A Review on Recent Advances in Piezoelectric Ceramic 3D Printing
Abstract
:1. Introduction
2. Piezoelectricity
3. Piezoelectric Particle Composite Dispersion
4. 3D printing Technologies of Piezoelectric Materials
4.1. Vat Photopolymerization
4.2. Powder Bed Fusion
4.3. Material Jetting
4.4. Material Extrusion
5. Piezoelectric Ceramics for 3D Printing
5.1. Lead-Based Piezoelectric Ceramics
5.2. Lead-Free Piezoelectric Ceramics
5.3. Application of 3D Printed Piezoelectric Ceramics
Material | Fabrication Method | Additive | Ceramic Contents | Grain Size | Measured Density | Relative Density | Piezoelectric Coefficient | Relative Permittivity | Ref. |
---|---|---|---|---|---|---|---|---|---|
(g/cm3) | (%) | (pC/N) | A. U. | ||||||
PZT | SLA | Photosensitive resin | 82 wt% | 500 nm | 6.99 | 345 | 1040 | [58] | |
TMSPM, Ultraviolet-sensitive monomer | 72 wt% | 220.9 nm | 110 | [12] | |||||
Negatively charged resin, SiOC monomer | 50 vol% | 583 | [62] | ||||||
DIW | Polyvinyl alcohol coating + DI Water | 86 wt% | 500 nm | 7.21 | 94.9 | 678 | 4132 | [47] | |
PMN-PT | SLA | Photocurable resin (HDDA, DPPHA, BASF) | 40 vol% | 2 μm | 7.98 | 97.8 | 620 | [55] | |
DLP | Photopolymer grey resin | 60 wt% | 5 μm | 67 | [63] | ||||
BTO | SLA | Photosensitive resin | 80 wt% | 500 nm | 5.65 | 93.9 | 166 | 2177 | [16] |
MEK + Ethanol, Phopholan PS-131, Trition x-100, photocurable resin (SI500) | 80 wt% | 1 μm | 5.7 | 95 | 87 | 920 | [64] | ||
MEK + Ethanol, Phopholan PS-131, Trition x-100, photocurable resin (SI500) | 70 wt% | 100 nm | 5.64 | 93.7 | 160 | 1350 | [59] | ||
Photopolymer resin (SG 15), PT-MR 10-35GT dispersant | 70 wt% | 1.02 μm | 5.44 | 90 | 200 | 1965 | [65] | ||
DLP | Acrylic resin, Camphor quinone, Parbenate, Triethanolamine, Tetraethyl orthosilicate | 80 wt% | 100 nm | 5.72 | 94.2 | 241 | [56] | ||
Triton X-100, MPDISP, ACMO, TPO, MEHQ, Epoxy resin, PDMS | 80 wt% | 993 nm | 5.74 | 95.3 | 168 | 1512 | [40] | ||
IJP | Binder | 40 vol% | 0.85~ 1.45 μm | 3.93 | 65.3 | 74.1 | 640 | [60] | |
DIW | PVDF, DMF | 77 wt% | 500 nm | 3.93 | 65.3 | 200 | 4730 | [66] | |
NKN | SLA | Triton x-100, Photocurable resin (Acrylamide monomer, Diphenyl phosphine oxide) | 65 wt% | 400 nm | 4.09 | 92 | 170 | 2150 | [67] |
IJP | Organic binder (BA005) | 100~ 500 nm | 2.5 | 55.6 | 84.8 | [68] | |||
DIW | Methyl methacrylate, pentaerythritol three acrylate | 56 wt% | 500 nm | 4.52 | 98 | 280 | 1775 | [69] |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, D.-G.; Shin, J.; Kim, H.S.; Hur, S.; Sun, S.; Jang, J.-S.; Chang, S.; Jung, I.; Nahm, S.; Kang, H.; et al. Autonomous Resonance-Tuning Mechanism for Environmental Adaptive Energy Harvesting. Adv. Sci. 2023, 10, 2205179. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Hur, S.; Lee, D.-G.; Shin, J.; Qiao, H.; Mun, S.; Lee, H.; Moon, W.; Kim, Y.; Baik, J.M.; et al. Ferroelectrically Augmented Contact Electrification Enables Efficient Acoustic Energy Transfer through Liquid and Solid Media. Energy Environ. Sci. 2022, 15, 1243–1255. [Google Scholar] [CrossRef]
