Adaptive Vision-Based Gait Environment Classification for Soft Ankle Exoskeleton
Abstract
:1. Introduction
2. Soft Exosuit
2.1. Soft Exosuit Design
2.2. Control Strategy
3. Environment Recognition System
3.1. Data Acquisition and Class Definition
3.2. YOLO Model Training
3.3. LSTM-Based Spatio-Temporal Feature Extraction
4. Experiment
5. Results
5.1. Real-Time Environment Classification Performance
5.2. Joint Kinematics
5.3. Muscle Reduction
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Winstein, C.J.; Stein, J.; Arena, R.; Bates, B.; Cherney, L.R.; Cramer, S.C.; Deruyter, F.; Eng, J.J.; Fisher, B.; Harvey, R.L.; et al. Guidelines for Adult Stroke Rehabilitation and Recovery. Stroke 2016, 47, e98–e169. [Google Scholar] [CrossRef]
- Perry, J.; Garrett, M.; Gronley, J.; Mulroy, S. Classification of Walking Handicap in the Stroke Population. Stroke 1995, 26, 982–989. [Google Scholar] [CrossRef]
- Bohannon, R. Muscle strength and muscle training after stroke. J. Rehabil. Med. 2007, 39, 14–20. [Google Scholar] [CrossRef]
- Woolley, S.M. Characteristics of gait in hemiplegia. Top. Stroke Rehabil. 2001, 7, 1–18. [Google Scholar] [CrossRef]
- Olney, S.J.; Richards, C. Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture 1996, 4, 136–148. [Google Scholar] [CrossRef]
- Balaban, B.; Tok, F. Gait Disturbances in Patients With Stroke. PM & R 2014, 6, 635–642. [Google Scholar] [CrossRef]
- Ramsay, J.W.; Wessel, M.A.; Buchanan, T.S.; Higginson, J.S. Poststroke muscle architectural parameters of the tibialis anterior and the potential implications for rehabilitation of foot drop. Stroke Res. Treat. 2014, 2014, 948475. [Google Scholar] [CrossRef]
- Moseley, A.; Wales, A.; Herbert, R.; Schurr, K.; Moore, S. Observation and analysis of hemiplegic gait: Stance phase. Aust. J. Physiother. 1993, 39, 259–267. [Google Scholar] [CrossRef]
- Chen, G.; Patten, C.; Kothari, D.H.; Zajac, F.E. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 2005, 22, 51–56. [Google Scholar] [CrossRef]
- Li, S.; Francisco, G.E.; Zhou, P. Post-stroke hemiplegic gait: New perspective and insights. Front. Physiol. 2018, 9, 1021. [Google Scholar] [CrossRef]
- Moosabhoy, M.A.; Gard, S.A. Methodology for determining the sensitivity of swing leg toe clearance and leg length to swing leg joint angles during gait. Gait Posture 2006, 24, 493–501. [Google Scholar] [CrossRef]
- Roche, N.; Bonnyaud, C.; Geiger, M.; Bussel, B.; Bensmail, D. Relationship between hip flexion and ankle dorsiflexion during swing phase in chronic stroke patients. Clin. Biomech. 2015, 30, 219–225. [Google Scholar] [CrossRef]
- Agha, S.; Levine, I.C.; Novak, A.C. Determining the effect of stair nosing shape on foot trajectory during stair ambulation in healthy and post-stroke individuals. Appl. Ergon. 2021, 91, 103304. [Google Scholar] [CrossRef]
- Andriacchi, T.; Andersson, G.; Fermier, R.; Stern, D.; Galante, J. A study of lower-limb mechanics during stair-climbing. JBJS 1980, 62, 749–757. [Google Scholar] [CrossRef]
- Jacobs, J.V. A review of stairway falls and stair negotiation: Lessons learned and future needs to reduce injury. Gait Posture 2016, 49, 159–167. [Google Scholar] [CrossRef]
- Novak, A.C.; Brouwer, B. Strength and aerobic requirements during stair ambulation in persons with chronic stroke and healthy adults. Arch. Phys. Med. Rehabil. 2012, 93, 683–689. [Google Scholar] [CrossRef]
- Hsu, S.H.; Changcheng, C.; Lee, H.J.; Chen, C.T. Design and implementation of a robotic hip exoskeleton for gait rehabilitation. Actuators 2021, 10, 212. [Google Scholar] [CrossRef]
- Lee, H.D.; Park, H.; Hong, D.H.; Kang, T.H. Development of a series elastic tendon actuator (SETA) based on gait analysis for a knee assistive exosuit. Actuators 2022, 11, 166. [Google Scholar] [CrossRef]
