A Comprehensive Review of 4D Printing: State of the Arts, Opportunities, and Challenges
Abstract
:1. Introduction
1.1. Background
1.2. Overview of 4D Printing
1.3. Advantages of 4D Printing
1.4. Disadvantages of 4D Printing
1.5. Differences between 3D Printing and 4D Printing
1.6. Market Size: Economic Value and Statistics
2. Four-Dimensional Printing Stimuli
Stimulus | Advantages | Limitations | Applications | References |
---|---|---|---|---|
Temperature |
|
|
| [31,48,52,53,54,55,56,57,58,59,60,61,62] |
Light |
|
|
| [31,48,64,65,66,67,68,69,70,71,72,73] |
Water |
|
|
| [59,75,77,78,79,80] |
Magnetic |
|
|
| [17,27,48,57,85,86,88] |
pH |
|
|
| [48,73,92,97,98,99,100,101,102,103,104,105] |
Electric |
|
|
| [31,59,107,108,109,110] |
Humidity |
|
|
| [31,37,57,113,115,116,117,118,119] |
3. Four-Dimensional Printing Materials
Material | Advantages | Limitations | Applications | References |
---|---|---|---|---|
Shape- memory polymer |
|
|
| [15,47,59,149,150,151,152,156,157,158,159,160,161,162,163,164,165,166] |
Shape- memory metal |
|
|
| [155,167,168,169,170] |
Smart hydrogel |
|
|
| [15,56,150,159,160,171,172,173,174,175,176] |
Shape- memory alloy |
|
|
| [136,151,167,168,177,178,179,180,181] |
Shape- memory ceramic |
|
|
| [143,168,177,178,182,183,184,185,186,187] |
Liquid crystal elastomers |
|
|
| [148,173,188,189,190] |
4. Four-Dimensional Printing Manufacturing Methods
Manufacturing Method | Advantages | Limitations | Applications | References |
---|---|---|---|---|
Fused deposition modeling (FDM) |
|
|
| [15,97,220,221,222,223,224,225,226,227,229] |
Stereolithography (SLA) |
|
|
| [15,26,37,223,230,231,232,234,235,236,237,238] |
Selective laser sintering (SLS) |
|
|
| [13,17,26,168,206,210,231,239,240] |
Digital light processing (DLP) |
|
|
| [168,206,220,224,242,243,244,245] |
Direct ink writing (DIW) |
|
|
| [94,220,224,246,247,248,249] |
5. Four-Dimensional Printing Application
5.1. Healthcare
5.1.1. Dentistry
5.1.2. Orthopedics
5.1.3. Pharmaceuticals
5.1.4. Drug Delivery
5.1.5. Biomedical Devices
5.1.6. Tissue Engineering
5.2. Aerospace
5.3. Electronics
5.4. Food
5.5. Fashion and Apparel
5.6. Renewable Energy
5.7. Military
6. Gaps in Research and Outlook for the Future
6.1. Scaling Up the Manufacturing Process
6.2. Predictive Model for 4D Printing Manufacturing
6.3. The Next Generation of 4D Printing
7. Conclusions
Funding
Conflicts of Interest
References
- Bhusnure, O.G.; Gholve, S.V.; Sugave, B.K.; Dongre, R.C.; Gore, S.A.; Giram, P. 3D Printing & Pharmaceutical Manufacturing: Opportunities and Challenges. Int. J. Bioassays 2016, 5, 4723. [Google Scholar] [CrossRef]
- Tibbits, S. Skylar Tibbits: The Emergence of ‘4D Printing’|TED Talk. Available online: https://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing (accessed on 23 December 2022).