- Forero-García, E.F.; Gélvez-Lizarazo, Ó.M.; Torres-Pinzón, C.A. Piezoelectric Transducer Design for Electric Power Generation. Rev. UIS Ing. 2019, 18, 119–126. [Google Scholar] [CrossRef]
- Jaeger, R.E.; Egerton, L. Hot Pressing of Potassium-Sodium Niobates. J. Am. Ceram. Soc. 1962, 45, 209–213. [Google Scholar] [CrossRef]
- Boukabache, H.; Escriba, C.; Fourniols, J.-Y. Toward Smart Aerospace Structures: Design of a Piezoelectric Sensor and Its Analog Interface for Flaw Detection. Sensors 2014, 14, 20543–20561. [Google Scholar] [CrossRef]
- Kim, H.; Lee, D.; Kim, D.; Kong, D.; Choi, J.; Lee, M.; Murillo, G.; Jung, J. Dominant Role of Young’s Modulus for Electric Power Generation in PVDF–BaTiO3 Composite-Based Piezoelectric Nanogenerator. Nanomaterials 2018, 8, 777. [Google Scholar] [CrossRef]
- Stolarczyk, J.K.; Deak, A.; Brougham, D.F. Nanoparticle Clusters: Assembly and Control Over Internal Order, Current Capabilities, and Future Potential. Adv. Mater. 2016, 28, 5400–5424. [Google Scholar] [CrossRef]
- Uskoković, V. Dynamic Light Scattering Based Microelectrophoresis: Main Prospects and Limitations. J. Dispers. Sci. Technol. 2012, 33, 1762–1786. [Google Scholar] [CrossRef]
- Marsalek, R. Particle Size and Zeta Potential of ZnO. APCBEE Procedia 2014, 9, 13–17. [Google Scholar] [CrossRef]
- Kim, K.; Zhu, W.; Qu, X.; Aaronson, C.; McCall, W.R.; Chen, S.; Sirbuly, D.J. 3D Optical Printing of Piezoelectric Nanoparticle–Polymer Composite Materials. ACS Nano 2014, 8, 9799–9806. [Google Scholar] [CrossRef]
- Gonzalez, G.; Chiappone, A.; Roppolo, I.; Fantino, E.; Bertana, V.; Perrucci, F.; Scaltrito, L.; Pirri, F.; Sangermano, M. Development of 3D Printable Formulations Containing CNT with Enhanced Electrical Properties. Polymer 2017, 109, 246–253. [Google Scholar] [CrossRef]
- Cui, H.; Hensleigh, R.; Yao, D.; Maurya, D.; Kumar, P.; Kang, M.G.; Priya, S.; Zheng, X. Three-Dimensional Printing of Piezoelectric Materials with Designed Anisotropy and Directional Response. Nat. Mater 2019, 18, 234–241. [Google Scholar] [CrossRef]
- del Barrio, J.; Sánchez-Somolinos, C. Light to Shape the Future: From Photolithography to 4D Printing. Adv. Opt. Mater. 2019, 7, 1900598. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D Printing of Ceramics: A Review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Kim, H.; Manriquez, L.C.D.; Islam, M.T.; Chavez, L.A.; Regis, J.E.; Ahsan, M.A.; Noveron, J.C.; Tseng, T.-L.B.; Lin, Y. 3D Printing of Polyvinylidene Fluoride/Photopolymer Resin Blends for Piezoelectric Pressure Sensing Application Using the Stereolithography Technique. MRS Commun. 2019, 9, 1115–1123. [Google Scholar] [CrossRef]
- Cheng, J.; Chen, Y.; Wu, J.-W.; Ji, X.-R.; Wu, S.-H. 3D Printing of BaTiO3 Piezoelectric Ceramics for a Focused Ultrasonic Array. Sensors 2019, 19, 4078. [Google Scholar] [CrossRef]
