Nonlinear Modeling of a Piezoelectric Actuator-Driven High-Speed Atomic Force Microscope Scanner Using a Variant DenseNet-Type Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Setup
2.2. DenseNet-Type Neural Network Model
2.3. Identification Process
- Step 1:
- Data collection.In this step, a triangular-wave control signal with a sampling frequency of 1 Hz is applied to the PEAs to obtain the relationship between the control signal and the position of the PEAs.
- Step 2:
- Train the neural network model using the collected data.Before the training process, each dataset is randomly separated into two parts: 80% and 20% of the original datasets are used for training and testing, respectively. Then, the datasets are continuously divided into two parts: trace and retrace. To enhance the accuracy of the control framework, modeling is performed separately for trace and retrace. To minimize the sensor and/or measurement errors, the data used for training is averaged from 10 separate measurements. Training begins by initializing random weights and biases for all nodes inside the model. The model then uses gradient descent (GD) as an optimization algorithm to adjust these weights and biases so that the error between the predicted and expected results is minimized. The function that represents the difference between the predicted results and the actual data is called the loss function. In this work, the mean squared error (MSE) shown in Equation (3) is employed as the loss function.
- Step 3:
- Generate the compensated control signal.In this step, the reference data (expected position) are passed through the model obtained in Step 2. This process is performed in Python. The output of the model is a set of compensated control signals corresponding to each input reference data
- Step 4:
- Drive the PEAs using the compensated signal.
2.4. Performance Metrics
3. Results and Discussion
3.1. Fitting of Hysteresis Curve by the Proposed Artificial Neural Network Model
3.2. Compensation Result
3.3. AFM Imaging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Othman, Y.S.; Mahmood, I.A.; Rashid, N.K.A.M.; Darsivan, F.J. Artificial neural network based hysteresis compensation for piezoelectric tube scanner in atomic force microscopy. In Proceedings of the TENCON 2012 IEEE Region 10 Conference, Cebu, Philippines, 19–22 November 2012; pp. 1–5. [Google Scholar]
- Javazm, M.R.; Pishkenari, H.N. Observer design for topography estimation in atomic force microscopy using neural and fuzzy networks. Ultramicroscopy 2020, 214, 113008. [Google Scholar] [CrossRef]
- Tao, Y.D.; Li, H.X.; Zhu, L.M. Hysteresis modeling with frequency-separation-based Gaussian process and its application to sinusoidal scanning for fast imaging of atomic force microscope. Sens. Actuator A Phys. 2020, 311, 112070. [Google Scholar] [CrossRef]
- Asmari, N.; Kangül, M.; Andany, S.H.; Karimi, A.; Fantner, G.E. Data-Driven Feedforward Hysteresis Compensation with Genetic Algorithm for Atomic Force Microscope. In Proceedings of the 2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), Toronto, ON, Canada, 25–29 July 2022; pp. 1–6. [Google Scholar]
- Napole, C.; Barambones, O.; Calvo, I.; Velasco, J. Feedforward compensation analysis of piezoelectric actuators using artificial neural networks with conventional PID controller and single-neuron PID based on Hebb learning rules. Energies 2020, 13, 3929. [Google Scholar] [CrossRef]
- Napole, C.; Barambones, O.; Calvo, I.; Derbeli, M.; Silaa, M.Y.; Velasco, J. Advances in tracking control for piezoelectric actuators using fuzzy logic and hammerstein-wiener compensation. Mathematics 2020, 8, 2071. [Google Scholar] [CrossRef]
- Soares Barbosa, M.P.; Rakotondrabe, M.; Hultmann Ayala, H.V. Deep learning applied to data-driven dynamic characterization of hysteretic piezoelectric micromanipulators. In Proceedings of the 21st IFAC World Congress, Berlin, Germany, 11–17 July 2020; Volume 53, pp. 8559–8564. [Google Scholar]