- Razzaq, M.; Gonzalez-Gutierrez, J.; Mertz, G.; Ruch, D.; Schmidt, D.; Westermann, S. 4D Printing of Multicomponent Shape-Memory Polymer Formulations. Appl. Sci. 2022, 12, 7880. [Google Scholar] [CrossRef]
- Mallakpour, S.; Tabesh, F.; Hussain, C.M. 3D and 4D printing: From innovation to evolution. Adv. Colloid Interface Sci. 2021, 294, 102482. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Rawat, K.; Karunakaran, C.; Rajamohan, V.; Mathew, A.T.; Koziol, K.; Thakur, V.K.; Balan, A.S.S. 4D printing of materials for the future: Opportunities and challenges. Appl. Mater. Today 2020, 18, 100490. [Google Scholar] [CrossRef]
- Yakacki, C.M.; Shandas, R.; Lanning, C.; Rech, B.; Eckstein, A.; Gall, K. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 2007, 28, 2255–2263. [Google Scholar] [CrossRef]
- Vili, Y.Y.F.C. Investigating Smart Textiles Based on Shape Memory Materials. Text. Res. J. 2007, 77, 290–300. [Google Scholar] [CrossRef]
- O’Handley, R.C.; Murray, S.J.; Marioni, M.; Nembach, H.; Allen, S.M. Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials (invited). J. Appl. Phys. 2000, 87, 4712–4717. [Google Scholar] [CrossRef]
- Lucato, S.L.S.; Wang, J.; Maxwell, P.; McMeeking, R.M.; Evans, A.G. Design and demonstration of a high authority shape morphing structure. Int. J. Solids Struct. 2004, 41, 3521–3543. [Google Scholar] [CrossRef]
- Lu, K.-J.; Kota, S. Parameterization Strategy for Optimization of Shape Morphing Compliant Mechanisms Using Load Path Representation. In Proceedings of the 29th Design Automation Conference, Parts A and B, Chicago, IL, USA, 23 June 2008; Volume 2, pp. 693–702. [Google Scholar] [CrossRef]
- Sofla, A.Y.N.; Elzey, D.M.; Wadley, H.N.G. Shape morphing hinged truss structures. Smart Mater. Struct. 2009, 18, 065012. [Google Scholar] [CrossRef]
- Sofla, A.Y.N.; Elzey, D.M.; Wadley, H.N.G. An Antagonistic Flexural Unit Cell for Design of Shape Morphing Structures. In Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA, 13–19 November 2004; pp. 261–269. [Google Scholar] [CrossRef]
- Muehlenfeld, C.; Roberts, S.A. 3D/4D Printing in Additive Manufacturing: Process Engineering and Novel Excipients, In 3D and 4D Printing in Biomedical Applications; Maniruzzaman, M., Ed.; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2018; pp. 1–23. [Google Scholar] [CrossRef]
- Laws of 4D Printing|Elsevier Enhanced Reader. Available online: https://reader.elsevier.com/reader/sd/pii/S2095809920302101?token=5D9EE3E1095228A2BB96DBEA493DFE284D97531F38A497C2DA995B805730BE01C0B89BAD8FCBC5C56CF3F3201CEB2DE3&originRegion=eu-west-1&originCreation=20221223010415 (accessed on 23 December 2022).
- Zafar, M.Q.; Zhao, H. 4D Printing: Future Insight in Additive Manufacturing. Met. Mater. Int. 2020, 26, 564–585. [Google Scholar] [CrossRef]
- An, J.; Chua, C.K.; Mironov, V. A Perspective on 4D Bioprinting. Int. J. Bioprinting. 2016, 2, 3. [Google Scholar] [CrossRef]
- Tamay, D.G.; Usal, T.D.; Alagoz, A.S.; Yucel, D.; Hasirci, N.; Hasirci, V. 3D and 4D Printing of Polymers for Tissue Engineering Applications. Front. Bioeng. Biotechnol. 2022, 7, 2019. [Google Scholar] [CrossRef] [PubMed]
- Berman, B. 3-D printing: The new industrial revolution. Bus. Horiz. 2012, 55, 155–162. [Google Scholar] [CrossRef]
- Mohanta, K. 4D Printing -Will it be a Game-Changer? Res. Dev. Mater. Sci. 2018, 5. [Google Scholar] [CrossRef]
- Leist, S.K.; Zhou, J. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys. Prototyp. 2016, 11, 249–262. [Google Scholar] [CrossRef]
- Ghi, A.; Rossetti, F. 4D Printing: An Emerging Technology in Manufacturing? In Digitally Supported Innovation. Lecture Notes in Information Systems and Organisation; Caporarello, L., Cesaroni, F., Giesecke, R., Missikoff, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 18. [Google Scholar] [CrossRef]
- Momeni, F.; Ni, J. Invited Article: 4D Printing as a New Paradigm for Manufacturing with Minimum Energy Consumption. arXiv 2018, arXiv:1811.12609, 1–14. [Google Scholar]
- Mulakkal, M.C.; Trask, R.S.; Ting, V.P.; Seddon, A.M. Responsive cellulose-hydrogel composite ink for 4D printing. Mater. Des. 2018, 160, 108–118. [Google Scholar] [CrossRef]
- Akbari, S.; Sakhaei, A.H.; Kowsari, K.; Yang, B.; Serjouei, A.; Yuanfang, Z.; Ge, Q. Enhanced multimaterial 4D printing with active hinges. Smart Mater. Struct. 2018, 27, 065027. [Google Scholar] [CrossRef]
- Pandian, A.; Belavek, C. A Review of Recent Trends and Challenges in 3D Printing. 2016. Available online: https://www.semanticscholar.org/paper/A-review-of-recent-trends-and-challenges-in-3-D-Pandian-Belavek/e143888b62e0720fe5560d131f462e0cd7737756 (accessed on 23 December 2022).
