry crop. Agronomy 2021, 11, 1480. [Google Scholar] [CrossRef]
- Sonke, S. Ecorobotix Ara spot sprayer: Face recognition for plants. In The Professional Farm Machinery Magazine; Profi: Yalding, Kent, UK, 2023; pp. 66–68. [Google Scholar]
- Hylio. AgDrones. 2025. Available online: https://www.hyl.io/ (accessed on 25 July 2025).
- Robotics, J. EA-30X. 2021. Available online: https://www.eav.top/EA30X (accessed on 25 July 2025).
- Hussain, M.; Farooq, S.; Merfield, C.; Jabran, K. Chapter 8—Mechanical weed control. In Non-Chemical Weed Control; Academic Press: Cambridge, MA, USA, 2018; pp. 133–155. [Google Scholar] [CrossRef]
- Gai, J.; Tang, L.; Steward, B.L. Automated crop plant detection based on the fusion of color and depth images for robotic weed control. J. Field Robot. 2020, 37, 35–52. [Google Scholar] [CrossRef]
- Tillett, N.; Hague, T.; Grundy, A.; Dedousis, A.P. Mechanical within-row weed control for transplanted crops using computer vision. Biosyst. Eng. 2008, 99, 171–178. [Google Scholar] [CrossRef]
- Sori, H.; Inoue, H.; Hatta, H.; Ando, Y. Effect for a paddy weeding robot in wet rice culture. J. Robot. Mechatron. 2018, 30, 198–205. [Google Scholar] [CrossRef]
- Group, M. Autonomous Field Worker. 2025. Available online: https://www.maxongroup.com/en-us/knowledge-and-support/blog/autonomous-field-roboter-41880 (accessed on 25 July 2025).
- Rabier, F.; Stas, M.; Manderyck, B.; Huyghebaert, B.; Limbourg, Q. Assessment of the integration of mechanical weeding for weed control in sugar beet-growing. In Proceedings of the 9th International Scientific Symposium on Farm Machinery and Process Management in Sustainable Agriculture, ULS, Lublin, Poland, 22–24 November 2017; pp. 330–335. [Google Scholar] [CrossRef]
- Machleb, J.; Peteinatos, G.G.; Kollenda, B.L.; Andújar, D.; Gerhards, R. Sensor-based mechanical weed control: Present state and prospects. Comput. Electron. Agric. 2020, 176, 105638. [Google Scholar] [CrossRef]
- Tran, D.; Schouteten, J.J.; Degieter, M.; Krupanek, J.; Jarosz, W.; Areta, A.; Emmi, L.; De Steur, H.; Gellynck, X. European stakeholders’ perspectives on implementation potential of precision weed control: The case of autonomous vehicles with laser treatment. Precis. Agric. 2023, 24, 2200–2222. [Google Scholar] [CrossRef]
- Scavo, A.; Mauromicale, G. Integrated weed management in herbaceous field crops. Agronomy 2020, 10, 466. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, J.; Li, J.; Ning, J.; Chang, Y.; Yang, S. Design and Testing of an autonomous laser weeding robot for strawberry fields based on DIN-LW-YOLO. Comput. Electron. Agric. 2025, 229, 109808. [Google Scholar] [CrossRef]
- Tecnologies, N. Dino-Autonomous Mechanical Weeding Robot. SIM Magazin. Available online: https://siamagazin.com/dino-autonomous-mechanical-weeding-robot/ (accessed on 17 February 2020).
- He, B.; Cao, X.; Gu, Z. Kinematics of underactuated robotics for product carbon footprint. J. Clean. Prod. 2020, 257, 120491. [Google Scholar] [CrossRef]
- Xiong, Y.; Ge, Y.; Liang, Y.; Blackmore, S. Development of a prototype robot and fast path-planning algorithm for static laser weeding. Comput. Electron. Agric. 2017, 142, 494–503. [Google Scholar] [CrossRef]
- Martin, J.; Ansuategi, A.; Maurtua, I.; Gutierrez, A.; Obregón, D.; Casquero, O.; Marcos, M. A generic ROS-based control architecture for pest inspection and treatment in greenhouses using a mobile manipulator. IEEE Access 2021, 9, 94981–94995. [Google Scholar] [CrossRef]
- Iost Filho, F.H.; Heldens, W.B.; Kong, Z.; de Lange, E.S. Drones: Innovative technology for use in precision pest management. J. Econ. Entomol. 2020, 113, 1–25. [Google Scholar] [CrossRef]
- Mao, W.; Liu, Z.; Liu, H.; Yang, F.; Wang, M. Research progress on synergistic technologies of agricultural multi-robots. Appl. Sci. 2021, 11, 1448. [Google Scholar] [CrossRef]
- Qin, W.C.; Qiu, B.J.; Xue, X.Y.; Chen, C.; Xu, Z.F.; Zhou, Q.Q. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Prot. 2016, 85, 79–88. [Google Scholar] [CrossRef]
- Ecorobotix. ARA Field Sprayer. 2025. Available online: https://ecorobotix.com/crop-care/ara-field-sprayer/ (accessed on 25 July 2025).
- Strube. BlueBob. 2009. Available online: https://www.strube.net/united-kingdom/business/innovations/bluebobr (accessed on 25 July 2025).
- Robotics, C. Driving The Future Of Farming. 2025. Available online: https://carbonrobotics.com/ (accessed on 25 July 2025).
- Miao, Z.; Yu, X.; Li, N.; Zhang, Z.; He, C.; Li, Z.; Deng, C.; Sun, T. Efficient tomato harvesting robot based on image processing and deep learning. Precis. Agric. 2023, 24, 254–287. [Google Scholar] [CrossRef]
- Kamata, T.; Roshanianfard, A.; Noguchi, N. Heavy-weight crop harvesting robot-controlling algorithm. IFAC-Pap. 2018, 51, 244–249. [Google Scholar] [CrossRef]
- Zahedi, A.; Shafei, A.M.; Shamsi, M. Application of hybrid robotic systems in crop harvesting: Kinematic and dynamic analysis. Comput. Electron. Agric. 2023, 209, 107724. [Google Scholar] [CrossRef]
- Kurita, H.; Iida, M.; Suguri, M.; Masuda, R. Application of image processing technology for unloading automation of robotic head-feeding combine harvester. Eng. Agric. Environ. Food 2012, 5, 146–151. [Google Scholar] [CrossRef]
- Zhang, C.; Noguchi, N. Development of a multi-robot tractor system for agriculture field work. Comput. Electron. Agric. 2017, 142, 79–90. [Google Scholar] [CrossRef]
- Geng, A.; Hu, X.; Liu, J.; Mei, Z.; Zhang, Z.; Yu, W. Development and Testing of Automatic Row Alignment System for Corn Harvesters. Appl. Sci. 2022, 12, 6221. [Google Scholar] [CrossRef]
- Da Silveira, F.; Lermen, F.H.; Amaral, F.G. An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Comput. Electron. Agric. 2021, 189, 106405. [Google Scholar] [CrossRef]
- Li, Y.; Iida, M.; Suyama, T.; Suguri, M.; Masuda, R. Implementation of deep-learning algorithm for obstacle detection and collision avoidance for robotic harvester. Comput. Electron. Agric. 2020, 174, 105499. [Google Scholar] [CrossRef]
- Pooranam, N.; Vignesh, T. A swarm robot for harvesting a paddy field. In Nature-Inspired Algorithms Applications; Wiley: Hoboken, NJ, USA, 2021; pp. 137–156. [Google Scholar] [CrossRef]
- Wang, L.; Liu, M. Path tracking control for autonomous harvesting robots based on improved double arc path planning algorithm. J. Intell. Robot. Syst. 2020, 100, 899–909. [Google Scholar] [CrossRef]
- Li, X.; Li, T.; Qiu, Q.; Fan, Z.; Sun, N. Review on autonomous navigation for orchard mobile robots. J. Chin. Agric. Mech. 2022, 43, 156. [Google Scholar] [CrossRef]
- Li, H.; Chen, L.; Zhang, Z. A study on the utilization rate and influencing factors of small agricultural machinery: Evidence from 10 hilly and mountainous Provinces in China. Agriculture 2022, 13, 51. [Google Scholar] [CrossRef]
- Brown, J.; Paudel, A.; Biehler, D.; Thompson, A.; Karkee, M.; Grimm, C.; Davidson, J.R. Tree detection and in-row localization for autonomous precision orchard management. Comput. Electron. Agric. 2024, 227, 109454. [Google Scholar] [CrossRef]
- Raikwar, S.; Fehrmann, J.; Herlitzius, T. Navigation and control development for a four-wheel-steered mobile orchard robot using model-based design. Comput. Electron. Agric. 2022, 202, 107410. [Google Scholar] [CrossRef]
- Singh, N.K.; Narang, M.K.; Thakur, S.S.; Singh, M.; Singh, S.K.; Prakash, A. Influence of transplanting techniques and age of wash root type seedlings on planting attributes of paddy rice. Cogent Food Agric. 2023, 9, 2176978. [Google Scholar] [CrossRef]
