A Pneumatic Fingerless Soft Gripper for Envelope Gripping
Abstract
:1. Introduction
2. Relaxed Works
3. Material and Methods
3.1. Gripping Principle of Envelope-Gripping SFLG
3.2. Design of SFLG
3.3. Manufacture of Soft-End Grippers
3.4. Finite Element Simulation of the SFLG
4. Results
4.1. Gripping Range of Soft Grippers with Different Structures
4.2. Effects of Different Pressures and Different Sizes of Objects on Grasping Ability
4.3. Gripping Test for Objects of Different Shapes
4.4. Grasping Different Objects
5. Discussion and Conclusions
5.1. Advantages and Limitations
5.2. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ishibashi, K.; Komagata, M.; Ishikawa, H.; Azami, O.; Yamamoto, K. Compact water pump and its application to self-contained soft robot hand for vegetable factory. Adv. Robot. 2023, 37, 970–986. [Google Scholar] [CrossRef]
- Galloway, K.C.; Becker, K.P.; Phillips, B.; Kirby, J.; Licht, S.; Tchernov, D.; Wood, R.J.; Gruber, D.F. Soft Robotic Grippers for Biological Sampling on Deep Reefs. Soft Robot. 2016, 3, 23–33. [Google Scholar] [CrossRef]
- Yasa, O.; Toshimitsu, Y.; Michelis, M.Y.; Jones, L.S.; Filippi, M.; Buchner, T.; Katzschmann, R.K. An Overview of Soft Robotics. Annu. Rev. Control. Robot. Auton. Syst. 2023, 6, 1–29. [Google Scholar] [CrossRef]
- Zhao, H.; O’Brien, K.; Li, S.; Shepherd, R.F. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 2016, 1, eaai7529. [Google Scholar] [CrossRef]
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef]
- Hughes, J.; Culha, U.; Giardina, F.; Guenther, F.; Rosendo, A.; Iida, F. Soft Manipulators and Grippers: A Review. Front. Robot. AI 2016, 3, 69. [Google Scholar] [CrossRef]
- Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft Robotic Grippers. Adv. Mater. 2018, 30, 1707035. [Google Scholar] [CrossRef]
- Jyoti, D.S.; Prabhu, S. Soft Manipulator for Soft Robotic Applications: A Review. J. Intell. Robot. Syst. 2023, 108, 10. [Google Scholar]
- Hegde, C.; Su, J.; Tan, J.M.R.; He, K.; Chen, X.; Magdassi, S. Sensing in Soft Robotics. ACS Nano 2023, 17, 15277–15307. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Domel, A.G.; An, N.; Green, C.; Gong, Z.; Wang, T.; Knubben, E.M.; Weaver, J.C.; Bertoldi, K.; Wen, L. Octopus Arm-Inspired Tapered Soft Actuators with Suckers for Improved Grasping. Soft Robot. 2020, 7, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, S.; Lei, R.; Liu, Y.; Bu, W.; Wei, X.; Zhang, Z. Fluid-driven and smart material-driven research for soft body robots. Prog. Nat. Sci. Mater. Int. 2023, 33, 371–385. [Google Scholar] [CrossRef]
- Walker, J.; Zidek, T.; Harbel, C.; Yoon, S.; Strickland, F.S.; Kumar, S.; Shin, M. Soft Robotics: A Review of Recent Developments of Pneumatic Soft Actuators. Actuators 2020, 9, 3. [Google Scholar] [CrossRef]
- Mosadegh, B.; Polygerinos, P.; Keplinger, C.; Wennstedt, S.; Shepherd, R.; Gupta, U.; Shim, J.; Bertoldi, K.; Walsh, C.J.; Whitesides, G.M. Pneumatic Networks for Soft Robotics that Actuate Rapidly. Adv. Funct. Mater. 2014, 24, 2163–2170. [Google Scholar] [CrossRef]
- Marchese, A.D.; Katzschmann, R.; Rus, D.L. A Recipe for Soft Fluidic Elastomer Robots. Soft Robot. 2015, 2, 7–25. [Google Scholar] [CrossRef]