- Miao, S.; Zhu, W.; Castro, N.J.; Nowicki, M.; Zhou, X.; Cui, H.; Fisher, J.P.; Zhang, L.G. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci. Rep. 2016, 6, 27226. [Google Scholar] [CrossRef]
- Adam, G.; Benouhiba, A.; Rabenorosoa, K.; Clévy, C.; Cappelleri, D.J. 4D Printing: Enabling Technology for Microrobotics Applications. Adv. Intell. Syst. 2021, 3, 2000216. [Google Scholar] [CrossRef]
- Ahmed, K.; Shiblee, M.N.I.; Khosla, A.; Nagahara, L.; Thundat, T.; Furukawa, H. Review—Recent Progresses in 4D Printing of Gel Materials. J. Electrochem. Soc. 2020, 167, 037563. [Google Scholar] [CrossRef]
- Sossou, G.; Demoly, F.; Montavon, G.; Gomes, S. Design for 4D printing: Rapidly exploring the design space around smart materials. Procedia CIRP 2018, 70, 120–125. [Google Scholar] [CrossRef]
- Wang, W.; Caetano, G.; Ambler, W.S.; Blaker, J.J.; Frade, M.A.; Mandal, P.; Diver, C.; Bártolo, P. Enhancing the hydrophilicity and cell attachment of 3d printed pcl/graphene scaffolds for bone tissue engineering. Materials 2016, 9, 992. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Yang, W.; Sun, L.; Cai, S.; Yang, R.; Liang, W.; Yu, H.; Liu, L. 4D Printing: A Review on Recent Progresses. Micromachines 2020, 11, 796. [Google Scholar] [CrossRef]
- Cai, J. 4D Printing Dielectric Elastomer Actuator Based Soft Robots; University of Arkansas: Fayetteville, AR, USA, 2016. [Google Scholar]
- Raghavendra, K.; Manjaiah, M.; Balashanmugam, N. 4D Printing. In Materials Forming, Machining and Post Processing; Gupta, K., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 93–107. [Google Scholar] [CrossRef]
- Kodama, H. Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev. Sci. Instrum. 1981, 52, 1770–1773. [Google Scholar] [CrossRef]
- Biswas, M.C.; Chakraborty, S.; Bhattacharjee, A.; Mohammed, Z. 4D Printing of Shape Memory Materials for Textiles: Mechanism, Mathematical Modeling, and Challenges. Adv. Funct. Mater. 2021, 31, 2100257. [Google Scholar] [CrossRef]
- Lee, J.-Y.; An, J.; Chua, C.K. Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 2017, 7, 120–133. [Google Scholar] [CrossRef]
- Sahafnejad-Mohammadi, I.; Karamimoghadam, M.; Zolfagharian, A.; Akrami, M.; Bodaghi, M. 4D printing technology in medical engineering: A narrative review. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 233. [Google Scholar] [CrossRef]
- Shen, B.; Erol, O.; Fang, L.; Kang, S.H. Programming the time into 3D printing: Current advances and future directions in 4D printing. Multifunct. Mater. 2020, 3, 012001. [Google Scholar] [CrossRef]
- From 3D to 4D Printing: Approaches and Typical Applications|SpringerLink. Available online: https://link.springer.com/article/10.1007/s12206-015-0925-0 (accessed on 23 December 2022).
- Javaid, M.; Haleem, A.; Singh, R.P.; Rab, S.; Suman, R.; Kumar, L. Significance of 4D printing for dentistry: Materials, process, and potentials. J. Oral Biol. Craniofacial Res. 2022, 12, 388–395. [Google Scholar] [CrossRef]
- Bodaghi, M.; Damanpack, A.R.; Liao, W.H. Self-expanding/shrinking structures by 4D printing. Smart Mater. Struct. 2016, 25, 105034. [Google Scholar] [CrossRef]
- Pugliese, R.; Regondi, S. Artificial Intelligence-Empowered 3D and 4D Printing Technologies toward Smarter Biomedical Materials and Approaches. Polymers 2022, 14, 2794. [Google Scholar] [CrossRef] [PubMed]
- 4D Printing Market Size & Share|Global Industry Report, 2018–2025. Available online: https://www.grandviewresearch.com/industry-analysis/4d-printing-market (accessed on 23 December 2022).
- “4-Dimensional Printing Industry Trend: 4D Printing Market Forecast Report to 2030,” 4-Dimensional Printing Industry Trend|4D Printing Market Forecast Report to 2030, Feb-2022. Available online: https://www.emergenresearch.com/industry-report/4d-printing-market (accessed on 23 December 2022).
- 4D Printing Market Size, Growth, Trends|Report 2022–2030. Available online: https://www.precedenceresearch.com/4d-printing-market (accessed on 23 December 2022).
- Pinho, A.C.; Buga, C.S.; Piedade, A.P. The chemistry behind 4D printing. Appl. Mater. Today 2020, 19, 100611. [Google Scholar] [CrossRef]
- 4D Printing and Its Biomedical Applications—3D and 4D Printing in Biomedical Applications—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527813704.ch14 (accessed on 23 December 2022).
- Lui, Y.S.; Sow, W.T.; Tan, L.P.; Wu, Y.; Lai, Y.; Li, H. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater. 2019, 92, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Active Origami by 4D Printing—IOPscience. Available online: https://iopscience.iop.org/article/10.1088/0964-1726/23/9/094007/meta (accessed on 23 December 2022).
- Multi-Shape Active Composites by 3D Printing of Digital Shape Memory Polymers|Scientific Reports. Available online: https://www.nature.com/articles/srep24224 (accessed on 23 December 2022).