- Liu, J.Z.; Zhao, S.Y.; Li, N.; Faheem, M.; Zhou, T.; Cai, W.J.; Zhao, M.Z.; Zhu, X.Y.; Li, P.P. Development and field test of an autonomous strawberry plug seeding transplanter for use in elevated cultivation. Appl. Eng. Agric. 2019, 35, 1067–1078. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; He, J.; Yan, X. Motion analysis and experiment for planting mechanism with planetary gears of transplanting machine. Trans. Chin. Soc. Agric. Mach. 2013, 44, 57–61. [Google Scholar] [CrossRef]
- Ni, Y.; Jin, C.; Liu, J. Design and experiment of system for picking up and delivering seedlings in automatic transplanter. Trans. Chin. Soc. Agric. Eng. 2015, 31, 10–19. [Google Scholar] [CrossRef]
- Ying, W.; Jianneng, C.; Xiong, Z.; Xincheng, S. Parameter optimization and experiment of planting mechanism driven by planetary non circular gears. Trans. Chin. Soc. Agric. Mach. 2015, 46, 85–93. [Google Scholar] [CrossRef]
- Han, L.; Mao, H.; Hu, J.; Kumi, F. Development of a riding-type fully automatic transplanter for vegetable plug seedlings. Span. J. Agric. Res. 2019, 17, e0205. [Google Scholar] [CrossRef]
- Jin, X.; Chen, K.; Zhao, Y.; Ji, J.; Jing, P. Simulation of hydraulic transplanting robot control system based on fuzzy PID controller. Measurement 2020, 164, 108023. [Google Scholar] [CrossRef]
- Han, L.; Mao, H.; Kumi, F.; Hu, J. Development of a multi-task robotic transplanting workcell for greenhouse seedlings. Appl. Eng. Agric. 2018, 34, 335–342. [Google Scholar] [CrossRef]
- Paradkar, V.; Raheman, H. Development of a metering mechanism with serial robotic arm for handling paper pot seedlings in a vegetable transplanter. Artif. Intell. Agric. 2021, 5, 52–63. [Google Scholar] [CrossRef]
- Hu, L.; Wang, B.; Wang, G.; Yu, Z.; You, Z.; Hu, Z.; Wang, B.; Gao, X. Design and experiment of type 2ZGF-2 duplex sweet potato transplanter. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2016, 32, 8–16. [Google Scholar] [CrossRef]
- Liu, Z.; Lv, Z.; Zheng, W.; Wang, X. Trajectory control of two-degree-of-freedom sweet potato transplanting robot arm. IEEE Access 2022, 10, 26294–26306. [Google Scholar] [CrossRef]
- Yang, Q.z.; Jia, C.p.; Sun, M.t.; Zhao, X.q.; He, M.s.; Mao, H.p.; Hu, J.p.; Addy, M. Trajectory planning and dynamics analysis of greenhouse parallel transplanting robot. Int. Agric. Eng. J. 2020, 29, 64–76. [Google Scholar]
- Yue, R.C.; Yao, M.J.; Zhang, T.F.; Shi, J.W.; Zhou, J.H.; Hu, J.P. Design and experiment of dual-row seedling pick-up device for high-speed automatic transplanting machine. Agriculture 2024, 14, 942. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.; Ji, J.; Jin, X.; Li, B.; Chen, K.; Zhang, W. Visual perception enabled agriculture intelligence: A selective seedling picking transplanting robot. Comput. Electron. Agric. 2025, 229, 109821. [Google Scholar] [CrossRef]
- Zahid, A.; Mahmud, M.S.; He, L.; Heinemann, P.; Choi, D.; Schupp, J. Technological advancements towards developing a robotic pruner for apple trees: A review. Comput. Electron. Agric. 2021, 189, 106383. [Google Scholar] [CrossRef]
- Williams, H.; Smith, D.; Shahabi, J.; Gee, T.; Nejati, M.; McGuinness, B.; Black, K.; Tobias, J.; Jangali, R.; Lim, H. Modelling wine grapevines for autonomous robotic cane pruning. Biosyst. Eng. 2023, 235, 31–49. [Google Scholar] [CrossRef]
- Huang, C.; Cai, D.; Wang, W.; Li, J.; Duan, J.; Yang, Z. Development of an automatic control system for a hydraulic pruning robot. Comput. Electron. Agric. 2023, 214, 108329. [Google Scholar] [CrossRef]
- Kolmanič, S.; Strnad, D.; Kohek, Š.; Benes, B.; Hirst, P.; Žalik, B. An algorithm for automatic dormant tree pruning. Appl. Soft Comput. 2021, 99, 106931. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Zhang, H.; Shen, C.; Fu, W. Design and evaluation of a shaping and pruning machine for dwarf and densely planted jujube trees. Appl. Sci. 2022, 12, 2699. [Google Scholar] [CrossRef]
- He, L.; Schupp, J. Sensing and automation in pruning of apple trees: A review. Agronomy 2018, 8, 211. [Google Scholar] [CrossRef]
- Botterill, T.; Paulin, S.; Green, R.; Williams, S.; Lin, J.; Saxton, V.; Mills, S.; Chen, X.; Corbett-Davies, S. A robot system for pruning grape vines. J. Field Robot. 2017, 34, 1100–1122. [Google Scholar] [CrossRef]
- You, A.; Sukkar, F.; Fitch, R.; Karkee, M.; Davidson, J.R. An efficient planning and control framework for pruning fruit trees. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 3930–3936. [Google Scholar] [CrossRef]
- Westling, F.; Underwood, J.; Bryson, M. A procedure for automated tree pruning suggestion using LiDAR scans of fruit trees. Comput. Electron. Agric. 2021, 187, 106274. [Google Scholar] [CrossRef]
- Litavniece, L.; Kodors, S.; Dekšne, J.; Lācis, G.; Zarembo, I.; Pacejs, A. Risk analysis for apple orchard survey and monitoring using uav. In Proceedings of the Environment Technology Resources Proceedings of the International Scientific and Practical Conference, Rezekne, Latvia, 13 June 2023. [Google Scholar] [CrossRef]
- Zhang, C.; Valente, J.; Kooistra, L.; Guo, L.; Wang, W. Orchard management with small unmanned aerial vehicles: A survey of sensing and analysis approaches. Precis. Agric. 2021, 22, 2007–2052. [Google Scholar] [CrossRef]
- Gaddikeri, V.; K R, A.; Satpute, A.; Jatav, M.; Rajput, J.; Dimple, D. UAVs in Orchard Management: Need, Challenges, and Applications; Just Agriculture: Jalandhar, India, 2022. [Google Scholar]
- Kim, K.; Deb, A.; Cappelleri, D.J. P-AgBot: In-row & under-canopy agricultural robot for monitoring and physical sampling. IEEE Robot. Autom. Lett. 2022, 7, 7942–7949. [Google Scholar] [CrossRef]
- Cossio-Montefinale, L.; Quiñinao, C.; Verschae, R. Orchard sweet cherry color distribution estimation from wireless sensor networks and video-based fruit detection. Comput. Electron. Agric. 2025, 235, 110334. [Google Scholar] [CrossRef]
- Barbosa, W.S.; Oliveira, A.I.; Barbosa, G.B.; Leite, A.C.; Figueiredo, K.T.; Vellasco, M.M.; Caarls, W. Design and development of an autonomous mobile robot for inspection of soy and cotton crops. In Proceedings of the 2019 12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, Russia, 7–10 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 557–562. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Tian, T.; Yin, J. A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in China. Remote Sens. 2021, 13, 1221. [Google Scholar] [CrossRef]
- Pei, H.T.; Sun, Y.Q.; Huang, H.; Zhang, W.; Sheng, J.J.; Zhang, Z.Y. Weed detection in maize fields by uav images based on crop row preprocessing and improved yolov4. Agriculture 2022, 12, 975. [Google Scholar] [CrossRef]
- Beniaich, A.; Silva, M.L.; Guimarães, D.V.; Avalos, F.A.; Terra, F.S.; Menezes, M.D.; Avanzi, J.C.; Cândido, B.M. UAV-based vegetation monitoring for assessing the impact of soil loss in olive orchards in Brazil. Geoderma Reg. 2022, 30, e00543. [Google Scholar] [CrossRef]
- Abdulridha, J.; Batuman, O.; Ampatzidis, Y. UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning. Remote Sens. 2019, 11, 1373. [Google Scholar] [CrossRef]
- Stefas, N.; Bayram, H.; Isler, V. Vision-based monitoring of orchards with UAVs. Comput. Electron. Agric. 2019, 163, 104814. [Google Scholar] [CrossRef]
- Barrientos, A.; Colorado, J.; Cerro, J.d.; Martinez, A.; Rossi, C.; Sanz, D.; Valente, J. Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots. J. Field Robot. 2011, 28, 667–689. [Google Scholar] [CrossRef]
