Optimization Approach for Multisensory Feedback in Robot-Assisted Pouring Task
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Architecture
2.2. Optimization Approach
2.3. Experimental Design
2.3.1. Screening Experiments
2.3.2. Evaluation Experiments
3. Results
3.1. Screening Experiments
3.2. Assignment Solution
3.3. Validation Experiments
4. Discussion
4.1. Screening Experiments
4.2. Validation Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molinero, M.B.; Dagnino, G.; Liu, J.; Chi, W.; Abdelaziz, M.E.; Kwok, T.M.; Riga, C.; Yang, G.Z. Haptic Guidance for Robot-Assisted Endovascular Procedures: Implementation and Evaluation on Surgical Simulator. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019. [Google Scholar]
- Ta, Q.M.; Cheah, C.C. Cooperative and mobile manipulation of multiple microscopic objects based on micro-hands and laser-stage control. Automatica 2018, 98, 201–214. [Google Scholar] [CrossRef]
- Skaar, S.B.; Ruoff, C.F. Teleoperation and Robotics in Space; American Institute of Aeronautics and Astronautics, Inc.: Boulder, CO, USA, 1994. [Google Scholar]
- Kwon, D.-S.; Ryu, J.-H.; Lee, P.-M.; Hong, S.-W. Design of a teleoperation controller for an underwater manipulator. In Proceedings of the IEEE International Conference on Robotics and Automation. Symposia Proceedings, San Francisco, CA, USA, 24–28 April 2000. [Google Scholar]
- Trevelyan, J.; Hamel, W.R.; Kang, S.C. Robotics in Hazardous Applications. In Handbook of Robotics; Springer International Publishing: Cham, Switzerland, 2016; pp. 1521–1548. [Google Scholar]
- Higuchi, T.; Oka, K.; Sugawara, H. Clean room robot with non-contact joints using magnetic bearings. Adv. Robot. 1992, 7, 105–119. [Google Scholar] [CrossRef]
- Cui, J.; Tosunoglu, S.; Roberts, R.; Moore, C.; Repperger, D.W. A review of teleoperation system contol. In Proceedings of the Florida Conference on Recent Advances in Robotics, Boca Raton, FL, USA, 8–9 May 2003. [Google Scholar]
- Campeau-Lecours, A.; Maheu, V.; Lepage, S.; Lamontagne, H.; Latour, S.; Paquet, L.; Hardie, N. JACO Assistive Robotic Device: Empowering People with Disabilities through Innovative Algorithms. In Proceedings of the Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Conference, Arlington, VA, USA, 10–14 July 2016. [Google Scholar]
- Kim, D.; Wang, Z.; Paperno, N.; Behal, A. System Design and Implementation of UCF-MANUS—An Intelligent Assistive Robotic Manipulator. IEEE/ASME Trans. Mechatron. 2014, 19, 225–237. [Google Scholar] [CrossRef]
- Assistive Innovations. iArm. Available online: https://assistive-innovations.com/en/robotic-arms/iarm (accessed on 15 April 2021).
- North Coast Medical. North Coast Medical & Rehabilitation Products; North Coast Medical: Morgan Hill, CA, USA, 2015. [Google Scholar]
- Brose, S.W.; Weber, D.J.; Salatin, B.A.; Grindle, G.G.; Wang, H.; Vazquez, J.J.; Cooper, R.A. The Role of Assistive Robotics in the Lives of Persons with Disability. Am. J. Phys. Med. Rehabil. 2010, 89, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Romer, G.R.B.E.; Stuyt, H.J.A.; Peters, A. Cost-savings and economic benefits due to the assistive robotic manipulator (ARM). In Proceedings of the 9th International Conference on Rehabilitation Robotics (ICORR), Chicago, IL, USA, 28 June–1 July 2005. [Google Scholar]
- Endsley, M. Toward a Theory of Situation Awareness in Dynamic Systems Society. Hum. Factors J. Hum. Factors Ergon. Soc. 1995, 37, 32–64. [Google Scholar] [CrossRef]
- Correal, R.; Jardón, A.; Martínez, S.; Cabas, R.; Giménez, A.; Balaguer, C. Human-Robot Coexistence in Robot-Aided Apartment. In Proceedings of the 23rd ISARC, Tokyo, Japan, 3–5 October 2006. [Google Scholar]
- Beckerle, P. Going beyond Traditional Surface Electromyography. In Proceedings of the First Workshop on Peripheral Machine Interfaces, 2017. Available online: https://www.frontiersin.org/articles/10.3389/fnbot.2014.00022/full (accessed on 15 April 2021).