- Mao, Y.; Yu, K.; Isakov, M.S.; Wu, J.; Dunn, M.L.; Qi, H.J. Sequential self-folding structures by 3D printed digital shape memory polymers. Sci. Rep. 2015, 5, 13616. [Google Scholar] [CrossRef]
- Tao, R.; Ji, L.; Li, Y.; Wan, Z.; Hu, W.; Wu, W.; Liao, B.; Ma, L.; Fang, D. 4D printed origami metamaterials with tunable compression twist behavior and stress-strain curves. Compos. Part B Eng. 2020, 201, 108344. [Google Scholar] [CrossRef]
- Tao, R.; Xi, L.; Wu, W.; Li, Y.; Liao, B.; Liu, L.; Leng, J.; Fang, D. 4D printed multi-stable metamaterials with mechanically tunable performance. Compos. Struct. 2020, 252, 112663. [Google Scholar] [CrossRef]
- Bodaghi, M.; Damanpack, A.R.; Liao, W.H. Triple shape memory polymers by 4D printing. Smart Mater. Struct. 2018, 27, 065010. [Google Scholar] [CrossRef]
- Zeng, S.; Gao, Y.; Feng, Y.; Zheng, H.; Qiu, H.; Tan, J. Programming the deformation of a temperature-driven bilayer structure in 4D printing. Smart Mater. Struct. 2019, 28, 105031. [Google Scholar] [CrossRef]
- Champeau, M.; Heinze, D.A.; Viana, T.N.; de Souza, E.R.; Chinellato, A.C.; Titotto, S. 4D Printing of Hydrogels: A Review. Adv. Funct. Mater. 2020, 30, 1910606. [Google Scholar] [CrossRef]
- Ashammakhi, N.; Ahadian, S.; Zengjie, F.; Suthiwanich, K.; Lorestani, F.; Orive, G.; Ostrovidov, S.; Khademhosseini, A. Advances and Future Perspectives in 4D Bioprinting. Biotechnol. J. 2018, 13, 1800148. [Google Scholar] [CrossRef] [PubMed]
- Maraveas, C.; Bayer, I.S.; Bartzanas, T. 4D printing: Perspectives for the production of sustainable plastics for agriculture. Biotechnol. Adv. 2022, 54, 107785. [Google Scholar] [CrossRef]
- Shao, L.-H.; Zhao, B.; Zhang, Q.; Xing, Y.; Zhang, K. 4D printing composite with electrically controlled local deformation. Extreme Mech. Lett. 2020, 39, 100793. [Google Scholar] [CrossRef]
- Chatterjee, S.; Hui, P.C.; Kan, C. Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy. Polymers 2018, 10, 480. [Google Scholar] [CrossRef] [PubMed]
- 4D Printing of Core–Shell Hydrogel Capsules for Smart Controlled Drug Release|SpringerLink. Available online: https://link.springer.com/article/10.1007/s42242-021-00175-y (accessed on 23 December 2022).
- Jamal, M.; Kadam, S.S.; Xiao, R.; Jivan, F.; Onn, T.M.; Fernandes, R.; Nguyen, T.D.; Gracias, D.H. Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. Adv. Healthc. Mater. 2013, 2, 1142–1150. [Google Scholar] [CrossRef]
- 3D Printable Light-Responsive Polymers—Materials Horizons (RSC Publishing). Available online: https://pubs.rsc.org/en/content/articlelanding/2017/mh/c7mh00072c (accessed on 23 December 2022).
- Multistable Thermal Actuators via Multimaterial 4D Printing—Jeong—2019—Advanced Materials Technologies—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201800495 (accessed on 23 December 2022).
- Ali, M.; Alam, F.; Fah, Y.F.; Shiryayev, O.; Vahdati, N.; Butt, H. 4D printed thermochromic Fresnel lenses for sensing applications. Compos. Part B Eng. 2022, 230, 109514. [Google Scholar] [CrossRef]
- Chen, H.; Noirbent, G.; Liu, S.; Brunel, D.; Graff, B.; Gigmes, D.; Zhang, Y.; Sun, K.; Morlet-Savary, F.; Xiao, P.; et al. Bis-chalcone derivatives derived from natural products as near-UV/visible light sensitive photoinitiators for 3D/4D printing. Mater. Chem. Front. 2021, 5, 901–916. [Google Scholar] [CrossRef]
- Hagaman, D.E.; Leist, S.; Zhou, J.; Ji, H.-F. Photoactivated Polymeric Bilayer Actuators Fabricated via 3D Printing. ACS Appl. Mater. Interfaces 2018, 10, 27308–27315. [Google Scholar] [CrossRef]
- Choi, J.; Kwon, O.-C.; Jo, W.; Lee, H.J.; Moon, M.-W. 4D Printing Technology: A Review. 3D Print. Addit. Manuf. 2015, 2, 159–167. [Google Scholar] [CrossRef]
- Zhang, Z.; Corrigan, N.; Bagheri, A.; Jin, J.; Boyer, C. A Versatile 3D and 4D Printing System through Photocontrolled RAFT Polymerization. Angew. Chem. Int. Ed. 2019, 58, 17954–17963. [Google Scholar] [CrossRef]
- del Barrio, J.; Sánchez-Somolinos, C. Light to Shape the Future: From Photolithography to 4D Printing. Adv. Opt. Mater. 2019, 7, 1900598. [Google Scholar] [CrossRef]
- Saska, S.; Pilatti, L.; Blay, A.; Shibli, J.A. Bioresorbable Polymers: Advanced Materials and 4D Printing for Tissue Engineering. Polymers 2021, 13, 563. [Google Scholar] [CrossRef]
- Pattern-Driven 4D Printing—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0924424718300621 (accessed on 23 December 2022).