- Garcia-Ruiz, F.; Sankaran, S.; Maja, J.M.; Lee, W.S.; Rasmussen, J.; Ehsani, R. Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Comput. Electron. Agric. 2013, 91, 106–115. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Liu, Y.; Chen, K.; Li, H.; Duan, Y.; Wu, W.; Shi, Y.; Guo, W. Deep-learning-based in-field citrus fruit detection and tracking. Hortic. Res. 2022, 9, uhac003. [Google Scholar] [CrossRef]
- Santos, T.T.; De Souza, L.L.; dos Santos, A.A.; Avila, S. Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. Comput. Electron. Agric. 2020, 170, 105247. [Google Scholar] [CrossRef]
- Xaud, M.F.; Leite, A.C.; Barbosa, E.S.; Faria, H.D.; Loureiro, G.S.; From, P.J. Robotic tankette for intelligent bioenergy agriculture: Design, development and field tests. arXiv 2019, arXiv:1901.00761. [Google Scholar] [CrossRef]
- Shafiekhani, A.; Kadam, S.; Fritschi, F.B.; DeSouza, G.N. Vinobot and vinoculer: Two robotic platforms for high-throughput field phenotyping. Sensors 2017, 17, 214. [Google Scholar] [CrossRef] [PubMed]
- Milella, A.; Reina, G.; Nielsen, M. A multi-sensor robotic platform for ground mapping and estimation beyond the visible spectrum. Precis. Agric. 2019, 20, 423–444. [Google Scholar] [CrossRef]
- Walter, A.; Khanna, R.; Lottes, P.; Stachniss, C.; Siegwart, R.; Nieto, J.; Liebisch, F. Flourish-a robotic approach for automation in crop management. In Proceedings of the International Conference on Precision Agriculture (ICPA), Montreal, QC, Canada, 24–27 June 2018. [Google Scholar]
- Chen, M.; Chen, Z.; Luo, L.; Tang, Y.; Cheng, J.; Wei, H.; Wang, J. Dynamic visual servo control methods for continuous operation of a fruit harvesting robot working throughout an orchard. Comput. Electron. Agric. 2024, 219, 108774. [Google Scholar] [CrossRef]
- Li, T.; Qiu, Q.; Zhao, C.; Xie, F. Task planning of multi-arm harvesting robots for high-density dwarf orchards. Trans. CSAE 2021, 37, 1–10. [Google Scholar] [CrossRef]
- Yu, Y.; Xie, H.H.; Zhang, K.L.; Wang, Y.J.; Li, Y.T.; Zhou, J.M.; Xu, L.Z. Design, development, integration, and field evaluation of a ridge-planting strawberry harvesting robot. Agriculture 2024, 14, 2126. [Google Scholar] [CrossRef]
- Williams, H.A.; Jones, M.H.; Nejati, M.; Seabright, M.J.; Bell, J.; Penhall, N.D.; Barnett, J.J.; Duke, M.D.; Scarfe, A.J.; Ahn, H.S. Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. Biosyst. Eng. 2019, 181, 140–156. [Google Scholar] [CrossRef]
- Robotics, R. Fruit-Picking Robot Eve Ready to Harvest Apples Commercially, as Shortage of Workers Persists. Available online: https://www.abc.net.au/news/2023-05-19/fruit-picking-robot-eve-commercial-apple-harvest-worker-shortage/102355690 (accessed on 19 May 2023).
- FFRobotics. The Future of Fresh Fruit Harvest. 2020. Available online: https://www.ffrobotics.com/ (accessed on 25 July 2025).
- Uppalapati, N.K.; Walt, B.; Havens, A.J.; Mahdian, A.; Chowdhary, G.; Krishnan, G. A berry picking robot with a hybrid soft-rigid arm: Design and task space control. In Proceedings of the Robotics: Science and Systems. Robotics: Science and Systems Foundation, Corvallis, OR, USA, 12–16 July 2020; p. 95. [Google Scholar] [CrossRef]
- Barnett, K.S. A high-tech way to put fruit in the basket. Ind. Syst. Eng. Work 2021, 53, 1. [Google Scholar]
- Su, J.; Zhu, X.; Li, S.; Chen, W.H. AI meets UAVs: A survey on AI empowered UAV perception systems for precision agriculture. Neurocomputing 2023, 518, 242–270. [Google Scholar] [CrossRef]
- Li, J.; Zhou, H.; Mai, Y.; Jia, Y.; Zhou, Z.; Wu, K.; Chen, H.; Lin, H.; Luo, M.; Shi, L. An autonomous obstacle avoidance and path planning method for fruit-picking UAV in orchard environments. Smart Agric. Technol. 2025, 10, 100752. [Google Scholar] [CrossRef]
- Khan, H.A.; Farooq, U.; Saleem, S.R.; Rehman, U.u.; Tahir, M.N.; Iqbal, T.; Cheema, M.J.M.; Aslam, M.A.; Hussain, S. Design and development of machine vision robotic arm for vegetable crops in hydroponics. Smart Agric. Technol. 2024, 9, 100628. [Google Scholar] [CrossRef]
- Wang, X.; Kang, H.; Zhou, H.; Au, W.; Wang, M.Y.; Chen, C. Development and evaluation of a robust soft robotic gripper for apple harvesting. Comput. Electron. Agric. 2023, 204, 107552. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, J.; Yi, B.; Zhang, B.; Wang, K. A flexible swallowing gripper for harvesting apples and its grasping force sensing model. Comput. Electron. Agric. 2023, 204, 107489. [Google Scholar] [CrossRef]
- Zhou, H.; Kang, H.; Wang, X.; Au, W.; Wang, M.Y.; Chen, C. Branch interference sensing and handling by tactile enabled robotic apple harvesting. Agronomy 2023, 13, 503. [Google Scholar] [CrossRef]
- Xiong, Y.; Peng, C.; Grimstad, L.; From, P.J.; Isler, V. Development and field evaluation of a strawberry harvesting robot with a cable-driven gripper. Comput. Electron. Agric. 2019, 157, 392–402. [Google Scholar] [CrossRef]
- Thorne, J. Apple-Picking Robots Gear Up for US Debut in Washington State. Available online: https://www.geekwire.com/2019/apple-picking-robots-gear-u-s-debut-washington-state/ (accessed on 13 May 2019).
- Ji, W.; He, G.; Xu, B.; Zhang, H.; Yu, X. A new picking pattern of a flexible three-fingered end-effector for apple harvesting robot. Agriculture 2024, 14, 102. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Z.J.; Wang, Y.F.; Bao, R.F.; Chen, X.G.; Fu, S.L.; Tian, M.M.; Zhang, Y.K. Research on Flexible End-Effectors with Humanoid Grasp Function for Small Spherical Fruit Picking. Agriculture 2023, 13, 123. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, Z.; Wang, Y.; Xu, J.; Cui, Y. Design and experiment of facility elevated planting strawberry continuous picking manipulator. Comput. Electron. Agric. 2025, 228, 109703. [Google Scholar] [CrossRef]
- Hou, G.; Chen, H.; Niu, R.; Li, T.; Ma, Y.; Zhang, Y. Research on multi-layer model attitude recognition and picking strategy of small tomato picking robot. Comput. Electron. Agric. 2025, 232, 110125. [Google Scholar] [CrossRef]
- Zhang, K.; Lammers, K.; Chu, P.; Li, Z.; Lu, R. An automated apple harvesting robot—From system design to field evaluation. J. Field Robot. 2024, 41, 2384–2400. [Google Scholar] [CrossRef]
- Fue, K.G.; Porter, W.M.; Barnes, E.M.; Rains, G.C. An extensive review of mobile agricultural robotics for field operations: Focus on cotton harvesting. AgriEngineering 2020, 2, 150–174. [Google Scholar] [CrossRef]
- Bergeron, S.; Pouliot, E.; Doyon, M. Commercial poultry production stocking density influence on bird health and performance indicators. Animals 2020, 10, 1253. [Google Scholar] [CrossRef]
- Park, M.; Britton, D.; Daley, W.; McMurray, G.; Navaei, M.; Samoylov, A.; Usher, C.; Xu, J. Artificial intelligence, sensors, robots, and transportation systems drive an innovative future for poultry broiler and breeder management. Anim. Front. 2022, 12, 40–48. [Google Scholar] [CrossRef]
- Jiang, W.; Hao, H.; Fan, J.; Wang, L.; Wang, H. Rabbit feeding robot: Autonomous navigation and precision feeding. Biosyst. Eng. 2024, 239, 68–80. [Google Scholar] [CrossRef]
- Chen, C.; Liu, X.Q.; Liu, C.J.; Pan, Q. Development of the precision feeding system for sows via a rule-based expert system. Int. J. Agric. Biol. Eng. 2023, 16, 187–198. [Google Scholar] [CrossRef]
- Tian, F.; Wang, X.; Yu, S.; Wang, R.; Song, Z.; Yan, Y.; Li, F.; Wang, Z.; Yu, Z. Research on navigation path extraction and obstacle avoidance strategy for pusher robot in dairy farm. Agriculture 2022, 12, 1008. [Google Scholar] [CrossRef]
- Lely. Lely Juno. 2025. Available online: https://www.lely.com/cn/solutions/feeding/juno/ (accessed on 25 July 2025).
