Passive and Active Training Control of an Omnidirectional Mobile Exoskeleton Robot for Lower Limb Rehabilitation
Abstract
:1. Introduction
2. Mechanical Structure
2.1. Body Support Module
2.2. Lower Limb Exoskeleton Module
2.2.1. Leg Adjustment Mechanism
2.2.2. Hip and Knee Mechanism
2.3. Omnidirectional Mobile Platform Module
3. Kinematics
3.1. Omnidirectional Mobile Platform Kinematics
3.2. Lower Limb Exoskeleton Kinematics
3.3. Overall Kinematics
3.4. Lower Limb Workspace Analysis
4. Control Method
4.1. Control Hardware
4.2. Admittance Control
4.3. Stability Analysis
5. Simulation and Experiment
5.1. The Effect of Admittance Parameters on the Control
5.2. Prototype Experiment
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, S.Y.; Zhang, M.; Wu, X.W.; Li, L.; Li, C.X. The mechanisms of limb hemiplegia after ipsilateral brain hemisphere stroke. Int. J. Clin. Exp. Med. 2020, 13, 7386–7392. [Google Scholar]
- Zhao, Y.; Hao, Z.; Lim, J. Effects of lower limb rehabilitation training robot on balance and walking function of hemiplegic patients with ischemic stroke. Chin. J. Rehabil. Med. 2012, 27, 1015–1020. [Google Scholar]
- Langhorne, P.; Pollock, A. What are the components of effective stroke unit care? Age Aging 2002, 31, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Dalleck, L.C.; Borresen, E.C.; Parker, A.L.; Abel, K.M.; Habermann, L.A.; McLaughlin, S.J.; Tischendorf, J.S. Development of a Metabolic Equation for the NuStep Recumbent Stepper in Older Adults. Percept. Mot. Ski. 2011, 112, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Li, G.; Sun, Y.; Jiang, G.; Kong, J.; Ju, Z.; Jiang, D. A Review of Upper and Lower Limb Rehabilitation Training Robot. In Proceedings of the International Conference on Intelligent Robotics and Applications, Wuhan, China, 16–18 August 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 570–580. [Google Scholar]
- Métrailler, P.; Blanchard, V.; Perrin, I.; Brodard, R.; Frischknecht, R.; Schmitt, C.; Fournier, J.; Bouri, M.; Clavel, R. Improvement of rehabilitation possibilities with the MotionMaker TM. In Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006 BioRob 2006, Pisa, Italy, 20–22 February 2006; pp. 359–364. [Google Scholar]
- Feng, Y.; Wang, H.; Du, Y.; Chen, F.; Yan, H.; Yu, H. Trajectory planning of a novel lower limb rehabilitation robot for stroke patient passive training. Adv. Mech. Eng. 2017, 9, 1687814017737666. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, H.; Yan, H.; Wang, X.; Jin, Z.; Vladareanu, L. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot. J. Healthc. Eng. 2017 2017, 1523068. [Google Scholar] [CrossRef] [PubMed]
- Okada, S.; Sakaki, T.; Hirata, R.; Okajima, Y.; Uchida, S.; Tomita, Y. TEM: A therapeutic exercise machine for the lower extremities of spastic patients. Adv. Robot. 2001, 14, 597–606. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, Y. Development of an Intention-Based Adaptive Neural Cooperative Control Strategy for Upper-Limb Robotic Rehabilitation. IEEE Robot. Autom. Lett. 2020, 6, 335–342. [Google Scholar] [CrossRef]
- Hu, J.; Zhuang, Y.; Zhu, Y.; Meng, Q.; Yu, H. Intelligent Parametric Adaptive Hybrid Active–Passive Training Control Method for Rehabilitation Robot. Machines 2022, 10, 545. [Google Scholar] [CrossRef]
- Ye, C.; Zhang, Y.; Yu, S.; Li, D. Development of an Omni-directional Lower Limb Rehabilitation Mobile Robot. In Proceedings of the 2023 IEEE International Conference on Mechatronics and Automation (ICMA), Harbin, China, 6–9 August 2023; pp. 2045–2050. [Google Scholar]
- Meng, W.; Liu, Q.; Zhou, Z.; Ai, Q.; Sheng, B.; Xie, S. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 2015, 31, 132–145. [Google Scholar] [CrossRef]
- Yu, Z. Design and Research of Horizontal Lower Limb Rehabilitation Robot. Master’s Thesis, Hefei University of Technology, Hefei, China, 2015. [Google Scholar]
- Wang, Z.; Han, J.; Guo, B.; Li, X.; Du, G. Structural design and research of a novel lower limb rehabilitation robot for human-robot coupling. Int. J. Adv. Robot. Syst. 2024, 21, 17298806241238992. [Google Scholar] [CrossRef]
- Li, L.; Han, J.; Li, X.; Guo, B.; Wang, X. Customized Trajectory Optimization and Compliant Tracking Control for Passive Upper Limb Rehabilitation. Sensors 2023, 23, 6953. [Google Scholar] [CrossRef] [PubMed]