- Muzaffar, A.; Ahamed, M.B.; Deshmukh, K.; Kovářík, T.; Křenek, T.; Pasha, S.K.K. Chapter 4—3D and 4D Printing of pH-Responsive and Functional Polymers and Their Composites. In 3D and 4D Printing of Polymer Nanocomposite Materials; Sadasivuni, K.K., Deshmukh, K., Almaadeed, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 85–117. [Google Scholar] [CrossRef]
- Tibbits, S. 4D Printing: Multi-Material Shape Change. Archit. Des. 2014, 84, 116–121. [Google Scholar] [CrossRef]
- Biomimetic 4D Printing|Nature Materials. Available online: https://www.nature.com/articles/nmat4544 (accessed on 24 December 2022).
- Raviv, R.; Zhao, W.; Mcknelly, C.L.; Papadopoulou, A.; Kadambi, A.; Shi, B.; Hirsch, S.; Dikovsky, D.; Zyracki, M.; Olguin, C.; et al. Active Printed Materials for Complex Self-Evolving Deformations. Sci. Rep. 2014, 4, 7422. [Google Scholar] [CrossRef] [PubMed]
- Review of 4D Printing Materials and Their Properties|SpringerLink. Available online: https://link.springer.com/article/10.1007/s40684-017-0040-z (accessed on 24 December 2022).
- Sadeghi, M.; Soleimani, F. Synthesis and Characterization Superabsorbent Hydrogelsfor Oral Drug Delivery Systems. Int. J. Chem. Eng. Appl. 2011, 2, 314–316. [Google Scholar] [CrossRef]
- Sharma, K.; Kumar, V.; Chaudhary, B.; Kaith, B.S.; Kalia, S.; Swart, H.C. Application of biodegradable superabsorbent hydrogel composite based on Gum ghatti-co-poly(acrylic acid-aniline) for controlled drug delivery. Polym. Degrad. Stab. 2016, 124, 101–111. [Google Scholar] [CrossRef]
- Warkar, S.G.; Kumar, A. Synthesis and assessment of carboxymethyl tamarind kernel gum based novel superabsorbent hydrogels for agricultural applications. Polymer 2019, 182, 121823. [Google Scholar] [CrossRef]
- Dorishetty, P.; Balu, R.; Sreekumar, A.; De Campo, L.; Mata, J.P.; Choudhury, N.R.; Dutta, N.K. Robust and tunable hybrid hydrogels from photo-cross-linked soy protein isolate and regenerated silk fibroin. ACS Sustain. Chem. Eng. 2019, 7, 9257–9271. [Google Scholar]
- Zhu, P.; Yang, W.; Wang, R.; Gao, S.; Li, B.; Li, Q. 4D Printing of Complex Structures with a Fast Response Time to Magnetic Stimulus. ACS Appl. Mater. Interfaces 2018, 10, 36435–36442. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhang, F.; Leng, J.; Liu, Y. Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites. Compos. Sci. Technol. 2019, 184, 107866. [Google Scholar] [CrossRef]
- Azukizawa, S.; Shinoda, H.; Tsumori, F. 4D-Printing System for Elastic Magnetic Actuators. In Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Republic of Korea, 27–31 January 2019; pp. 248–251. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.; Ma, Z.; Zhang, C.; Ai, J.; Chen, P.; Yan, C.; Su, B.; Shi, Y. 4D Printing: A Material Combination Concept to Realize 4D Printed Products with Newly Emerging Property/Functionality. Adv. Sci. 2020, 7, 2070046. [Google Scholar] [CrossRef]
- Self-Folding Thermo-Magnetically Responsive Soft Microgrippers|ACS Applied Materials & Interfaces. Available online: https://pubs.acs.org/doi/full/10.1021/am508621s (accessed on 24 December 2022).
- Fast-Moving Soft Electronic Fish|Science Advances. Available online: https://www.science.org/doi/full/10.1126/sciadv.1602045 (accessed on 24 December 2022).