- Rovibec. ROVER Feeding Robot. 2025. Available online: https://www.agriexpo.online/prod/rovibec-agrisolusions/product-172425-9278.html (accessed on 25 July 2025).
- Rovibec. RANGER Feed Pusher. 2025. Available online: https://www.agriexpo.cn/prod/rovibec-agrisolusions/product-172425-129658.html (accessed on 25 July 2025).
- Trioliet. Triomatic HP Suspended Feeding Robot. 2020. Available online: https://www.trioliet.com/products/automatic-feeding-systems/feeding-robot/suspended-feeding-robot (accessed on 25 July 2025).
- Karn, P.; Sitikhu, P.; Somai, N. Automatic cattle feeding system. In Proceedings of the 2nd International Conference on Engineering and Technology, KEC Conference, Dhapakhel, Lalitpur, Nepal, 26 September 2019; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Abbas, G.; Jaffery, S.; Hashmi, A.; Tanveer, A.; Arshad, M.; Amin, Q.; Saeed, M.; Saleem, M.; Qureshi, R.; Khan, A. Prospects and challenges of adopting and implementing smart technologies in poultry production. Pak. J. Sci. 2022, 74, 108. [Google Scholar]
- Oliveira, J.L.; Xin, H.; Chai, L.; Millman, S.T. Effects of litter floor access and inclusion of experienced hens in aviary housing on floor eggs, litter condition, air quality, and hen welfare. Poult. Sci. 2019, 98, 1664–1677. [Google Scholar] [CrossRef]
- Yang, X.; Huo, X.; Li, G.; Purswell, J.L.; Tabler, G.T.; Chesser, G.D.; Magee, C.L.; Zhao, Y. Effects of elevated platform and robotic vehicle on broiler production, welfare, and housing environment. Trans. ASABE 2020, 63, 1981–1990. [Google Scholar] [CrossRef]
- Quan, Q.; Palaoag, T.D.; Sun, H. Research and design of intelligent inspection robot for large-scale chicken farms. In Proceedings of the 2024 5th International Conference on Machine Learning and Human-Computer Interaction (MLHMI), Kawasaki, Japan, 14–16 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Selle, M.; Spieß, F.; Visscher, C.; Rautenschlein, S.; Jung, A.; Auerbach, M.; Hartung, J.; Sürie, C.; Distl, O. Real-time monitoring of animals and environment in broiler precision farming—How robust is the data quality? Sustainability 2023, 15, 15527. [Google Scholar] [CrossRef]
- Pan, Y.Z.; Zhang, Y.Z.; Wang, X.P.; Gao, X.X.; Hou, Z.Y. Low-cost livestock sorting information management system based on deep learning. Artif. Intell. Agric. 2023, 9, 110–126. [Google Scholar] [CrossRef]
- Yu, Z.J.; Guo, Y.Y.; Zhang, L.Y.; Ding, Y.; Zhang, G.; Zhang, D.Y. Improved lightweight zero-reference deep curve estimation low-light enhancement algorithm for night-time cow detection. Agriculture 2024, 14, 1003. [Google Scholar] [CrossRef]
- Planquette, L. Mobile Robot, in Particular an Education Robot, for Poultry Farm and Rearing Facility Implementing One or More Robots, USA, 20180360002. 2018. Available online: https://www.freepatentsonline.com/y2018/0360002.html (accessed on 25 July 2025).
- Olejnik, K.; Popiela, E.; Opaliński, S. Emerging precision management methods in poultry sector. Agriculture 2022, 12, 718. [Google Scholar] [CrossRef]
- Biosafety, O. XO Robot for Precision Poultry Farming. 2022. Available online: https://www.octopusbiosafety.com/en/xo/ (accessed on 25 July 2025).
- Zhao, Y.; Xiao, Q.; Li, J.; Tian, K.; Yang, L.; Shan, P.; Lv, X.; Li, L.; Zhan, Z. Review on image-based animals weight weighing. Comput. Electron. Agric. 2023, 215, 108456. [Google Scholar] [CrossRef]
- Patrol, P. Autonomous Robotics for the Poultry Shed. Available online: https://agtecher.com/product/poultry-patrol/ (accessed on 7 August 2020).
- Group, C.P. Chicken Nannies Are All the Rage in China. Available online: https://www.farmprogress.com/farm-life/chicken-nannies-are-all-the-rage-in-china (accessed on 6 May 2017).
- Sensyn Robotics, T.I.C. Sensyn Robotics and Taiho Industrial Corporation Jointly Develop an Autonomous Cage Monitoring System. Available online: https://www.sensyn-robotics.com/en/news/taiho (accessed on 14 October 2020).
- Ma, W.; Wang, X.; Yang, S.X.; Xue, X.; Li, M.; Wang, R.; Yu, L.; Song, L.; Li, Q. Autonomous inspection robot for dead laying hens in caged layer house. Comput. Electron. Agric. 2024, 227, 109595. [Google Scholar] [CrossRef]
- Althoefer, K. Antagonistic actuation and stiffness control in soft inflatable robots. Nat. Rev. Mater. 2018, 3, 76–77. [Google Scholar] [CrossRef]
- Kirby, E.; Zenha, R.; Jamone, L. Comparing single touch to dynamic exploratory procedures for robotic tactile object recognition. IEEE Robot. Autom. Lett. 2022, 7, 4252–4258. [Google Scholar] [CrossRef]
- Mandil, W.; Rajendran, V.; Nazari, K.; Ghalamzan-Esfahani, A. Tactile-sensing technologies: Trends, challenges and outlook in agri-food manipulation. Sensors 2023, 23, 7362. [Google Scholar] [CrossRef]
- Feng, Q.C.; Wang, X. Design of disinfection robot for livestock breeding. Procedia Comput. Sci. 2020, 166, 310–314. [Google Scholar] [CrossRef]
- Wu, D.; Cui, D.; Zhou, M.; Ying, Y. Information perception in modern poultry farming: A review. Comput. Electron. Agric. 2022, 199, 107131. [Google Scholar] [CrossRef]
- Heitmann, S.; Stracke, J.; Adler, C.; Ahmed, M.F.; Schulz, J.; Büscher, W.; Kemper, N.; Spindler, B. Effects of a slatted floor on bacteria and physical parameters in litter in broiler houses. Vet. Anim. Sci. 2020, 9, 100115. [Google Scholar] [CrossRef]
- Doerfler, R.L.; Petzl, W.; Rieger, A.; Bernhardt, H. Impact of robot scrapers on clinical mastitis and somatic cell count in lactating cows. J. Appl. Anim. Res. 2018, 46, 467–470. [Google Scholar] [CrossRef]
- Ebertz, P.; Krommweh, M.S.; Büscher, W. Feasibility study: Improving floor cleanliness by using a robot scraper in group-housed pregnant sows and their reactions on the new device. Animals 2019, 9, 185. [Google Scholar] [CrossRef] [PubMed]
- Robotics, B.E. We Make Growing Chickens Easier. 2019. Available online: https://www.birdseyerobotics.com/ (accessed on 25 July 2025).
- Inateco. Sentinel Automatic Bedding Robot—An Innovative Solution. 2018. Available online: https://www.inateco.eu/sentinel-automatic-bedding-robot/?lang=en (accessed on 25 July 2025).
- House, H.; Eng, P. Manure handling options for robotic milking barns. In Dairy Housing; Ontario.ca: Toronto, ON, Canada, 2016; pp. 1–8. [Google Scholar]
- Rabaud. Poultry Houses Cleaning Machine: Lavicole. 2025. Available online: https://gesproequipement.com/en/poultry-houses-cleaning-machine-lavicole-2/ (accessed on 25 July 2025).