- Burke, J.L.; Prewett, M.S.; Gray, A.A.; Yang, L.; Stilson, F.R.; Coovert, M.D.; Elliot, L.R.; Redden, E. Comparing the effects of visual-auditory and visual-tactile feedback on user performance. A meta-analysis. In Proceedings of the Eighth International Conference on Multimodal Interfaces, Banff, AB, Canada, 2–4 November 2006. [Google Scholar]
- Chen, J.H.E.B.M. Human performance issues and user interface design for teleoperated robots. IEEE Trans. Syst. Man Cybern. 2007, 37, 1231–1245. [Google Scholar] [CrossRef]
- Freeman, E.; Wilson, G.; Vo, D.B.; Ng, A.; Politis, I.; Brewster, S. Multimodal feedback in HCI: Haptics, non-speech audio, and their applications. In The Handbook of Multimodal-Multisensor Interfaces: Foundations, User Modeling, and Common Modality Combinations; Association for Computing Machinery and Morgan & Claypool: New York, NY, USA, 2017; pp. 277–317. [Google Scholar]
- Wickens, C. Multiple resources and mental workload. Hum. Factors J. Hum. Factors Ergon. Soc. 2008, 50, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Hoecherl, J.; Schmargendorf, M.; Wrede, B.; Schlegl, T. User-Centered Design of Multimodal Robot Feedback for Cobots of Human-Robot Working Cells in Industrial Production Contexts. In Proceedings of the ISR 2018; 50th International Symposium on Robotics, Munich, Germany, 20–21 June 2018. [Google Scholar]
- Prewett, M.S.; Johnson, R.C.; Saboe, K.N.; Elliott, L.R.; Coovert, M.D. Managing workload in human–robot interaction: A review of empirical studies. Comput. Hum. Behav. 2010, 26, 840–856. [Google Scholar] [CrossRef]
- Ernst, M.O. A Bayesian View on Multimodal Cue Integration. In Human Body Perception from Inside Out; Oxford University Press: Oxford, UK, 2006; pp. 105–130. [Google Scholar]
- Martinez-Hernandez, U.; Boorman, L.W.; Prescott, T.J. Multisensory Wearable Interface for Immersion and Telepresence in Robotics. IEEE Sens. J. 2017, 17, 2534–2541. [Google Scholar] [CrossRef]
- Huang, S.; Ishikawa, M.; Yamakawa, Y. Human-Robot Interaction and Collaborative Manipulation with Multimodal Perception Interface for Human. In Proceedings of the HAI 1‘9: Proceedings of the 7th International Conference on Human-Agent Interaction, Kyoto, Japan, 6–10 October 2019. [Google Scholar]
- Lee, J.; Choi, M.H.; Jung, J.H.; Hammond, F.L. Multimodal sensory feedback for virtual proprioception in powered upper-limb prostheses. In Proceedings of the 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal, 28 August–1 September 2017. [Google Scholar]
- Nuamah, J.K.; Mantooth, W.; Karthikeyan, R.; Mehta, R.K.; Ryu, S.C. Neural Efficiency of Human–Robotic Feedback Modalities Under Stress Differs with Gender. Front. Hum. Neurosci. 2019, 13, 287. [Google Scholar] [CrossRef] [PubMed]
- Massimino, M.J.; Sheridan, T.B. Teleoperator performance with varying force and visual feedback. Hum. Factors 1994, 36, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Richard, P.; Birebent, G.; Coiffet, P.; Burdea, G.; Gomez, D.; Lagrana, N. Effect of frame rate and force feedback on virtual object manipulation. Presence 1996, 5, 95–108. [Google Scholar] [CrossRef]
- Coovert, M.; Walvoord, A.; Elliot, L.; Redden, E. A tool for the accumulation and evaluation of multimodal research. IEEE Trans. Syst. Man Cybern. 2008, 24, 1884–1906. [Google Scholar] [CrossRef]
- Park, E.; Kim, K.J.; Del Pobil, A.P. The effects of multimodal feedback and gender on task performance of stylus pen users. Int. J. Adv. Robot. Syst. 2012, 9, 30. [Google Scholar] [CrossRef]
- van Huysduynen, H.H.; De Valk, L.; Bekker, T. Tangible play objects: Influence of different combinations of feedback modalities. In Proceedings of the TEI’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, New York, NY, USA, 14–17 February 2016. [Google Scholar]