- Yu, K.; Xin, A.; Du, H.; Li, Y.; Wang, Q. Additive Manufacturing of Self-Healing Elastomers. NPG Asia Mater. 2019, 11, 7. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, R.; Sun, Z.; Liu, Q.; He, X.; Li, H.; Ye, H.; Yang, X.; Wei, X.; Li, Z.; et al. Centrifugal Multimaterial 3D Printing of Multifunctional Heterogeneous Objects. Nat. Commun. 2022, 13, 7931. [Google Scholar] [CrossRef]
- Peng, S.; Li, Y.; Wu, L.; Zhong, J.; Weng, Z.; Zheng, L.; Yang, Z.; Miao, J.-T. 3D Printing Mechanically Robust and Transparent Polyurethane Elastomers for Stretchable Electronic Sensors. ACS Appl. Mater. Interfaces 2020, 12, 6479–6488. [Google Scholar] [CrossRef]
- Jiang, Y.; Islam, M.d.N.; He, R.; Huang, X.; Cao, P.; Advincula, R.C.; Dahotre, N.; Dong, P.; Wu, H.F.; Choi, W. Recent Advances in 3D Printed Sensors: Materials, Design, and Manufacturing. Adv. Mater. Technol. 2023, 8, 2200492. [Google Scholar] [CrossRef]
- Sun, C.; Fang, N.; Wu, D.M.; Zhang, X. Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask. Sens. Actuators A Phys. 2005, 121, 113–120. [Google Scholar] [CrossRef]
- Tiller, B.; Reid, A.; Zhu, B.; Guerreiro, J.; Domingo-Roca, R.; Curt Jackson, J.; Windmill, J.F.C. Piezoelectric Microphone via a Digital Light Processing 3D Printing Process. Mater. Des. 2019, 165, 107593. [Google Scholar] [CrossRef]
- Mazzoli, A. Selective Laser Sintering in Biomedical Engineering. Med. Biol. Eng. Comput. 2013, 51, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Lupone, F.; Padovano, E.; Ostrovskaya, O.; Russo, A.; Badini, C. Innovative Approach to the Development of Conductive Hybrid Composites for Selective Laser Sintering. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106429. [Google Scholar] [CrossRef]
- Guo, D.; Li, L.; Cai, K.; Gui, Z.; Nan, C. Rapid Prototyping of Piezoelectric Ceramics via Selective Laser Sintering and Gelcasting. J. Am. Ceram. Soc. 2004, 87, 17–22. [Google Scholar] [CrossRef]
- Yang, C.; Song, S.; Chen, F.; Chen, N. Fabrication of PVDF/BaTiO3/CNT Piezoelectric Energy Harvesters with Bionic Balsa Wood Structures through 3D Printing and Supercritical Carbon Dioxide Foaming. ACS Appl. Mater. Interfaces 2021, 13, 41723–41734. [Google Scholar] [CrossRef]
- Gutiérrez, N.; Galvín, P.; Lasagni, F. Low Weight Additive Manufacturing FBG Accelerometer: Design, Characterization and Testing. Measurement 2018, 117, 295–303. [Google Scholar] [CrossRef]
- Singh, M.; Haverinen, H.M.; Dhagat, P.; Jabbour, G.E. Inkjet Printing-Process and Its Applications. Adv. Mater. 2010, 22, 673–685. [Google Scholar] [CrossRef]
- Bucciarelli, A.; Reddy Chandraiahgari, C.; Adami, A.; Mulloni, V.; Lorenzelli, L. Precise Dot Inkjet Printing Thought Multifactorial Statistical Optimization of the Piezoelectric Actuator Waveform. Flex. Print. Electron. 2020, 5, 045002. [Google Scholar] [CrossRef]
- Bernasconi, R.; Brovelli, S.; Viviani, P.; Soldo, M.; Giusti, D.; Magagnin, L. Piezoelectric Drop-On-Demand Inkjet Printing of High-Viscosity Inks. Adv. Eng. Mater. 2022, 24, 2100733. [Google Scholar] [CrossRef]