- Liu, H.W.; Chen, C.H.; Tsai, Y.C.; Hsieh, K.W.; Lin, H.T. Identifying images of dead chickens with a chicken removal system integrated with a deep learning algorithm. Sensors 2021, 21, 3579. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Chesser, G.D.; Purswell, J.L.; Magee, C.; Gates, R.S.; Xiong, Y. Design and development of a broiler mortality removal robot. Appl. Eng. Agric. 2022, 38, 853–863. [Google Scholar] [CrossRef]
- Hu, Z.; Jiang, L.; Wang, H.; Wang, W.; Tang, J.; Zhang, T.; Huo, X. Design and simulation analysis of dead chicken picking end-effector based on under actuated principle. J. Northeast Agric. Univ. 2021, 52, 78–86. [Google Scholar] [CrossRef]
- Li, G.; Hui, X.; Zhao, Y.; Zhai, W.; Purswell, J.L.; Porter, Z.; Poudel, S.; Jia, L.; Zhang, B.; Chesser, G.D. Effects of ground robot manipulation on hen floor egg reduction, production performance, stress response, bone quality, and behavior. PLoS ONE 2022, 17, e0267568. [Google Scholar] [CrossRef]
- Chang, C.L.; Xie, B.X.; Wang, C.H. Visual guidance and egg collection scheme for a smart poultry robot for free-range farms. Sensors 2020, 20, 6624. [Google Scholar] [CrossRef]
- Vroegindeweij, B.A.; Blaauw, S.K.; IJsselmuiden, J.M.; van Henten, E.J. Evaluation of the performance of PoultryBot, an autonomous mobile robotic platform for poultry houses. Biosyst. Eng. 2018, 174, 295–315. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H.; Fang, C. Research on machine vision online monitoring system for egg production and quality in cage environment. Poult. Sci. 2025, 104, 104552. [Google Scholar] [CrossRef]
- Trevelyan, J.P. Sensing and control for sheep shearing robots. IEEE Trans. Robot. Autom. 1989, 5, 716–727. [Google Scholar] [CrossRef]
- Gaworski, M.; Kic, P. Improvement of mobile milking parlours in small dairy farms including technical and functional aspects. In Proceedings of the 16th International Scientific Conference Engineering for Rural Development, Citeseer, Jelgava, Latvia, 24–26 May 2017; Volume 16, pp. 24–26. [Google Scholar] [CrossRef]
- Wang, S.; Han, Y.; Chen, J.; He, X.; Zhang, Z.; Liu, X.; Zhang, K. Weed density extraction based on few-shot learning through UAV remote sensing RGB and multispectral images in ecological irrigation area. Front. Plant Sci. 2022, 12, 735230. [Google Scholar] [CrossRef]
- Edlerman, E.; Linker, R. Autonomous multi-robot system for use in vineyards and orchards. In Proceedings of the 2019 27th Mediterranean Conference on Control and Automation (MED), Akko, Israel, 1–4 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 274–279. [Google Scholar] [CrossRef]
- De Silva, A.; Katupitiya, J.; Savkin, A.V. UAV-UGV Collaborative Localisation with Ambiguity Aversion by UAV Re-Positioning. IFAC-Pap. 2022, 55, 101–106. [Google Scholar] [CrossRef]
- Potena, C.; Khanna, R.; Nieto, J.; Siegwart, R.; Nardi, D.; Pretto, A. AgriColMap: Aerial-ground collaborative 3D mapping for precision farming. IEEE Robot. Autom. Lett. 2019, 4, 1085–1092. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Xu, Z.; Lin, J.; Guan, X.; Zhou, Z.; Zheng, D.; Hewitt, A. UAVs-UGV cooperative boom sprayer system based on swarm control. Comput. Electron. Agric. 2025, 235, 110339. [Google Scholar] [CrossRef]
- Farid, A.M.; Roshanian, J.; Mouhoub, M. Multiple aerial/ground vehicles coordinated spraying using reinforcement learning. Eng. Appl. Artif. Intell. 2025, 151, 110686. [Google Scholar] [CrossRef]
- Quaglia, G.; Visconte, C.; Scimmi, L.S.; Melchiorre, M.; Cavallone, P.; Pastorelli, S. Design of a UGV powered by solar energy for precision agriculture. Robotics 2020, 9, 13. [Google Scholar] [CrossRef]
- Ding, Y.; Xin, B.; Chen, J. A review of recent advances in coordination between unmanned aerial and ground vehicles. Unmanned Syst. 2021, 9, 97–117. [Google Scholar] [CrossRef]
- Guo, Z.; Wei, C.; Shen, Y.; Yuan, W. Event-triggered consensus control method with communication faults for multi-UAV. Intell. Robot. 2023, 3, 596–613. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, J.H.; Zhang, T.F.; Zhang, P.C.; Yao, M.J.; Li, J.H.; Sun, Z.T.; Ma, G.X.; Chen, X.X.; Hu, J.P. Key technologies in intelligent seeding machinery for cereals: Recent advances and future perspectives. Agriculture 2025, 15, 8. [Google Scholar] [CrossRef]
- Ahmed, S.; Qiu, B.J.; Ahmad, F.; Kong, C.W.; Xin, H. A State-of-the-Art Analysis of Obstacle Avoidance Methods from the Perspective of an Agricultural Sprayer UAV’s Operation Scenario. Agronomy 2021, 11, 1069. [Google Scholar] [CrossRef]
- Rodriguez, R. Perspective: Agricultural aerial application with unmanned aircraft systems: Current regulatory framework and analysis of operators in the United States. Trans. ASABE 2021, 64, 1475–1481. [Google Scholar] [CrossRef]
- Singh, V.; Bagavathiannan, M.; Chauhan, B.S.; Singh, S. Evaluation of current policies on the use of unmanned aerial vehicles in Indian agriculture. Curr. Sci. 2019, 117, 25–29. [Google Scholar] [CrossRef]
- Sparrow, R.; Howard, M. Robots in agriculture: Prospects, impacts, ethics, and policy. Precis. Agric. 2021, 22, 818–833. [Google Scholar] [CrossRef]
- Zhong, W.; Yang, W.T.; Zhu, J.H.; Jia, W.D.; Dong, X.; Ou, M.X. An improved UNet-Based path recognition method in low-light environments. Agriculture 2024, 14, 1987. [Google Scholar] [CrossRef]
- Zhang, T.F.; Zhou, J.H.; Liu, W.; Yue, R.C.; Shi, J.W.; Zhou, C.J.; Hu, J.P. SN-CNN: A Lightweight and Accurate Line Extraction Algorithm for Seedling Navigation in Ridge-Planted Vegetables. Agriculture 2024, 14, 1446. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, X.; He, L.; Choi, D.; Pecchia, J.; Li, Y. Development of a robotic harvesting mechanism for button mushrooms. Trans. Asabe 2021, 64, 565–575. [Google Scholar] [CrossRef]
- Zhang, H.W.; Ji, W.; Xu, B.; Yu, X.W. Optimizing Contact Force on an Apple Picking Robot End-Effector. Agriculture 2024, 14, 996. [Google Scholar] [CrossRef]
- Zhu, S.J.; Wang, B.; Pan, S.Q.; Ye, Y.T.; Wang, E.G.; Mao, H.P. Task allocation of multi-machine collaborative operation for agricultural machinery based on the improved fireworks algorithm. Agronomy 2024, 14, 710. [Google Scholar] [CrossRef]
- Lu, Y.Z.; Xu, W.X.; Leng, J.Y.; Liu, X.Y.; Xu, H.Y.; Ding, H.N.; Zhou, J.F.; Cui, L.F. Review and research prospects on additive manufacturing technology for agricultural manufacturing. Agriculture 2024, 14, 1207. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Chai, X.Y.; Xu, L.Z.; Quan, L.; Yuan, C.C.; Tian, S.C. Design and performance of a distributed electric drive system for a series hybrid electric combine harvester. Biosyst. Eng. 2023, 236, 160–174. [Google Scholar] [CrossRef]
- Zhu, Z.; Zeng, L.X.; Chen, L.; Zou, R.; Cai, Y.F. Fuzzy adaptive energy management strategy for a hybrid agricultural tractor equipped with HMCVT. Agriculture 2022, 12, 1986. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, R.; Cai, Y.; Wang, H.; Chen, L.; Lv, C. Real-time energy consumption prediction of connected automated electric vehicles based on temporal fusion transformers. IEEE Trans. Transp. Electrif. 2025, 11, 10297–10309. [Google Scholar] [CrossRef]
Review Methodology | Key Technologies | Application Status | Challenges and Future Trends |
---|---|---|---|
(a) Select database | (a) Positioning technology | (a) Farmland scenarios | (a) Existing challenges |
- ScienceDirect | - Absolute positioning | - Land preparation | - Key technical challenges |
- IEEE Explore | - Relative positioning | - Sowing | - Technical transfer barriers |
- Web of Science | - Fusion localization | - Field management | - Regulatory and ethical |
(b) Determine keywords | (b) Perception technology | - Crop harvesting | (b) Future prospects |
- Agricultural machinery | - Visible-spectrum imaging | (b) Orchard scenarios | - Core research gaps |
- Automatic driving, etc. | - Multispectral imaging | - Transplanting | - Future directions |
(c) Apply inclusion criteria | - Hyperspectral imaging | - Pruning | - Cost and practicality |
- Limit time horizon | - 2D cameras | - Monitoring | - Standards and ecosystem |
- Select relevant papers | - 3D cameras | - Picking | |
- Filter out duplicates | - Multi-sensor fusion | (c) Livestock houses | |
(d) Bibliometric analysis | (c) Motion control technology | - Animal feeding | |