- Bishe, S.S.P.A.; Nguyen, T.; Fang, Y.; Lerner, Z.F. Adaptive ankle exoskeleton control: Validation across diverse walking conditions. IEEE Trans. Med. Robot. Bionics 2021, 3, 801–812. [Google Scholar] [CrossRef]
- Xu, Y.; Li, W.; Chen, C.; Chen, S.; Wang, Z.; Yang, F.; Liu, Y.; Wu, X. A Portable Soft Exosuit to Assist Stair Climbing with Hip Flexion. Electronics 2023, 12, 2467. [Google Scholar] [CrossRef]
- Fang, Y.; Orekhov, G.; Lerner, Z.F. Improving the energy cost of incline walking and stair ascent with ankle exoskeleton assistance in cerebral palsy. IEEE Trans. Biomed. Eng. 2021, 69, 2143–2152. [Google Scholar] [CrossRef]
- Lee, H.D.; Park, H.; Seongho, B.; Kang, T.H. Development of a soft exosuit system for walking assistance during stair ascent and descent. Int. J. Control. Autom. Syst. 2020, 18, 2678–2686. [Google Scholar] [CrossRef]
- Han, Y.C.; Wong, K.I.; Murray, I. Gait phase detection for normal and abnormal gaits using IMU. IEEE Sens. J. 2019, 19, 3439–3448. [Google Scholar] [CrossRef]
- Pappas, I.P.; Popovic, M.R.; Keller, T.; Dietz, V.; Morari, M. A reliable gait phase detection system. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 113–125. [Google Scholar] [CrossRef]
- Liu, D.X.; Xu, J.; Chen, C.; Long, X.; Tao, D.; Wu, X. Vision-assisted autonomous lower-limb exoskeleton robot. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 3759–3770. [Google Scholar] [CrossRef]
- Yang, F.; Chen, C.; Wang, Z.; Chen, H.; Liu, Y.; Li, G.; Wu, X. Vit-based terrain recognition system for wearable soft exosuit. Biomim. Intell. Robot. 2023, 3, 100087. [Google Scholar] [CrossRef]
- Templer, J. The Staircase: Studies of Hazards, Falls, and Safer Design; MIT Press: Cambridge, MA, USA, 1995; Volume 2. [Google Scholar]
- Coleman, A.L.; Stone, K.; Ewing, S.K.; Nevitt, M.; Cummings, S.; Cauley, J.A.; Ensrud, K.E.; Harris, E.L.; Hochberg, M.C.; Mangione, C.M. Higher risk of multiple falls among elderly women who lose visual acuity. Ophthalmology 2004, 111, 857–862. [Google Scholar] [CrossRef]
- Coser, O.; Tamantini, C.; Soda, P.; Zollo, L. AI-based methodologies for exoskeleton-assisted rehabilitation of the lower limb: A review. Front. Robot. AI 2024, 11, 1341580. [Google Scholar] [CrossRef]
- Zhao, W.X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; et al. A survey of large language models. arXiv 2023, arXiv:2303.18223. [Google Scholar]
- Zhang, C.; Chen, J.; Li, J.; Peng, Y.; Mao, Z. Large language models for human-robot interaction: A review. Biomim. Intell. Robot. 2023, 3, 100131. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljačić, M.; Hou, T.Y.; Tegmark, M. Kan: Kolmogorov-arnold networks. arXiv 2024, arXiv:2404.19756. [Google Scholar]
- Cheon, M. Demonstrating the efficacy of kolmogorov-arnold networks in vision tasks. arXiv 2024, arXiv:2406.14916. [Google Scholar]
- Sohan, M.; Sai Ram, T.; Reddy, R.; Venkata, C. A review on yolov8 and its advancements. In Data Intelligence and Cognitive Informatics; Springer: Berlin/Heidelberg, Germany, 2024; pp. 529–545. [Google Scholar]
- Hussain, M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection. Machines 2023, 11, 677. [Google Scholar] [CrossRef]
- Tricomi, E.; Mossini, M.; Missiroli, F.; Lotti, N.; Zhang, X.; Xiloyannis, M.; Roveda, L.; Masia, L. Environment-based assistance modulation for a hip exosuit via computer vision. IEEE Robot. Autom. Lett. 2023, 8, 2550–2557. [Google Scholar] [CrossRef]
- Ogihara, H.; Tsushima, E.; Kamo, T.; Sato, T.; Matsushima, A.; Niioka, Y.; Asahi, R.; Azami, M. Kinematic gait asymmetry assessment using joint angle data in patients with chronic stroke—A normalized cross-correlation approach. Gait Posture 2020, 80, 168–173. [Google Scholar] [CrossRef]
- Archea, J.; Collins, B.L.; Stahl, F.I. Guidelines for Stair Safety; The Bureau: Washington, DC, USA, 1979; Number 120. [Google Scholar]