- Andò, B.; Marletta, V. An All-InkJet Printed Bending Actuator with Embedded Sensing Feature and an Electromagnetic Driving Mechanism. Actuators 2016, 5, 21. [Google Scholar] [CrossRef]
- Lewis, J.A. Direct Ink Writing of 3D Functional Materials. Adv. Funct. Mater. 2006, 16, 2193–2204. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Q.; Zhou, C.; Shi, Y.; Sun, C.; Sun, H.; Yin, C.; Hu, J.; Zhou, S.; Zhang, Y.; et al. 4D Printing of Lead Zirconate Titanate Piezoelectric Composites Transducer Based on Direct Ink Writing. Front. Mater. 2021, 8, 659441. [Google Scholar] [CrossRef]
- Liu, C.; Huang, N.; Xu, F.; Tong, J.; Chen, Z.; Gui, X.; Fu, Y.; Lao, C. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin. Polymers 2018, 10, 629. [Google Scholar] [CrossRef]
- Bakhtar, L.J.; Abdoos, H.; Rashidi, S. A Review on Fabrication and in Vivo Applications of Piezoelectric Nanocomposites for Energy Harvesting. J. Taiwan Inst. Chem. Eng. 2022, 104651. [Google Scholar] [CrossRef]
- Mohamed, A.S.; Maidin, S.; Mohamed, S.B.; Muhamad, M.K.; Wong, J.H.U.; Romlee, W.F.A. Improvement of Surface Finish by Multiple Piezoelectric Transducers in Fused Deposition Modelling. Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 764. [Google Scholar] [CrossRef]
- Yang, X.; Ren, H.; Wu, C.; Xiong, Y.; Ge, Q. Flexible Strain Sensors Fabricated by Fused Deposition Modeling-Based Multimaterial 3D Printing with Conductive Polyurethane Composites. In Proceedings of the 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Shanghai, China, 26–28 November 2021; pp. 546–551. [Google Scholar]
- Leigh, S.J.; Bradley, R.J.; Purssell, C.P.; Billson, D.R.; Hutchins, D.A. A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors. PLoS ONE 2012, 7, e49365. [Google Scholar] [CrossRef]
- Jain, A.; Prashanth, K.J.; Sharma, A.K.R.; Jain, A.; Rashmi, P.N. Dielectric and Piezoelectric Properties of PVDF/PZT Composites: A Review. Polym. Eng. Sci. 2015, 55, 1589–1616. [Google Scholar] [CrossRef]
- Liu, K.; Hu, J.; Du, Y.; Shi, Y.; Sun, Y.; Zhang, S.; Tu, R.; Zhang, Q.; Huang, S.; Sun, H. Influence of Particle Size on 3D-printed Piezoelectric Ceramics via Digital Light Processing with Furnace Sintering. Int. J. Appl. Ceram. Technol. 2022, 19, 2461–2471. [Google Scholar] [CrossRef]
- Renteria, A.; Fontes, H.; Diaz, J.A.; Regis, J.E.; Chavez, L.A.; Tseng, T.-L.; Liu, Y.; Lin, Y. Optimization of 3D Printing Parameters for BaTiO3 Piezoelectric Ceramics through Design of Experiments. Mater. Res. Express 2019, 6, 085706. [Google Scholar] [CrossRef]
- Mohammadi, M.; Coppola, B.; Montanaro, L.; Palmero, P. Digital Light Processing of High-Strength Hydroxyapatite Ceramics: Role of Particle Size and Printing Parameters on Microstructural Defects and Mechanical Properties. J. Eur. Ceram. Soc. 2023, 43, 2761–2772. [Google Scholar] [CrossRef]
- Jaffe, H. Piezoelectric Ceramics. J. Am. Ceram. Soc. 1958, 41, 494–498. [Google Scholar] [CrossRef]