- Keyword co-occurrence | - Motion planning | - Monitoring | |
- Publication time | - Motion control | - Environment cleaning | |
- Contribution map | (d) Actuator technology | - Animal product collection | |
- Drive actuator | (d) UAV-UGV Cooperative | ||
- Manipulate actuator | |||
- Fault detection | |||
- Fault-tolerant control |
Classification Dimension | Category | Number of Documents | Proportion |
---|---|---|---|
Core technology field | Positioning and navigation | 128 | 20.3% |
Perception and vision | 223 | 35.3% | |
Motion planning and control | 127 | 20.1% | |
Actuator and fault-tolerant control | 154 | 24.4% | |
Application scenario | Farmland | 267 | 50.4% |
Orchards and greenhouses | 163 | 30.7% | |
Livestock and poultry farming | 76 | 14.4% | |
Other | 24 | 4.6% | |
Research maturity | Theoretical/Conceptual Research | 194 | 36.5% |
Prototype/Experiment | 295 | 55.7% | |
Commercialization/Deployed | 41 | 7.7% |
Sensor Type | Advantages | Ref. |
---|---|---|
Visual sensor | ① Relatively low cost | [57] |
② Information-rich signals | ||
③ Wide detection range | ||
LiDAR | ① High resolution | [58] |
② A larger field of view | ||
③ Strong environmental robustness | ||
Accelerometer | ① Directly measures the acceleration | [59] |
② Low cost | ||
③ Strong anti-interference ability | ||
Gyroscope | ① Low cost | [60] |
② High-frequency dynamic response | ||
Magnetometer | ① Absolute heading reference | [61] |
② Excellent long-term stability | ||
Wheel odometer | ① Low cost | [62] |
② Simple structure | ||
IMU | ① High-frequency dynamic response | [59] |
② Low cost |
Sensor Type | Disadvantages | Ref. |
---|---|---|
Visual sensor | ① Greatly influenced by environmental factors such as light intensity, jitter effect, and weather conditions | [57] |
② Accuracy is limited by the distance of the object | ||
LiDAR | ① High cost | [63] |
② High data processing complexity | ||
③ Susceptible to vibration | ||
Accelerometer | ① Relies heavily on gravity | [64] |
② Mixed with strong noise | ||
③ Unable to sense the rotational motion on the Z-axis | ||
④ Lack of environmental perception ability | ||
Gyroscope | ① Sensor drift leads to cumulative errors | [60] |
② Vibration sensitivity | ||
③ Lack of environmental perception ability | ||
Magnetometer | ① Significantly affected by magnetic interference | [65] |
② Restricted by the manufacturing materials | ||
③ Difficult to calibrate | ||
④ Lack of environmental perception ability | ||
Wheel odometer | ① Greatly affected by road conditions | [62] |
② Estimation error accumulates with the driving distance | ||
③ Lack of environmental perception ability | ||
IMU | ① Sensor drift leads to cumulative errors | [59] |
② Lack of absolute positioning ability | ||
③ Vibration sensitivity |
Algorithm Name | Environment Type | Accuracy | Computational Cost | Robustness |
---|---|---|---|---|
ORB-SLAM | Structured | High | Moderate to High | Robust in well-textured environments |
Unstructured | Moderate | High | Sensitive to dynamic objects and fast motion | |
LSD-SLAM | Structured | High | Moderate | Good for low-texture environments, but sensitive to lighting changes and motion blur |
Unstructured | Moderate | Moderate | Struggles in fast-moving or highly dynamic environments | |
LeGO-LOAM | Structured | High | Moderate to High | High accuracy, capable of handling large-scale environments |
Unstructured | Moderate | Moderate to High | Weak in dynamic environments, relies on LiDAR | |
Cartographer | Structured | High | High | Good adaptability to environmental changes, strong loop closure |
Unstructured | Moderate | High | Relies on feature matching, may produce errors in dynamic environments |
Sensor Type | Fusion Algorithm | Positioning Performance | Example Reference |
---|---|---|---|
Gyroscope, Wheel odometer | Kalman Filter | - Heading deviation: <5° (hard ground), 10–15° (soft ground) - Circular path RMSE (carpet): <80 mm - Z-shaped path cumulative error (concrete): 120 mm | [62] |
GNSS, IMU | Kalman Filter | Fusion positioning: - Lateral offset reduced by 38.3% (avg. 5.93 cm) - Azimuth changed by 26.7% | [85] |
RTK-GPS, IMU, Depth camera | Extended Kalman Filter | - Lateral positioning average absolute errors: 5.0 cm (corn), 4.2 cm (sorghum) | [86] |
VO, IMU, Wheel odometer | Extended Kalman Filter | - Closed path: Max APE = 0.25 - Crossroads: RMSE = 0.023, max error = 0.09 - Soilless greenhouse: max error = 0.214 - Corridor frame: RMSE = 0.109 | [87] |
GNSS, Gyroscope | Adaptive Kalman Filter | - Linear experiment: average error = 0.06, error variance = 0.215 - Curve experiment: average error = 0.746, error variance = 0.908 | [88] |
GNSS, IMU | Finite Impulse Response Kalman Filter | GNSS differential state: - Filtering: avg. error = 1.074 cm, RMSE = 1.396 cm - Non-filtering: avg. error = 1.17 cm, RMSE = 1.551 cm - GNSS non-differential state: - Filtering: avg. error = 2.097 cm, RMSE = 2.72 cm - Non-filtering: avg. error = 3.663 cm, RMSE = 4.633 cm | [89] |
Monocular camera, 3D LiDAR | Adaptive Radius Filter | - Heading angle absolute error: average 1.53°, - Standard deviation: 1.46°. | [90] |
LIiDAR, Camera, IMU, Wheel odometer | Particle Filter | - Accuracy: 0.37 m (95% of time), - Average error: 0.2 m. | [91] |
Wheel odometer, IMU, LIDAR, GNSS | Factor Graph | Cave des Onze Communes Vineyard: - A01 dataset: RMSE = 0.123, max = 0.253 - A02 dataset: RMSE = 0.116, max = 0.273 | [92] |
Camera, LiDAR, IMU | Factor Graph | - Positioning: average errors of 0.056 m, 0.065 m, and 0.081 m - All error standard deviations <0.05 m. | [93] |
Thermal camera, LiDAR | Posture Graph | Average positional error in the real orchard is 0.20 m | [94] |
LiDAR, RTK-GPS | Generalized Iterative Nearest Point | - Long-distance error is ≤0.71 - Short-distance error is ≤0.14 | [95] |
Algorithm | Environment Type | Accuracy Performance | Computational Cost | Robustness |
---|---|---|---|---|
Kalman Filter | Structured | High | Low | Robust in static environments, sensitive to noise |
Unstructured | Moderate | Low | Sensitive to noise, struggles in highly dynamic environments | |
Extended Kalman Filter | Structured | High | Moderate | Robust in mild non-linear systems |
Unstructured | Moderate | Moderate | Sensitive to noise, struggles in dynamic environments | |
Adaptive Kalman Filter | Structured | High | Moderate | Very robust in changing noise environments |
Unstructured | High | Moderate | Performs better in dynamic, noisy environments | |
Finite Impulse Response Kalman Filter | Structured | High | Low | Robust against specific noise patterns |
Unstructured | Moderate | Low | Less robust in dynamic environments | |
Adaptive Radius Filter | Structured | High | Moderate to High | Robust in environments with slowly changing conditions |
Unstructured | High | Moderate to High | Very effective in environments with dynamic obstacles | |
Particle Filter | Structured | High | High | Robust in highly non-linear environments |
Unstructured | High | High | Very effective in dynamic environments with non-linearities |
Algorithm | Environment Type | Accuracy Performance | Computational Cost | Robustness |
---|---|---|---|---|
Factor Graph | Structured | High | High | Robust in large-scale environments, good for graph-based optimization |
Unstructured | Moderate | High | Robust with proper sensor fusion, less effective in dynamic settings | |
Posture Graph | Structured | High | Moderate to High | Robust in static environments, good for optimization |
Unstructured | Moderate | Moderate to High | Performs poorly in highly dynamic or rapidly changing environments | |
Generalized Iterative Nearest-Point | Structured | High | High | Robust in structured environments |
Unstructured | Moderate | High | Less effective in dynamic environments with sparse data |
Classification Criteria | Imaging Technology Type | Description |
---|---|---|
Spectral resolution (band bandwidth) or the number of bands | Visible-spectrum imaging | Only the visible light spectrum of the human eye (400–700 nm) is captured, and imaging is carried out through three bands: red (R), green (G), and blue (B). The bandwidth of each band is relatively wide (such as 50–100 nm). |