- Ilievski, F.; Mazzeo, A.D.; Shepherd, R.F.; Chen, X.; Whitesides, G.M. Soft Robotics for Chemists. Angew. Chem. 2011, 50, 1890–1895. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, S.; Dai, J.; Oseyemi, A.E.; Liu, L.; Du, N.; Lv, F. A Modular Soft Gripper with Combined Pneu-Net Actuators. Actuators 2023, 12, 172. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, G.; Xu, J.; Zhou, J.; Chen, X.; Wang, Z.; Chen, Z.; Xu, Z.; Zheng, J.; Wu, D. A bioinspired multi-knuckle dexterous pneumatic soft finger. Sens. Actuators A Phys. 2023, 350, 114105. [Google Scholar] [CrossRef]
- Wong, D.C.Y.; Li, M.; Kang, S.; Luo, L.; Yu, H. Reconfigurable, Transformable Soft Pneumatic Actuator with Tunable Three-Dimensional Deformations for Dexterous Soft Robotics Applications. Soft Robot. 2024. [Google Scholar] [CrossRef]
- Deimel, R.; Brock, O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 2016, 35, 161–185. [Google Scholar] [CrossRef]
- Connolly, F.; Polygerinos, P.; Walsh, C.J.; Bertoldi, K. Mechanical Programming of Soft Actuators by Varying Fiber Angle. Soft Robot. 2015, 2, 26–32. [Google Scholar] [CrossRef]
- Xue, X.; Zhan, Z.; Cai, Y.; Yao, L.; Lu, Z. Design and Finite Element Analysis of Fiber-Reinforced Soft Pneumatic Actuator Intelligent Robotics and Applications. In Proceedings of the 12th International Conference, ICIRA 2019, Shenyang, China, 8–11 August 2019; Proceedings, Part I 12. Springer International Publishing: Cham, Switzerland, 2019; pp. 641–651. [Google Scholar]
- Krishna, S.; Nagarajan, T.; Rani, A.M.A. Review of Current Development of Pneumatic Artificial Muscle. J. Appl. Sci. 2011, 11, 1749–1755. [Google Scholar] [CrossRef]
- Khan, M.A.; Shaik, S.; Tariq, M.H.; Tariq, K. McKibben Pneumatic Artificial Muscle Robot Actuators—A Review. In Proceedings of the IEEE 2023 International Conference on Robotics and Automation in Industry (ICRAI), Kuala Lumpur, Malaysia, 10–12 July 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Kalita, B.; Leonessa, A.; Dwivedy, S.K. A Review on the Development of Pneumatic Artificial Muscle Actuators: Force Model and Application. Actuators 2022, 11, 288. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Chen, Y.; Wainwright, D.K.; Kenaley, C.P.; Gong, Z.; Liu, Z.; Liu, H.; Guan, J.; Wang, T.; et al. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Sci. Robot. 2017, 2, eaan8072. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.; Rodenberg, N.; Amend, J.; Mozeika, A.; Steltz, E.; Zakin, M.R.; Lipson, H.; Jaeger, H.M. Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. USA 2010, 107, 18809–18814. [Google Scholar] [CrossRef]
- Liu, S.; Wang, F.; Liu, Z.; Zhang, W.; Tian, Y.; Zhang, D. A Two-Finger Soft-Robotic Gripper with Enveloping and Pinching Grasping Modes. IEEE/ASME Trans. Mechatron. 2020, 26, 1. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, W.; Yu, M.; Hou, Y. Design, Fabrication, and Performance Test of a New Type of Soft-Robotic Gripper for Grasping. Sensors 2022, 22, 5221. [Google Scholar] [CrossRef]
- Wang, Z.; Kanegae, R.; Hirai, S. Circular Shell Gripper for Handling Food Products. Soft Robot. 2021, 8, 542–554. [Google Scholar] [CrossRef]
- Li, H.; Yao, J.; Zhou, P.; Chen, X.; Xu, Y.; Zhao, Y. High-Load Soft Grippers Based on Bionic Winding Effect. Soft Robot. 2019, 6, 276–288. [Google Scholar] [CrossRef]
- Hao, Y.; Biswas, S.; Hawkes, E.W.; Wang, T.; Zhu, M.; Wen, L.; Visell, Y. A Multimodal, Enveloping Soft Gripper: Shape Conformation, Bioinspired Adhesion, and Expansion-Driven Suction. IEEE Trans. Robot. 2020, 37, 350–362. [Google Scholar] [CrossRef]