- Isupov, V.A. Phases in the PZT Ceramics. Ferroelectrics 2002, 266, 91–102. [Google Scholar] [CrossRef]
- Panda, P.K.; Sahoo, B. PZT to Lead Free Piezo Ceramics: A Review. Ferroelectrics 2015, 474, 128–143. [Google Scholar] [CrossRef]
- Hu, X.; Li, X.; Yan, K.; Qi, X.; Chen, W.; Wu, D. Fabrication of Porous PZT Ceramics Using Micro-Stereolithography Technology. Ceram. Int. 2021, 47, 32376–32381. [Google Scholar] [CrossRef]
- Hall, S.E.; Regis, J.E.; Renteria, A.; Chavez, L.A.; Delfin, L.; Vargas, S.; Haberman, M.R.; Espalin, D.; Wicker, R.; Lin, Y. Paste Extrusion 3D Printing and Characterization of Lead Zirconate Titanate Piezoelectric Ceramics. Ceram. Int. 2021, 47, 22042–22048. [Google Scholar] [CrossRef]
- Smolenskii, G.A.; Agranovskaya, A.I. Dielectric Polarization and Losses of Some Complex Compounds. Zhurnal Tekhniceskoj Fiz. 1958, 28. [Google Scholar]
- Kuwata, J.; Uchino, K.; Nomura, S. Dielectric and Piezoelectric Properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 Single Crystals. Jpn. J. Appl. Phys. 1982, 21, 1298. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.; Xu, Z.; Wei, X.; Luo, J.; Shrout, T.R. Composition and Phase Dependence of the Intrinsic and Extrinsic Piezoelectric Activity of Domain Engineered (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 Crystals. J. Appl. Phys. 2010, 108, 034106. [Google Scholar] [CrossRef]
- Roberts, S. Dielectric and Piezoelectric Properties of Barium Titanate. Phys. Rev. 1947, 71, 890–895. [Google Scholar] [CrossRef]
- Ming, B.-Q.; Wang, J.-F.; Qi, P.; Zang, G.-Z. Piezoelectric Properties of (Li, Sb, Ta) Modified (Na,K)NbO3 Lead-Free Ceramics. J. Appl. Phys. 2007, 101, 054103. [Google Scholar] [CrossRef]
- Gao, D.; Kwok, K.W.; Lin, D.; Chan, H.L.W. Microstructure, Electrical Properties of CeO2-Doped (K 0.5 Na 0.5) NbO3 Lead-Free Piezoelectric Ceramics. J. Mater. Sci. 2009, 44, 2466–2470. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, D.J.; Park, J.S.; Kim, S.W.; Song, T.K.; Kim, M.-H.; Kim, W.-J.; Do, D.; Jeong, I.-K. High-Performance Lead-Free Piezoceramics with High Curie Temperatures. Adv. Mater. 2015, 27, 6976–6982. [Google Scholar] [CrossRef]
- Woodward, D.I.; Purssell, C.P.; Billson, D.R.; Hutchins, D.A.; Leigh, S.J. Additively-Manufactured Piezoelectric Devices. Phys. Status Solidi A 2015, 212, 2107–2113. [Google Scholar] [CrossRef]
- Jiang, Z.; Cheng, L.; Zeng, Y.; Zhang, Z.; Zhao, Y.; Dong, P.; Chen, J. 3D Printing of Porous Scaffolds BaTiO3 Piezoelectric Ceramics and Regulation of Their Mechanical and Electrical Properties. Ceram. Int. 2022, 48, 6477–6487. [Google Scholar] [CrossRef]
- Rabkin, B.A.; Zderic, V.; Vaezy, S. Hyperecho in Ultrasound Images of HIFU Therapy: Involvement of Cavitation. Ultrasound Med. Biol. 2005, 31, 947–956. [Google Scholar] [CrossRef]
- Chen, Y.; Bao, X.; Wong, C.-M.; Cheng, J.; Wu, H.; Song, H.; Ji, X.; Wu, S. PZT Ceramics Fabricated Based on Stereolithography for an Ultrasound Transducer Array Application. Ceram. Int. 2018, 44, 22725–22730. [Google Scholar] [CrossRef]