- Adebiyi, A.; Sorrentino, P.; Bohlool, S.; Zhang, C.; Arditti, M.; Goodrich, G.; Weiland, J.D. Assessment of feedback modalities for wearable visual aids in blind mobility. PLoS ONE 2017, 12, e0170531. [Google Scholar] [CrossRef] [PubMed]
- Vitense, H.S.; Jacko, J.A.; Emery, V.K. Multimodal feedback: An assessment of performance and mental workload. Ergonomics 2003, 46, 68–87. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.S.; Wang, H.; Cooper, R.A. Functional assessment and performance evaluatioon for assistive robotic manipulators. J. Spinal Cord Med. 2013, 36, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Duerstock, B.S.; Wachs, J.P. Multimodal Perception of Histological Images for Persons Who Are Blind or Visually Impaired. ACM Trans. Access. Comput. 2017, 9, 1–27. [Google Scholar] [CrossRef]
- Stern, H.I.; Wachs, J.P.; Edan, Y. Designing hand gesture vocabularies for natural interaction by combining psycho-physiological and recognition factors. Int. J. Semant. Comput. 2008, 2, 137–160. [Google Scholar] [CrossRef]
- Dunkelberger, N.; Bradley, J.; Sullivan, J.L.; Israr, A.; Lau, F.; Klumb, K.; Abnousi, F.; O’Malley, M.K. Improving Perception Accuracy with Multi-sensory Haptic Cue Delivery. In EuroHaptics 2018: Haptics: Science, Technology, and Application; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Force Dimension. omega.7. Available online: https://www.forcedimension.com/products/omega (accessed on 15 April 2021).
- Engineering Acoustics. Advanced Tactile Array Cueing (ATAC) Technology. Available online: https://www.eaiinfo.com/tactor-landing/ (accessed on 15 April 2021).
- Jiang, H.; Wachs, J.P.; Pendergast, M.; Duerstock, B.S. 3D joystick for robotic arm control by individuals with high level spinal cord injuries. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013. [Google Scholar]
- Visell, Y. Tactile sensory substitution: Models for enaction in HCI. Interact. Comput. 2009, 21, 38–53. [Google Scholar] [CrossRef]
- Jones, L.A. Kinesthetic sensing. In Human and Machine Haptics; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Jimenez, M.C.; Fishel, J.A. Evaluation of force, vibration and thermal tactile feedback in prosthetic limbs. In Proceedings of the 2014 IEEE Haptics Symposium (HAPTICS), Houston, TX, USA, 23–26 February 2014. [Google Scholar]
- Munkres, J. Algorithms for the Assignment and Transportation Problems. J. Soc. Ind. Appl. Math. 1957, 5, 32–38. [Google Scholar] [CrossRef]
- Burkard, R.E.; Cela, E. Linear Assignment Problems and Extensions. In Handbook of Combinatorial Optimization; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 75–149. [Google Scholar]
- Bourgeois, F.; Lassalle, J.C. An Extension of the Munkres Algorithm for the. Commun. ACM 1971, 14, 802–804. [Google Scholar] [CrossRef]
- Green, P.A.; Brandley, N.C.; Nowicki, S. Categorical perception in animal communication and decision-making. Behavioral Ecology 2020, 31, 859–867. [Google Scholar] [CrossRef]
- Harnad, S.R. Categorical Perception: The Groundwork of Cognition; University of Cambridge Press: Cambridge, UK, 1987. [Google Scholar]
- Jones, L.A.; Berris, M. The psychophysics of temperature perception and thermal-interface design. In Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002, Orlando, FL, USA, 24–25 March 2002. [Google Scholar]
- ISO 17488:2016; Road Vehicles—Transport Information and Control Systems—Detection-Response Task (DRT) for Assessing Attentional Effects of Cognitive Load in Driving. ISO Ergonomics: Geneva, Switzerland, 2016.