- Inman, V.T.; Eberhart, H.D. The major determinants in normal and pathological gait. JBJS 1953, 35, 543–558. [Google Scholar]
- Shorter, K.A.; Li, Y.; Bretl, T.; Hsiao-Wecksler, E.T. Modeling, control, and analysis of a robotic assist device. Mechatronics 2012, 22, 1067–1077. [Google Scholar] [CrossRef]
- Whittle, M.W. Gait Analysis: An Introduction; Butterworth-Heinemann: Oxford, UK, 2014. [Google Scholar]
- Karekla, X.; Tyler, N. Maintaining balance on a moving bus: The importance of three-peak steps whilst climbing stairs. Transp. Res. Part Policy Pract. 2018, 116, 339–349. [Google Scholar] [CrossRef]
- Welch, G.; Bishop, G. An Introduction to the Kalman Filter; ACM: New York, NY, USA, 1995. [Google Scholar]
- Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Zeng, H.; Zhao, Y. Sensing movement: Microsensors for body motion measurement. Sensors 2011, 11, 638–660. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Terven, J.; Córdova-Esparza, D.M.; Romero-González, J.A. A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Graves, A.; Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin, Heidelberg, 2012; pp. 37–45. [Google Scholar]
- Allison, G.; Marshall, R.; Singer, K. EMG signal amplitude normalization technique in stretch-shortening cycle movements. J. Electromyogr. Kinesiol. 1993, 3, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Burden, A. How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research. J. Electromyogr. Kinesiol. 2010, 20, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Mello, R.G.; Oliveira, L.F.; Nadal, J. Digital Butterworth filter for subtracting noise from low magnitude surface electromyogram. Comput. Methods Programs Biomed. 2007, 87, 28–35. [Google Scholar] [CrossRef] [PubMed]
Environment | Class Definition |
---|---|
Stairs occupy less than half of the image. | |
Stairs occupy more than half of the image. From the mid-swing phase to the weight-acceptance phase of the leg ascending the initial step of the stairs. | |
Stairs occupy the entire image. | |
Stairs occupy more than half of the image. From the mid-swing phase to the weight-acceptance phase of the leg ascending the final step of the stairs. | |
Stairs occupy more than half of the image. From the mid-swing phase to the weight-acceptance phase of the leg descending the initial step of the stairs. | |
Stairs occupy the entire image. | |
Stairs occupy more than half of the image. From the mid-swing phase to the weight-acceptance phase of the leg descending the final step of the stairs. |
Algorithm | Environment | Precision | Recall | F1 Score | Acurracy |
---|---|---|---|---|---|
YOLO | 0.923 | 0.923 | 0.923 | 0.923 | |
1.000 | 0.333 | 0.500 | 0.333 | ||
0.923 | 1.000 | 0.960 | 1.000 | ||
0.889 | 0.889 | 0.889 | 0.889 | ||
1.000 | 0.333 | 0.500 | 0.333 | ||
0.923 | 0.960 | 0.941 | 0.960 | ||
0.600 | 0.857 | 0.706 | 0.857 | ||
YOLO - LSTM | 0.954 | 0.984 | 0.969 | 0.984 | |
0.972 | 0.972 | 0.972 | 0.972 | ||
1.000 | 0.950 | 0.974 | 0.950 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Heo, J.; Kang, B.B. Adaptive Vision-Based Gait Environment Classification for Soft Ankle Exoskeleton. Actuators 2024, 13, 428. https://doi.org/10.3390/act13110428
Yang G, Heo J, Kang BB. Adaptive Vision-Based Gait Environment Classification for Soft Ankle Exoskeleton. Actuators. 2024; 13(11):428. https://doi.org/10.3390/act13110428
Chicago/Turabian StyleYang, Gayoung, Jeong Heo, and Brian Byunghyun Kang. 2024. "Adaptive Vision-Based Gait Environment Classification for Soft Ankle Exoskeleton" Actuators 13, no. 11: 428. https://doi.org/10.3390/act13110428
APA StyleYang, G., Heo, J., & Kang, B. B. (2024). Adaptive Vision-Based Gait Environment Classification for Soft Ankle Exoskeleton. Actuators, 13(11), 428. https://doi.org/10.3390/act13110428