Multispectral imaging | Simultaneously captures multiple (3 to 10) specific bands of light, including visible light and non-visible light (such as near-infrared, red edge, and infrared), with the bandwidth of each band ranging from tens of nanometers to hundreds of nanometers. | |
Hyperspectral imaging | Captures dozens to hundreds of narrow bands (bandwidth 1–20 nm), covering a relatively wide spectral range (such as 400–2500 nm). | |
Imaging dimension | 2D camera | Obtains the two-dimensional planar image of the object. |
3D camera | Obtains the three-dimensional spatial information of objects, such as depth values or point cloud data, including binocular stereo cameras, structured light cameras, and TOF cameras. |
Imaging Technology Type | Advantages | Disadvantages |
---|---|---|
Visible-spectrum imaging | ① Intuitive and easy to understand | ① Only covers visible light |
② Low cost | ② Low spectral resolution | |
③ Strong real-time performance | ③ Discontinuous wavelength bands | |
Multispectral imaging | ① Capable of acquiring partial non-visible light | ① Relatively low spectral resolution |
② Has scene adaptability | ② Discontinuous wavelength bands | |
Hyperspectral imaging | ① Extremely high spectral resolution, capable of accurately identifying the composition of substances | ① Complex equipment |
② Strong band continuity | ② High cost | |
③ Poor real-time performance | ||
④ High requirements for sensor calibration and the environment | ||
2D camera | ① Low cost | ① Unable to perceive spatial information |
② Strong real-time performance | ② Low precision | |
③ Intuitive data | ||
3D camera | ① Supports 3D modeling | ① Limited accuracy |
② Good real-time performance | ② Shorter acting distance | |
③ Low cost | ③ Greatly affected by light and material |
Category | Definition | Common Algorithms | Applicability of Global Planning | Applicability of Local Planning |
---|---|---|---|---|
Graph Search-Based Algorithms | Abstract the road or work environment into a graph structure to determine the shortest path between a starting point and an ending point. | Dijkstra | Strong | Weak |
A* | Strong | Weak | ||
Hybrid A* | Relatively strong | Medium | ||
JPS | Strong | Weak | ||
D* | Medium | Relatively strong | ||
Sampling-Based Algorithms | Generate a set of candidate paths and filter the optimal motion path by combining multiple constraint conditions. | PRM | Strong | Weak |
RRT | Medium | Relatively strong | ||
Informed RRT | Strong | Medium | ||
Kinodynamic RRT* | Medium | Strong | ||
Optimization-Based Algorithms | Transform the path planning problem into a mathematical optimization problem and search for the optimal solution through iteration. | CHOMP | Medium | Weak |
STOMP | Medium | Medium | ||
TEB | Weak | Strong | ||
DT-TEB | Relatively strong | Strong | ||
Evolutionary algorithm | Strong | Weak | ||
Swarm intelligence | Strong | Medium | ||
Artificial potential field (APF) | Weak | Relatively strong | ||
Dynamic window algorithm (DWA) | Weak | Strong | ||
Learning-Based Algorithms | Use data to train a model, enabling it to possess learning capabilities, thereby formulating path planning strategies. | Deep learning | Relatively strong | Weak |
Reinforcement learning | Medium | Strong | ||
Deep reinforcement learning | Relatively strong | Strong |
Category | Advantages | Disadvantages |
---|---|---|
Graph Search-Based Algorithms | ① Capable of finding the global optimal path | ① High computational complexity |
② Mature algorithmic theory, suitable for structured environments | ② Poor adaptability to dynamic environments | |
③ Strong interpretability | ③ Insufficient consideration of kinematic constraints | |
Sampling-Based Algorithms | ① Does not require explicit construction of the entire configuration space, suitable for unstructured environments | ① Sampling bias issue |
② Adaptability to dynamic environments | ② Unstable path quality | |
③ Integration of kinematic constraints | ③ Difficulty in handling multiple constraints | |
④ High dependency on environmental modeling | ||
Optimization-Based Algorithms | ① Capable of handling multiple constraints | ① High computational complexity |
② Strong path smoothness | ② Risk of falling into local optima | |
③ Adaptability to dynamic environments | ③ Weak global optimization capability | |
④ Susceptible to environmental noise | ||
Learning-Based Algorithms | ① Strong autonomous learning ability, suitable for complex scenarios | ① High data dependency |
② Adaptability to dynamic scenarios | ② Heavy computational resource requirements | |
③ Possesses generalization potential | ③ Risk of overfitting | |
④ Poor interpretability |
Actuator Type | Characteristics | Applicable Scenarios | Ref. |
---|---|---|---|
Brushless DC Motors | ① Strong vibration resistance | Farmland seeding | [249] |
② Capable of supporting medium-to-high-speed operations | |||
Brushless DC Motors | ① High adaptability | Travel drive | [250] |
② Fast dynamic response | |||
Brushless AC Motors | ① Strong load capacity | Steering and travel drive | [66] |
② High energy utilization efficiency | |||
Stepper Drive Motors | ① High control precision | Pesticide spraying | [251] |
② Strong adaptability | |||
③ Poor stability in long-term control | |||
Stepper Drive Motors | ① Low design cost | Fruit picking | [252] |
② High control precision | |||
③ Limited dynamic response | |||
④ Poor environmental adaptability | |||
Servo Motors | ① High control precision | Crop harvesting | [253] |
② Strong control flexibility | |||
③ High compatibility | |||
④ Complex system design | |||
Hydraulic Drives | ① Short response time | Crop fertilization | [254] |
② High control precision | |||
③ Strong flexibility | |||
Hydraulic Drives | ① High torque and load capacity | Steering drive | [255] |
② Fast response speed | |||
③ Limited control precision | |||
④ High system complexity | |||
Pneumatic Drives | ① High picking success rate | Fruit picking | [256] |
② Fast response speed | |||
③ High operational stability | |||
④ Limited precision | |||
Pneumatic Drives | ① Strong adaptability | Seedling transplanting | [257] |
② Simple structure | |||
③ Fast response speed | |||
④ Insufficient stability and precision |
Type | Name | Performance and Benefits | Ref. |
---|---|---|---|
Research | Three-Device Rice Planting System | 0.3-hectare rice field transplanted in 56 min. | [339] |
Intelligent seeding equipment | Seeding efficiency is 8–36 s per 2 feet. | [344] | |
Low-cost automated seeding system | Efficiency improved by 35%, with full terrain adaptability. | [349] | |
Bionic snake bone-arm robot | Spraying robotic arm can bend up to 115.7 degrees. | [351] | |
Spraying distance: 60 cm. | |||
Independent variable fertilization robot | Leaf area extraction: >97% accuracy. | [356] | |
Height information extraction: >96% accuracy. | |||
Navigation system errors: distance 5.598 cm, angle 0.2245°. | |||
Spraying volume precision: avg. difference 0.46 mL. | |||
Adaptive sprinkler irrigation robot | With a 5 L water tank, a complete watering cycle lasts approximately 2 min 30 s. | [353] | |
AgBot II | Detects and classifies weeds and sprays herbicides with over 90% success. | [358] | |
Self-operated laser weeding equipment | mAP reaches: 88.5%. | [373] | |
Weed removal rate: 92.6%. | |||
Seedling damage rate: 1.2%. | |||
Self-operated laser weeding platform | Average error: 1.97 mm. | [376] | |
Hit rate: 97%. | |||
Autonomous pest control agricultural robot | Greenhouse simulation leaf image capture success rate: 100%. | [377] | |
Real-world leaf image capture success rate: 53.6%. | |||
Autonomous corn harvesting robot | Average cutting deviation: 0.063 m. | [389] | |
Grain loss rate: 0.76%. | |||
Commercial products | AgXeed | Support width: 1.8 to 3.0 m; integrated with GPS, sensors, and optical obstacle recognition. | [338] |
SprayBox | Processes 20 times per second, with millimeter-level precision, reducing herbicide use by 95%. | [22] | |
EcoRobotix | Reduces herbicide use by 95%. | [381] | |
LaserWeeder | Reduced annual weeding costs: 80%. | [375] | |
Weeding rate: 99%. | |||
Hyliq AG-130 | High-precision spraying system suitable for large-scale farmland. | [362] | |
EA 30X-Pro | Enables precise pesticide application within a 0.5 m radius, improving operational efficiency by over 30%. | [363] |