- Ding, B.; Li, Y. Hysteresis compensation and sliding mode control with perturbation estimation for piezoelectric actuators. Micromachines 2018, 9, 241. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.D.; Li, H.X.; Zhu, L.M. Rate-dependent hysteresis modeling and compensation of piezoelectric actuators using Gaussian process. Sens. Actuator A Phys. 2019, 295, 357–365. [Google Scholar] [CrossRef]
- Delibas, B.; Arockiarajan, A.; Seemann, W. Rate dependent properties of perovskite type tetragonal piezoelectric materials using micromechanical model. Int. J. Solids Struct. 2006, 43, 697–712. [Google Scholar] [CrossRef]
- Yong, Y.K.; Moheimani, S.R.; Kenton, B.J.; Leang, K.K. Invited review article: High-speed flexure-guided nanopositioning: Mechanical design and control issues. Rev. Sci. Instrum. 2012, 83, 121101. [Google Scholar] [CrossRef]
- Tian, Y.; Ma, Y.; Lu, K.; Yang, M.; Zhao, X.; Wang, F.; Zhang, D. Modeling and control methodology for an XYZ micro manipulator. Rev. Sci. Instrum. 2019, 90, 105007. [Google Scholar] [CrossRef]
- Hosseini, N.; Nievergelt, A.P.; Adams, J.D.; Stavrov, V.T.; Fantner, G.E. A monolithic MEMS position sensor for closed-loop high-speed atomic force microscopy. Nanotechnology 2016, 27, 135705. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, S.; Hong, K.; Wang, G.; Zeng, T. Neural network modeling and single-neuron proportional–integral–derivative control for hysteresis in piezoelectric actuators. Meas. Control 2019, 52, 1362–1370. [Google Scholar] [CrossRef]
- Li, Y.; Bechhoefer, J. Feedforward control of a piezoelectric flexure stage for AFM. In Proceedings of the 2008 American Control Conference, Seattle, WA, USA, 11–13 June 2008; pp. 2703–2709. [Google Scholar]
- Wang, D.; Yu, P.; Wang, F.; Chan, H.Y.; Zhou, L.; Dong, Z.; Li, W.J. Improving atomic force microscopy imaging by a direct inverse asymmetric PI hysteresis model. Sensors 2015, 15, 3409–3425. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Zhang, Y.; Duan, H.; Han, J. High-bandwidth hysteresis compensation of piezoelectric actuators via multilayer feedforward neural network based inverse hysteresis modeling. Micromachines 2021, 12, 1325. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.; Feng, Z.; Zheng, D.; Yang, J.; Yu, H.; Xiao, X. Robust adaptive motion tracking of piezoelectric actuated stages using online neural-network-based sliding mode control. Mech. Syst. Signal Process. 2021, 150, 107235. [Google Scholar] [CrossRef]
- Dongare, A.D.; Kharde, R.R.; Kachare, A.D. Introduction to artificial neural network. Int. J. Eng. Innov. Technol. 2012, 2, 189–194. [Google Scholar]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef]
- Liu, M.; Chen, L.; Du, X.; Jin, L.; Shang, M. Activated gradients for deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 2156–2168. [Google Scholar] [CrossRef]
- Oh, J.; Kim, S.; Lee, C.; Cha, J.H.; Yang, S.Y.; Im, S.G.; Choi, S.Y. Preventing Vanishing Gradient Problem of Hardware Neuromorphic System by Implementing Imidazole-Based Memristive ReLU Activation Neuron. Adv. Mater. 2023, 35, 2300023. [Google Scholar] [CrossRef]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; Volume 15, pp. 315–323. [Google Scholar]
- Borawar, L.; Kaur, R. ResNet: Solving vanishing gradient in deep networks. In Proceedings of the International Conference on Recent Trends in Computing ICRTC 2022, Ghaziabad, India, 3–4 June 2022; Volume 600, pp. 235–247. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Shaik, S.; Kirthiga, S. Automatic modulation classification using DenseNet. In Proceedings of the 2021 5th International Conference on Computer, Communication and Signal Processing (ICCCSP), Chennai, India, 24–25 May 2021; pp. 301–305. [Google Scholar]