- Proietti, T.; Crocher, V.; Roby-Brami, A.; Jarrasse, N. Upper-limb robotic exoskeletons for neurorehabilitation: A review on control strategies. IEEE Rev. Biomed. Eng. 2016, 9, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Cheng, H.; Yue, C.; Huang, R.; Guo, H. Dynamic balance gait for walking assistance exoskeleton. Appl. Bionics Biomech. 2018, 2018, 7847014. [Google Scholar] [CrossRef] [PubMed]
- Anneli, W.; Jorgen, B.; Susanne, P. Clinical Application of the Hybrid Assistive Limb (HAL) for Gait Training—A Systematic Review. Front. Syst. Neurosci. 2015, 9, 48–52. [Google Scholar]
- Chen, C. Research on Wearable Lower Extremity Exoskeleton System Design and Interactive Control Strategy. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2020. [Google Scholar]
- Yan, Q.; Huang, J.; Tao, C.; Chen, X.; Xu, W. Intelligent mobile walking-aids: Perception, control and safety. Adv. Robot. 2020, 34, 2–18. [Google Scholar] [CrossRef]
- Zhou, H. Research on the Structural Design and Control Method of Lower Limb Exoskeleton Rehabilitation Robot. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2015. [Google Scholar]
- Hartigan, C.; Kandilakis, C.; Dalley, S.; Clausen, M.; Wilson, E.; Morrison, S.; Etheridge, S.; Farris, R. Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton. Top. Spinal Cord. Inj. Rehabil. 2015, 21, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.S.; Ramli, R. Admittance swarm-based adaptive controller for lower limb exoskeleton with gait trajectory shaping. J. King Saud. Univ.-Comput. Inf. Sci. 2024, 36, 101900. [Google Scholar] [CrossRef]
- Narayan, J.; Kalita, B.; Dwivedy, S.K. Adaptive backstepping human-cooperative control of a pediatric gait exoskeleton system with high-and low-level admittance. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2024, 238, 545–562. [Google Scholar] [CrossRef]
- Lu, T.W.; Chang, C.F. Biomechanics of human movement and its clinical applications. Kaohsiung J. Med. Sci. 2012, 28, S13–S25. [Google Scholar] [CrossRef]
- Aggarwal, J.K.; Cai, Q. Human motion analysis: A review. Comput. Vis. Image Underst. 1999, 73, 428–440. [Google Scholar] [CrossRef]
- Yu, S.; Ye, C.; Liu, H.; Chen, J. Development of an omnidirectional automated guided vehicle with MY3 wheels. Perspect. Sci. 2016, 7, 364–368. [Google Scholar] [CrossRef]
- Wang, H.; Qi, H.; Xu, M.; Tang, Y.; Yao, J.; Yan, X.; Li, M. Research on the relationship between classic denavit-hartenberg and modified denavit-hartenberg. In Proceedings of the 2014 Seventh International Symposium on Computational Intelligence and Design, Hangzhou, China, 13–14 December 2014; Volume 2, pp. 26–29. [Google Scholar]
- Liang, X.; Wang, W.; Hou, Z.G.; Ren, S.; Wang, J.; Shi, W.; Peng, L.; Su, T. Position-based impedance control strategy for a lower limb rehabilitation robot. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 437–441. [Google Scholar]
- Nikooyan, A.A.; Zadpoor, A.A. Mass–spring–damper modeling of the human body to study running and hopping–an overview. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2011, 225, 1121–1135. [Google Scholar] [CrossRef] [PubMed]
- Ba, K.; Yu, B.; Zhu, Q.; Gao, Z.; Ma, G.; Jin, Z.; Kong, X. The position-based impedance control combined with compliance-eliminated and feedforward compensation for HDU of the legged robot. J. Frankl. Inst. 2019, 356, 9232–9253. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Miao, Y.; Wang, S.; Zhang, Y. PI2-Based Adaptive Impedance Control for Gait Adaption of Lower Limb Exoskeleton. IEEE/ASME Trans. Mechatron. 2024. [Google Scholar] [CrossRef]
i | ||||
---|---|---|---|---|
4 | 0 | |||
5 | 0 | |||
P | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Liu, C.; Ye, C.; Fu, R. Passive and Active Training Control of an Omnidirectional Mobile Exoskeleton Robot for Lower Limb Rehabilitation. Actuators 2024, 13, 202. https://doi.org/10.3390/act13060202
Yu S, Liu C, Ye C, Fu R. Passive and Active Training Control of an Omnidirectional Mobile Exoskeleton Robot for Lower Limb Rehabilitation. Actuators. 2024; 13(6):202. https://doi.org/10.3390/act13060202
Chicago/Turabian StyleYu, Suyang, Congcong Liu, Changlong Ye, and Rongtian Fu. 2024. "Passive and Active Training Control of an Omnidirectional Mobile Exoskeleton Robot for Lower Limb Rehabilitation" Actuators 13, no. 6: 202. https://doi.org/10.3390/act13060202
APA StyleYu, S., Liu, C., Ye, C., & Fu, R. (2024). Passive and Active Training Control of an Omnidirectional Mobile Exoskeleton Robot for Lower Limb Rehabilitation. Actuators, 13(6), 202. https://doi.org/10.3390/act13060202