- Yang, D.; Mei, H.; Yao, L.; Yang, W.; Yao, Y.; Cheng, L.; Zhang, L.; Dassios, K.G. 3D/4D printed tunable electrical metamaterials with more sophisticated structures. J. Mater. Chem. C 2021, 9, 12010–12036. [Google Scholar] [CrossRef]
- Pretsch, T. Review on the Functional Determinants and Durability of Shape Memory Polymers. Polymers 2010, 2, 120–158. [Google Scholar] [CrossRef]
- Lalitha, K.; Prasad, Y.S.; Sridharan, V.; Maheswari, C.U.; John, G.; Nagarajan, S. A renewable resource-derived thixotropic self-assembled supramolecular gel: Magnetic stimuli responsive and real-time self-healing behaviour. RSC Adv. 2015, 5, 77589–77594. [Google Scholar] [CrossRef]
- Rayate, A.; Jain, K. A Review on 4D Printing Material Composites and Their Applications. Mater. Today Proc. 2018, 5, 20474–20484. [Google Scholar] [CrossRef]
- Hu, Y.L.; Wang, Z.Y.; Jin, D.D.; Zhang, C.C.; Sun, R.; Li, Z.Q.; Hu, K.; Ni, J.C.; Cai, Z.; Pan, D.; et al. Botanical-Inspired 4D Printing of Hydrogel at the Microscale. Adv. Funct. Mater. 2020, 30, 1907377. [Google Scholar] [CrossRef]
- Falahati, M.; Ahmadvand, P.; Safaee, S.; Chang, Y.C.; Lyu, Z.; Chen, R.; Li, L.; Lin, Y. Smart polymers and nanocomposites for 3D and 4D printing. Mater. Today 2020, 40, 215–245. [Google Scholar] [CrossRef]
- Mitchell, A.; Lafont, U.; Hołyńska, M.; Semprimoschnig, C. Additive manufacturing—A review of 4D printing and future applications. Addit. Manuf. 2018, 24, 606–626. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, M.; Mujumdar, A.S.; Phuhongsung, P. Investigation of 4D printing of lotus root-compound pigment gel: Effect of pH on rapid colour change. Food Res. Int. 2021, 148, 110630. [Google Scholar] [CrossRef]
- 4D Printing of Sago Starch with Turmeric Blends: A Study on pH-Triggered Spontaneous Color Transformation|ACS Food Science & Technology. Available online: https://pubs.acs.org/doi/abs/10.1021/acsfoodscitech.0c00151 (accessed on 24 December 2022).
- Fabricating a Shell-Core Delayed Release Tablet Using Dual FDM 3D Printing for Patient-Centred Therapy|SpringerLink. Available online: https://link.springer.com/article/10.1007/s11095-016-2073-3 (accessed on 24 December 2022).
- Soppimath, K.S.; Aminabhavi, T.M.; Dave, A.M.; Kumbar, S.G.; Rudzinski, W.E. Stimulus-Responsive ‘Smart’ Hydrogels as Novel Drug Delivery Systems. Drug Dev. Ind. Pharm. 2002, 28, 957–974. [Google Scholar] [CrossRef]
- Schmaljohann, D. Thermo-and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 2006, 58, 1655–1670. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Guan, J.; Lee, J.L. An oral delivery device based on self-folding hydrogels. J. Control. Release Soc. 2006, 110, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Theato, P. Smart composite hydrogel with pH-, ionic strength- and temperature-induced actuation. Soft Matter. 2018, 14, 8401–8407. [Google Scholar] [CrossRef] [PubMed]
- Han, X.-J.; Dong, Z.-Q.; Fan, M.-M.; Liu, Y.; li, J.-H.; Wang, Y.-F.; Yuan, Q.-J.; Li, B.-J.; Zhang, S. pH-Induced Shape-Memory Polymers. Macromol. Rapid Commun. 2012, 33, 1055–1060. [Google Scholar] [CrossRef]
- Zhao, S.; Jia, R.; Yang, J.; Dai, L.; Ji, N.; Xiong, L.; Sun, Q. Development of chitosan/tannic acid/corn starch multifunctional bilayer smart films as pH-responsive actuators and for fruit preservation. Int. J. Biol. Macromol. 2022, 205, 419–429. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, M.L.; Zhang, R.K.; Lu, G.; Zhao, C.Y.; Fu, F.; Sun, H.T.; Zhang, S.; Tu, Y.; Li, X.H. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats. J. Biomed Mater. Res. Part A 2017, 105A, 1324–1332. [Google Scholar] [CrossRef]
- Placone, J.K.; Navarro, J.; Laslo, G.W.; Lerman, M.J.; Gabard, A.R.; Herendeen, G.J.; Falco, E.E.; Tomblyn, S.; Burnett, L.; Fisher, J.P. Development and Characterization of a 3D Printed, Keratin-Based Hydrogel. Ann. Biomed Eng. 2017, 45, 237–248. [Google Scholar] [CrossRef]
- 3D Printable Electrically Conductive Hydrogel Scaffolds for Biomedical Applications: A Review—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867335/ (accessed on 24 December 2022).