- Bruyas, M.-P.; Dumont, L. Sensitivity of Detection Response Task (DRT) to the Driving. In Proceedings of the 2013 Driving Assessment Conference, Bolton, UK, 17–20 June 2013. [Google Scholar]
- Stojmenova, K.; Sodnik, J. Detection-Response Task—Uses and Limitations. Sensors 2018, 18, 594. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, A.; Nesbitt, K.; Eidels, A. Assessing Game Interface Workload and Usability: A Cognitive Science Perspective. In Proceedings of the ACSW 2019: Proceedings of the Australasian Computer Science Week Multiconference, Sydney, Australia, 29–31 January 2019. [Google Scholar]
- Perlman, G. Chapter 37—Software Tools for User Interface Development. In Handbook of Human-Computer Interaction; Elsevier: Amsterdam, The Netherlands, 1988; pp. 819–833. [Google Scholar]
- Jahan, A.; Edwards, K.L. Chapter 4–Multiattribute Decision-Making for Ranking of Candidate Materials. In Multi-Criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design; Butterworth-Heinemann: Oxford, UK, 2013; pp. 43–82. [Google Scholar]
- Wong, A.S.W.; Li, Y.I. 9—Overall comfort perception and preferences. In Woodhead Publishing Series in Textiles, Clothing Biosensory Engineering; Woodhead Publishing: Sawston, UK, 2006; pp. 167–177. [Google Scholar]
- Vidulich, M.A. The Cognitive Psychology of Subjective Mental Workload. Adv. Psychol. 1988, 52, 219–229. [Google Scholar]
- Vidulich, M.A.; Tsang, P.S. Techniques of subjective workload assessment: A comparison of SWAT and the NASA-Bipolar methods. Ergonomics 1986, 29, 1385–1398. [Google Scholar] [CrossRef]
- Maggino, F.; Ruviglioni, E. Obtaining weights: From objective to subjective approaches in view of more participative methods in. In Proceedings of the NTTS: New Techniques and Technologies for Statistics, Brussels, Belgium, 18–20 February 2009. [Google Scholar]
- Yoon, K.P.; Hwang, C. Multiple Attribute Decision Making: An Introduction; Sage Publications: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Ward, J. The Student’s Guide to Cognitive Neuroscience; Routledge: New York, NY, USA, 2019. [Google Scholar]
i | ||||
j | Weight | Temperature | Liquid Level | |
Haptic | ||||
Visual | ||||
Vibratory | ||||
Audio | ||||
Thermal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marambe, M.S.; Duerstock, B.S.; Wachs, J.P. Optimization Approach for Multisensory Feedback in Robot-Assisted Pouring Task. Actuators 2024, 13, 152. https://doi.org/10.3390/act13040152
Marambe MS, Duerstock BS, Wachs JP. Optimization Approach for Multisensory Feedback in Robot-Assisted Pouring Task. Actuators. 2024; 13(4):152. https://doi.org/10.3390/act13040152
Chicago/Turabian StyleMarambe, Mandira S., Bradley S. Duerstock, and Juan P. Wachs. 2024. "Optimization Approach for Multisensory Feedback in Robot-Assisted Pouring Task" Actuators 13, no. 4: 152. https://doi.org/10.3390/act13040152
APA StyleMarambe, M. S., Duerstock, B. S., & Wachs, J. P. (2024). Optimization Approach for Multisensory Feedback in Robot-Assisted Pouring Task. Actuators, 13(4), 152. https://doi.org/10.3390/act13040152