Classification Criteria | Type | Schematic Diagram | Example Reference |
---|---|---|---|
Number of mechanical arms | Single arm | [450] | |
Multi-arm | [443,445] | ||
Effector materials | Flexible effector | [451,452] | |
Rigid effector | [290] | ||
Rigid–flexible coupling effector | [453] | ||
Installation architecture | Serial type | [299,454] | |
Parallel type | [455] | ||
Picking method | Clamping and rotating | [456,457] | |
Clamping and cutting | [458,459] | ||
Vacuum suction | [444,460] |
Type | Advantages | Disadvantages |
---|---|---|
Single arm | ① Simple modeling | ① Small workspace |
② Good dexterity | ② Limited picking speed | |
③ Low cost | ③ Low picking efficiency | |
Multi-arm | ① High efficiency | ① Degree-of-freedom-controlling contradictions |
② Large workspace | ② Inefficient coordination | |
③ High success rate of picking | ③ Inflexible operational zone division | |
④ Strong environmental adaptability | ④ Real-time planning latency | |
Flexible effector | ① High degree of freedom | ① Inadequate actuation |
② High flexibility | ② Complex modeling | |
③ High security | ③ Challenging control hinders precision and adaptability | |
④ Strong fit | ④ Low durability | |
Rigid effector | ① Accurate grasping | ① Poor flexibility |
② Reliable load | ② Poor compliance | |
③ High durability | ③ Limited degrees of freedom | |
④ Strong stability | ④ High fruit damage rate | |
Rigid–flexible coupling effector | ① High flexibility | ① Complex modeling |
② Good buffering | ② Vibration damping challenges | |
③ High strength | ||
④ High security | ||
⑤ Strong fit | ||
Serial type | ① Wide spatial coverage | ① Low load ratio |
② Simple modeling | ② Large inertia | |
③ Flexible movement path | ||
Parallel type | ① High rigidity | ① Complex modeling |
② Low inertia | ② Low flexibility | |
③ Large load-bearing capacity | ③ Poor adaptability | |
④ High precision | ||
Clamping and rotating | ① High success rate of fruit separation | ① Susceptible to environmental factors |
② High intact rate of fruit stem | ② Poor adaptability to fruit shape and size | |
③ Short picking cycle | ③ High equipment damage rate | |
Clamping and cutting | ① Low fruit damage rate | ① Low fault tolerance |
② Unaffected by fruit posture | ② High requirements for the positioning algorithm | |
Vacuum suction | ① Effective for picking smooth and light fruits | ① Heavy picking machine |
② No requirements for high-precision fruit positioning | ② Difficulty in parameter design | |
③ High picking speed | ||
④ Unaffected by fruit growth direction |
Type | Name | Performance and Benefits | Ref. |
---|---|---|---|
Research | Multi-task robot transplanting unit | Overall success rate: 90% | [405] |
Three-degree-of-freedom parallel transplanting robot | Transplanting success rate of 95.3% at an acceleration of 30 m/s2 | [409] | |
Multi-sensor-detection transplanting system | Average success rate of 97.3% at high-speed planting frequency | [410] | |
Machine vision transplanting system | Reduces missed seeding rate by 9.91%, and increases seedling robustness score by 18.92% | [411]. | |
Computer vision-based pruning system | Total time to prune one vine is 2 min, similar to human pruning, and can be further reduced with a faster arm | [418] | |
Planning and control framework for fruit tree pruning | Average cutting duration: 13 s; success rate: 75% | [419] | |
Autonomous grape pruning system | The system accurately captures 85% of the grapevine cane structures | [413] | |
Fruit tree pruning recommendation framework | Improves light distribution by 25.15% over conventional pruning and 15% over commercial pruning | [461] | |
Drone monitoring system | Effectively monitors olive grove soil erosion, achieving 93% vegetation identification accuracy and 91% bare soil accuracy | [429] | |
Drone-based hyperspectral monitoring | Classification accuracy for citrus canker: 94–100% | [430] | |
Low-cost ground monitoring robot | Plant height (vs. Manual): RMS < 0.5 cm; MSE 2.36 cm | [437] | |
Temperature (vs. Bradford Weather Station): avg. RMS error < 5 °C (all sensors) | |||
Autonomous kiwi fruit harvesting robot | Kiwi fruit detection rate: 89.6%; harvesting success rate: 51.2%; average efficiency: 5.5 s per fruit | [443] | |
Autonomous strawberry harvesting robot | Harvesting success rate: | [442] | |
Thinned natural environment: 49.30% | |||
Unpruned natural environment: 30.23% | |||
Average harvesting speed: | |||
Single arm: 7 s/fruit | |||
Dual arm: 4 s/fruit | |||
Commercial products | EVE robot | Harvests hard fruits such as apples and peaches using negative pressure adsorption | [444] |
FFRobotics | Twelve collaborative robotic arms achieve a picking efficiency of 1.8 s per fruit, boosting productivity 10-fold | [445] | |
FAR orchard harvesting drone | One robot can cover one hectare of land and operate uninterrupted | [447] |
Type | Name | Performance and Benefits | Ref. |
---|---|---|---|
Research | Autonomous rabbit feeding robot | Horizontal navigation deviation: 5.3 mm; vertical deviation: 7.6 mm; feed quantification error: 4.3% | [464] |
Autonomous cattle feeding vehicle | Reduces labor time by 25% compared to traditional manual feeding | [471] | |
Automatic manure cleaning robot | Reduces clinical mastitis incidence in herds by 2.42% | [493] | |
Universal robotic scraper | Cleaning area: 420 m2/h; manure removal: 1.4 kg/m2; cleanliness maintained for 6 h; saves 30 L of water per cleaning cycle | [494] | |
Autonomous disinfection vehicle | At a flow rate of 1200 mL/min, average droplet diameter: 231.09 m and deposition density: 186 drops/cm2; fully meets disinfection requirements | [490] | |
Dead chicken cleaning robot | Dead chicken recognition accuracy: 92.54% | [499] | |
Intelligent mobile egg collection robot | Egg recognition rate: 94.7–97.6% | [503] | |
Egg collection time (automated vs. manual): | |||
-Corners: 6.61–8.62 min (vs. 0.53 min) | |||
-Central: 3.62–4.6 min (vs. 0.25 min) | |||
-Scattered: 8.53–9.49 min (vs. 0.81 min) | |||
PoultryBot | Maximum navigation distance: 3000 m; autonomously avoids moving hens; egg collection success rate: 46% | [504] | |
Faster R-CNN-based egg collection system | Egg collection success rate: 91.6% | [100] | |
Commercial products | Lely Juno | Integrated UWB and Bluetooth communication; pushes feed 5–6 times daily | [467] |
ROVER rail feeding robot | Precisely follows preset tracks; automatically returns to charging station | [468] | |
XO multi-task autonomous robot | Collects environmental data (temperature, humidity, CO2, light, etc.); performs cleaning and litter management functions | [481] | |
INATECO autonomous litter robot | Accurately identifies wet litter areas via infrared thermography and multi-sensor technology | [496] | |
Poultry Patrol autonomous inspection robot | Monitors and identifies sick or dead chickens using various cameras | [483] | |
Sensyn Robotics inspection robot | Dead chicken detection rate: 93%; false-positive rate: 0.3% | [485] | |
Rabaud high-pressure cleaning robot | Cleaning height up to 5 m; comprehensive cleaning with no dead angles | [498] | |
Birds Eye Robotics dead bird disposal robot | Perceives and monitors the environment; removes dead chickens using a rotating shovel structure | [495] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Yu, R.; Suo, H.; Cai, Y.; Chen, L.; Jiang, H. Autonomous Driving in Agricultural Machinery: Advancing the Frontier of Precision Agriculture. Actuators 2025, 14, 464. https://doi.org/10.3390/act14090464
Liu Q, Yu R, Suo H, Cai Y, Chen L, Jiang H. Autonomous Driving in Agricultural Machinery: Advancing the Frontier of Precision Agriculture. Actuators. 2025; 14(9):464. https://doi.org/10.3390/act14090464
Chicago/Turabian StyleLiu, Qingchao, Ruohan Yu, Haoda Suo, Yingfeng Cai, Long Chen, and Haobin Jiang. 2025. "Autonomous Driving in Agricultural Machinery: Advancing the Frontier of Precision Agriculture" Actuators 14, no. 9: 464. https://doi.org/10.3390/act14090464
APA StyleLiu, Q., Yu, R., Suo, H., Cai, Y., Chen, L., & Jiang, H. (2025). Autonomous Driving in Agricultural Machinery: Advancing the Frontier of Precision Agriculture. Actuators, 14(9), 464. https://doi.org/10.3390/act14090464