- Hasan, N.; Bao, Y.; Shawon, A.; Huang, Y. DenseNet convolutional neural networks application for predicting COVID-19 using CT image. SN Comput. Sci. 2021, 2, 389. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Taylor, G.; Studer, C.; Goldstein, T. Visualizing the loss landscape of neural nets. Adv. Neural Inf. Process. Syst. 2018, 31, 6391–6401. [Google Scholar]
- Liao, T.; Li, L.; Ouyang, R.; Lin, X.; Lai, X.; Cheng, G.; Ma, J. Classification of asymmetry in mammography via the DenseNet convolutional neural network. Eur. J. Radiol. Open 2023, 11, 100502. [Google Scholar] [CrossRef] [PubMed]
- Iandola, F.; Moskewicz, M.; Karayev, S.; Girshick, R.; Darrell, T.; Keutzer, K. Densenet: Implementing efficient convnet descriptor pyramids. arXiv 2014, arXiv:1404.1869. [Google Scholar]
- Wadhwa, G.; Jayanthi, N.; Mathur, M. A deep convolutional neural network approach for detecting malignancy of ovarian cancer using densenet model. Ann. Romanian Soc. Cell Biol 2021, 25, 4449–4458. [Google Scholar]
- Gu, G.Y.; Zhu, L.M.; Su, C.Y. Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl–Ishlinskii model. IEEE Trans. Ind. Electron. 2013, 61, 1583–1595. [Google Scholar] [CrossRef]
- Alunda, B.O.; Chepkoech, M.; Byeon, C.C.; Lee, Y.J.; Soyeun, P.A.R.K. Prandtl-Ishlinskii Model-based Hysteresis Compensation of a Piezoelectric Scanner for Atomic Force Microscopy. New Phys. Sae Mulli 2017, 67, 1520–1527. [Google Scholar] [CrossRef]
- Otieno, L.O.; Nguyen, T.T.; Park, S.J.; Lee, Y.J.; Alunda, B.O. Feedforward compensation for hysteresis and dynamic behaviors of a high-speed atomic force microscope scanner. J. Korean Phys. Soc. 2022, 80, 325–336. [Google Scholar] [CrossRef]
- Qian, F.; Guo, Z.W.; Xu, S.A.; Wang, G.R.; Li, Y.T. Hysteresis Neural Network Modeling and Compensation of Piezoelectric Actuator. Appl. Mech. Mater. 2014, 635, 1426–1430. [Google Scholar] [CrossRef]
Characteristic | Value |
---|---|
Drive Voltage Range | 0–150 V |
Hysteresis | <15% |
Max blocking Force | 1000 N |
Resonant Frequency (No Load) | 70 kHz |
Capacitance | 1600 nF ± 15% |
Outer Dimensions | 5.2 × 7.1 × 18.0 mm |
Axis | Amplitude (V) | RMSE (m) | RRMSE (%) |
---|---|---|---|
X | 25 | 0.011 | 0.021 |
50 | 0.039 | 0.075 | |
75 | 0.039 | 0.072 | |
100 | 0.045 | 0.078 | |
Y | 25 | 0.016 | 0.031 |
50 | 0.023 | 0.044 | |
75 | 0.032 | 0.059 | |
100 | 0.053 | 0.091 |
Axis | Amplitude (V) | Uncompensated | Compensated | ||
---|---|---|---|---|---|
RMSE (m) | RRMSE (%) | RMSE (m) | RRMSE (%) | ||
X | 25 | 0.171 | 5.218 | 0.007 | 0.229 |
50 | 0.443 | 6.088 | 0.018 | 0.252 | |
75 | 0.786 | 6.718 | 0.039 | 0.337 | |
100 | 1.204 | 7.346 | 0.068 | 0.431 | |
Y | 25 | 0.157 | 4.899 | 0.004 | 0.111 |
50 | 0.459 | 6.479 | 0.007 | 0.099 | |
75 | 0.828 | 7.299 | 0.017 | 0.149 | |
100 | 1.298 | 8.182 | 0.033 | 0.218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.T.; Otieno, L.O.; Juma, O.M.; Nguyen, T.N.; Lee, Y.J. Nonlinear Modeling of a Piezoelectric Actuator-Driven High-Speed Atomic Force Microscope Scanner Using a Variant DenseNet-Type Neural Network. Actuators 2024, 13, 391. https://doi.org/10.3390/act13100391
Nguyen TT, Otieno LO, Juma OM, Nguyen TN, Lee YJ. Nonlinear Modeling of a Piezoelectric Actuator-Driven High-Speed Atomic Force Microscope Scanner Using a Variant DenseNet-Type Neural Network. Actuators. 2024; 13(10):391. https://doi.org/10.3390/act13100391
Chicago/Turabian StyleNguyen, Thi Thu, Luke Oduor Otieno, Oyoo Michael Juma, Thi Ngoc Nguyen, and Yong Joong Lee. 2024. "Nonlinear Modeling of a Piezoelectric Actuator-Driven High-Speed Atomic Force Microscope Scanner Using a Variant DenseNet-Type Neural Network" Actuators 13, no. 10: 391. https://doi.org/10.3390/act13100391
APA StyleNguyen, T. T., Otieno, L. O., Juma, O. M., Nguyen, T. N., & Lee, Y. J. (2024). Nonlinear Modeling of a Piezoelectric Actuator-Driven High-Speed Atomic Force Microscope Scanner Using a Variant DenseNet-Type Neural Network. Actuators, 13(10), 391. https://doi.org/10.3390/act13100391