- Goya, G.F.; Asín, L.; Ibarra, M.R. Cell death induced by AC magnetic fields and magnetic nanoparticles: Current state and perspectives. Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. N. Am. Hyperth. Group 2017, 29, 810–818. [Google Scholar] [CrossRef]
- Servant, A.; Methven, L.; Williams, R.; Kostarelos, K. Electroresponsive polymer-carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo. Adv. Healthc. Mater. 2013, 2, 806–811. [Google Scholar] [CrossRef]
- Miriyev, A.; Stack, K.; Lipson, H. Soft material for soft actuators. Nat. Commun. 2017, 8, 596. [Google Scholar] [CrossRef]
- Guo, B.; Sun, Y.; Finne-Wistrand, A.; Mustafa, K.; Albertsson, A.-C. Electroactive porous tubular scaffolds with degradability and non-cytotoxicity for neural tissue regeneration. Acta Biomater. 2012, 8, 144–153. [Google Scholar] [CrossRef] [PubMed]
- de Haan, L.T.; Verjans, J.M.N.; Broer, D.J.; Bastiaansen, C.W.M.; Schenning, A.H.J. Humidity-Responsive Liquid Crystalline Polymer Actuators with an Asymmetry in the Molecular Trigger That Bend, Fold, and Curl. J. Am. Chem. Soc. 2014, 136, 10585–10588. [Google Scholar] [CrossRef]
- Direct Ink Writing of 4D Structural Colors—Sol—2022—Advanced Functional Materials—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202201766 (accessed on 24 December 2022).
- Kim, K.; Guo, Y.; Bae, J.; Choi, S.; Song, H.Y.; Park, S.; Hyun, K.; Ahn, S.-K. 4D Printing of Hygroscopic Liquid Crystal Elastomer Actuators. Small 2021, 17, 2100910. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-J.; Hearon, K.; Wilson, T.S.; Maitland, D.J. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams. Smart Mater. Struct. 2011, 20, 085010. [Google Scholar] [CrossRef] [PubMed]
- Armon, S.; Efrati, E.; Kupferman, R.; Sharon, E. Geometry and mechanics in the opening of chiral seed pods. Science 2011, 333, 1726–1730. [Google Scholar] [CrossRef]
- Elbaum, R.; Zaltzman, L.; Burgert, I.; Fratzl, P. The role of wheat awns in the seed dispersal unit. Science 2007, 316, 884–886. [Google Scholar] [CrossRef] [PubMed]
- Bacillus Spores as Building Blocks for Stimuli-Responsive Materials and Nanogenerators|Nature Nanotechnology. Available online: https://www.nature.com/articles/nnano.2013.290 (accessed on 24 December 2022).
- Islam, M.R.; Li, X.; Smyth, K.; Serpe, M.J. Polymer-Based Muscle Expansion and Contraction. Angew. Chem. Int. Ed. 2013, 52, 10330–10333. [Google Scholar] [CrossRef]
- Tan, C.; Huang, X.; Lei, H.; Zhang, L.; Chen, J.; Meng, H. A new optical fiber dew point humidity sensor based on the virtual instrument. Rev. Sci. Instrum. 2019, 90, 015115. [Google Scholar] [CrossRef]
- 4D Printing of Lotus Root Powder Gel: Color Change Induced by Microwave—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1466856421000060 (accessed on 24 December 2022).
- Microwave Synthesis and Actuation of Shape Memory Polycaprolactone Foams with High Speed|Scientific Reports. Available online: https://www.nature.com/articles/srep11152 (accessed on 24 December 2022).
- Yu, J.; Zhang, Y.; Ye, Y.; DiSanto, R.; Sun, W.; Ranson, D.; Ligler, F.S.; Buse, J.B.; Gu, Z. Microneedle-Array Patches Loaded with Hypoxia-Sensitive Vesicles Provide Fast Glucose-Responsive Insulin Delivery. Proc. Natl. Acad. Sci. USA 2015, 112, 8260–8265. [Google Scholar] [CrossRef]
- Song, E.; da Costa, T.H.; Choi, J.-W. A chemiresistive glucose sensor fabricated by inkjet printing. Microsyst. Technol. 2018, 23, 3505–3511. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, Y.; Zhang, J.; Wu, J.P.; Kirk, T.B.; Xu, J.; Ma, D.; Xue, W. Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 84, 44–51. [Google Scholar] [CrossRef]
- Hydrogels of Collagen/Chondroitin Sulfate/Hyaluronan Interpenetrating Polymer Network for Cartilage Tissue Engineering|SpringerLink. Available online: https://link.springer.com/article/10.1007/s10856-012-4684-5 (accessed on 24 December 2022).
- Cheng, Y.; Ren, K.; Yang, D.; Wei, J. Bilayer-type fluorescence hydrogels with intelligent response serve as temperature/pH driven soft actuators. Sens. Actuators B Chem. 2018, 255, 3117–3126. [Google Scholar] [CrossRef]
- Jalili, N.A.; Muscarello, M.; Gaharwar, A.K. Nanoengineered thermoresponsive magnetic hydrogels for biomedical applications. Bioeng. Transl. Med. 2016, 1, 297–305. [Google Scholar] [CrossRef]
- Li, H.; Go, G.; Ko, S.Y.; Park, J.-O.; Park, S. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater. Struct. 2016, 25, 027001. [Google Scholar] [CrossRef]
- Ren, L.Q.; Li, B.Q.; Liu, Q.P.; Ren, L.; Song, Z.Y.; Zhou, X.L.; Gao, P. 4D Printing Dual Stimuli-Responsive Bilayer Structure Toward Multiple Shape-Shifting. Front. Mater. 2021, 8, 655160. [Google Scholar] [CrossRef]
- Kuksenok, O.; Balazs, A.C. Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers. Mater. Horiz. 2015, 3, 53–62. [Google Scholar] [CrossRef]
- Prasad, A.; Gupta, S.S.; Tyagi, R.K. (Eds.) Advances in Engineering Design: Select Proceedings of FLAME 2018; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Self-Healing Four-Dimensional Printing with an Ultraviolet Curable Double-Network Shape Memory Polymer System|ACS Applied Materials & Interfaces. Available online: https://pubs.acs.org/doi/10.1021/acsami.9b00359 (accessed on 24 December 2022).