- Chen, Z.; Song, X.; Lei, L.; Chen, X.; Fei, C.; Chiu, C.T.; Qian, X.; Ma, T.; Yang, Y.; Shung, K.; et al. 3D Printing of Piezoelectric Element for Energy Focusing and Ultrasonic Sensing. Nano Energy 2016, 27, 78–86. [Google Scholar] [CrossRef]
- Gaytan, S.M.; Cadena, M.A.; Karim, H.; Delfin, D.; Lin, Y.; Espalin, D.; MacDonald, E.; Wicker, R.B. Fabrication of Barium Titanate by Binder Jetting Additive Manufacturing Technology. Ceram. Int. 2015, 41, 6610–6619. [Google Scholar] [CrossRef]
- Liu, K.; Zhou, C.; Hu, J.; Zhang, S.; Zhang, Q.; Sun, C.; Shi, Y.; Sun, H.; Yin, C.; Zhang, Y.; et al. Fabrication of Barium Titanate Ceramics via Digital Light Processing 3D Printing by Using High Refractive Index Monomer. J. Eur. Ceram. Soc. 2021, 41, 5909–5917. [Google Scholar] [CrossRef]
- Cui, H.; Yao, D.; Hensleigh, R.; Lu, H.; Calderon, A.; Xu, Z.; Davaria, S.; Wang, Z.; Mercier, P.; Tarazaga, P. Design and Printing of Proprioceptive Three-Dimensional Architected Robotic Metamaterials. Science 2022, 376, 1287–1293. [Google Scholar] [CrossRef]
- Omoniyi, O.A.; Mansour, R.; Reid, A.; Liang, L.; O’Leary, R.; Windmill, J.F.C. 3D-Printing of a Piezocomposite Material with High Filler Content for Transducer Applications. In Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 7–11 September 2020; pp. 1–3. [Google Scholar]
- Song, X.; Chen, Z.; Lei, L.; Shung, K.; Zhou, Q.; Chen, Y. Piezoelectric Component Fabrication Using Projection-Based Stereolithography of Barium Titanate Ceramic Suspensions. Rapid Prototyp. J. 2017, 23, 44–53. [Google Scholar] [CrossRef]
- Sotov, A.; Kantyukov, A.; Popovich, A.; Sufiiarov, V. LCD-SLA 3D Printing of BaTiO3 Piezoelectric Ceramics. Ceram. Int. 2021, 47, 30358–30366. [Google Scholar] [CrossRef]
- Kim, H.; Renteria-Marquez, A.; Islam, M.D.; Chavez, L.A.; Garcia Rosales, C.A.; Ahsan, M.A.; Tseng, T.-L.B.; Love, N.D.; Lin, Y. Fabrication of Bulk Piezoelectric and Dielectric BaTiO3 Ceramics Using Paste Extrusion 3D Printing Technique. J. Am. Ceram. Soc. 2019, 102, 3685–3694. [Google Scholar] [CrossRef]
- Chen, W.; Wang, F.; Yan, K.; Zhang, Y.; Wu, D. Micro-Stereolithography of KNN-Based Lead-Free Piezoceramics. Ceram. Int. 2019, 45, 4880–4885. [Google Scholar] [CrossRef]
- Mariani, M.; Beltrami, R.; Migliori, E.; Cangini, L.; Mercadelli, E.; Baldisserri, C.; Galassi, C.; Lecis, N. Additive Manufacturing of Lead-Free KNN by Binder Jetting. J. Eur. Ceram. Soc. 2022, 42, 5598–5605. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Li, B. Direct Ink Writing of Three-Dimensional (K, Na) NbO3-Based Piezoelectric Ceramics. Materials 2015, 8, 1729–1737. [Google Scholar] [CrossRef]
Material | Piezoelectric Coefficient | Piezoelectric Voltage Constant | Ref. |
---|---|---|---|
[pC/N] | [10−3 Vm/N] | ||
Quartz | 2.3 | 57.8 | [3] |
ZnO | 12 | 15.2 | [3] |
NKN | 80 | 31.5 | [4] |
BTO | 190 | 12.6 | [5] |
PZT-5A | 390 | 40 | [5] |
PVDF | 23 | 216 | [5] |