- Wang, D.; Wu, X.J.; Zhang, J.H.; Du, Y.Y. A Pneumatic Novel Combined Soft Robotic Gripper with High Load Capacity and Large Grasping Range. Actuators 2022, 11, 3. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, X.; Chen, X.; Wang, Z.; Jin, Y.; Chen, X. Design and Simulation Analysis of a Soft Manipulator Based on Honeycomb Pneumatic Networks. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Bangkok, Thailand, 5–9 December 2016; IEEE: Piscataway, NJ, USA; pp. 350–356. [Google Scholar] [CrossRef]
- Hao, T.; Xiao, H.; Liu, S.; Gu, J. Flexible and stable grasping by multi-jointed pneumatic actuator mimicking the human finger-impacts of structural parameters on performance. Smart Mater. Struct. 2021, 30, 125019. [Google Scholar] [CrossRef]
Classifications | Soft Gripper | Pictures | Grabbing Methods | Trapping Ability |
---|---|---|---|---|
Finger soft-body gripper | Octopus arm [10] | Adsorption and bending gripping | Grips flat, curved, smooth and rough objects; gripping diameters from 5–750 mm, weights up to 27 N. | |
Honeycomb pneumatic networks (HPN) [33] | Bending grip | Relative flexibility 1.898, load force 2.8 N (self-weight 1.55 kg). | ||
Three-finger soft gripper [34] | Bending grip | Fiber-wrapped grippers have a 127% higher bending angle than do non-fiber-wrapped soft grippers, allowing gripping of a wide range of objects. | ||
Two-fingered, soft-body robot [28] | Envelope, clamping grip | Grips small irregular objects, 300 g load under 25 kpa pressure | ||
Fingerless soft-body gripper | High-load soft gripper [31] | Envelope grabbing | The diameter of the gripping object is 24.6–70.4 mm; it can lift 10.5 kg under 180 kpa air pressure, which is 13 times its own weight. | |
Multimodal and envelope soft gripper [32] | envelope, adsorption, expansion grip | Grips objects 32–48 mm in size, and can lift objects up to 20 N with a pressure of −40 kpa. | ||
Round housing gripper [33] | Envelope, adsorption grasping | Gripping range 7.5–70 mm, 10.85 kg at 16 kpa. |
Size Parameters | Values |
---|---|
Strain zone thickness and also the width of the inner wall of the air cavity from the inner wall of the SFLG () | 3 mm |
Thickness of the constraint zone and also the width of the outer wall of the air cavity from the outer wall of the SFLG () | 6 mm |
The inner-wall radius of the SFLG (r), d is the diameter of 2r | 13 mm |
Height of SFLG (h) | 60 mm |
Air cavity height for SFLG (h1) | 55 mm |
Width of air cavity (s) | 1.5 mm |
Clamping angle of air cavity (θ) | 0 < θ < 180° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Du, H.; Zhang, S.; Lei, R.; Wang, J.; Li, Y.; Zhang, Z. A Pneumatic Fingerless Soft Gripper for Envelope Gripping. Actuators 2024, 13, 418. https://doi.org/10.3390/act13100418
Xu S, Du H, Zhang S, Lei R, Wang J, Li Y, Zhang Z. A Pneumatic Fingerless Soft Gripper for Envelope Gripping. Actuators. 2024; 13(10):418. https://doi.org/10.3390/act13100418
Chicago/Turabian StyleXu, Shuman, Hongmei Du, Shangsheng Zhang, Ruicheng Lei, Jian Wang, Yulian Li, and Zengzhi Zhang. 2024. "A Pneumatic Fingerless Soft Gripper for Envelope Gripping" Actuators 13, no. 10: 418. https://doi.org/10.3390/act13100418
APA StyleXu, S., Du, H., Zhang, S., Lei, R., Wang, J., Li, Y., & Zhang, Z. (2024). A Pneumatic Fingerless Soft Gripper for Envelope Gripping. Actuators, 13(10), 418. https://doi.org/10.3390/act13100418