Method | Advantages | Disadvantaged | Application | Ref. |
---|---|---|---|---|
SLA | Simple and rapid fabrication, a wide variety of applications, high precision, ability to produce complicated structures with great features details | High-cost technology, the support materials should be removed, and single material limits cationic photopolymerization resins | Piezoelectric pressure sensor, ultrasonic transducer, self-healable actuator, piezoelectric ceramic | [15,16,17] |
DLP | High resolution, fast printing speed, large build volume, a wide range of materials, high precision, and accuracy | Expensive equipment, requires post-processing, limited lifespan of the resin tank | Piezoresistive strain sensor, piezoelectric microphone, capacitive pressure sensor | [18,19,22] |
SLS | Self-sustaining process, strong and precise parts, lower cost materials if used in large volume, no need for support material | Inhalation risk, limited mechanical properties, rough surface and required elaborate post-processing (for metals), messy powders, and high cost | Piezoelectric ceramic, mechanical energy harvester, piezoelectric accelerometer sensor | [25,26,27] |
IJP | Wide range of materials, high-resolution structure | Specific requirements for the printable ink, low areal capacity, lack of structural diversities | Piezoelectric actuator, microelectronic (biomedicine and ceramics manufacturing) | [29,30,31] |
DIW | High printing resolution, easy operation, strong design ability, versatility, complex multiscale architectures, low cost, a wide range of materials, diverse structures | Necessity of preparing printing inks with high rheological qualities to make printing work smoothly and requires post-processing | Acoustic transducer, complex piezoelectric ceramics, piezoelectric tactile sensor | [33,34] |
FDM | High porosity, multi-material structures, variable mechanical strength, low-cost materials | Narrow printable materials range, metal materials, high cost for metal and glass materials | Piezoelectric transducer, capacitive sensor, flexible strain sensor | [36,37,38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Lee, D.-G.; Hur, S.; Baik, J.M.; Kim, H.S.; Song, H.-C. A Review on Recent Advances in Piezoelectric Ceramic 3D Printing. Actuators 2023, 12, 177. https://doi.org/10.3390/act12040177
Park J, Lee D-G, Hur S, Baik JM, Kim HS, Song H-C. A Review on Recent Advances in Piezoelectric Ceramic 3D Printing. Actuators. 2023; 12(4):177. https://doi.org/10.3390/act12040177
Chicago/Turabian StylePark, Jiwon, Dong-Gyu Lee, Sunghoon Hur, Jeong Min Baik, Hyun Soo Kim, and Hyun-Cheol Song. 2023. "A Review on Recent Advances in Piezoelectric Ceramic 3D Printing" Actuators 12, no. 4: 177. https://doi.org/10.3390/act12040177
APA StylePark, J., Lee, D. -G., Hur, S., Baik, J. M., Kim, H. S., & Song, H. -C. (2023). A Review on Recent Advances in Piezoelectric Ceramic 3D Printing. Actuators, 12(4), 177. https://doi.org/10.3390/act12040177