- Monzón, M.D.; Paz, R.; Pei, E.; Ortega, F.; Suárez, L.A.; Ortega, Z.; Alemán, M.E.; Plucinski, T.; Clow, N. 4D printing: Processability and measurement of recovery force in shape memory polymers. Int. J. Adv. Manuf. Technol. 2017, 89, 1827–1836. [Google Scholar] [CrossRef]
- Su, J.W.; Tao, X.; Deng, H.; Zhang, C.; Jiang, S.; Lin, Y.; Lin, J. 4D printing of a self-morphing polymer driven by a swellable guest medium. Soft Matter 2018, 14, 765–772. [Google Scholar] [CrossRef]
- Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique|Scientific Reports. Available online: https://www.nature.com/articles/srep08936 (accessed on 24 December 2022).
- Caputo, M.; Berkowitz, A.E.; Armstrong, A.; Müllner, P.; Solomon, C.V. 4D printing of net shape parts made from Ni-Mn-Ga magnetic shape-memory alloys. Addit. Manuf. 2018, 21, 579–588. [Google Scholar] [CrossRef]
- Ultrahigh-Performance TiNi Shape Memory Alloy by 4D Printing|Request PDF. Available online: https://www.researchgate.net/publication/334514234_Ultrahigh-performance_TiNi_shape_memory_alloy_by_4D_printing (accessed on 24 December 2022).
- Yao, T.; Wang, Y.; Zhu, B.; Wei, D.; Yang, Y.; Han, X. 4D printing and collaborative design of highly flexible shape memory alloy structures: A case study for a metallic robot prototype. Smart Mater. Struct. 2020, 30, 015018. [Google Scholar] [CrossRef]
- 4D Printing of High-Performance Thermal-Responsive Liquid Metal Elastomers Driven by Embedded Microliquid Chambers|ACS Applied Materials & Interfaces. Available online: https://pubs.acs.org/doi/10.1021/acsami.9b22433 (accessed on 24 December 2022).
- Multi-Metal 4D Printing with a Desktop Electrochemical 3D Printer|Scientific Reports. Available online: https://www.nature.com/articles/s41598-019-40774-5 (accessed on 24 December 2022).
- Lai, J.; Ye, X.; Liu, J.; Wang, C.; Li, J.; Wang, X.; Ma, M.; Wang, M. 4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose. Mater. Des. 2021, 205, 109699. [Google Scholar] [CrossRef]
- Naficy, S.; Gately, R.; Gorkin, R., III.; Xin, H.; Spinks, G.M. 4D Printing of Reversible Shape Morphing Hydrogel Structures. Macromol. Mater. Eng. 2017, 302, 1600212. [Google Scholar] [CrossRef]
- Origami and 4D Printing of Elastomer-Derived Ceramic Structures|Science Advances. Available online: https://www.science.org/doi/10.1126/sciadv.aat0641 (accessed on 24 December 2022).
- Bargardi, F.L.; Le Ferrand, H.; Libanori, R.; Studart, A.R. Bio-inspired self-shaping ceramics. Nat. Commun. 2016, 7, 13912. [Google Scholar] [CrossRef]
- 4D Printing of Complex Ceramic Structures Via Controlling Zirconia Contents and Patterns|MSEC|ASME Digital Collection. Available online: https://asmedigitalcollection.asme.org/MSEC/proceedings-abstract/MSEC2021/V001T01A017/1115434 (accessed on 24 December 2022).
- Scheithauer, U.; Weingarten, S.; Johne, R.; Schwarzer, E.; Abel, J.; Richter, H.-J.; Moritz, T.; Michaelis, A. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP). Materials 2017, 10, 1368. [Google Scholar] [CrossRef]
- Ren, L.; Li, B.; He, Y.; Song, Z.; Zhou, X.; Liu, Q.; Ren, L. Programming Shape-Morphing Behavior of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Appl. Mater. Interfaces 2020, 12, 15562–15572. [Google Scholar] [CrossRef]
- 4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient|ACS Applied Materials & Interfaces. Available online: https://pubs.acs.org/doi/10.1021/acsami.9b18037 (accessed on 24 December 2022).
- Goo, B.; Hong, C.-H.; Park, K. 4D printing using anisotropic thermal deformation of 3D-printed thermoplastic parts. Mater. Des. 2020, 188, 108485. [Google Scholar] [CrossRef]
- Ramesh, S.; Reddy, S.K.; Usha, C.; Naulakha, N.K.; Adithyakumar, C.R.; Reddy, M.L.K. Advancements in the Research of 4D Printing-A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 376, 012123. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Huang, W.M.; Luo, J.K.; Lu, H. Polyurethane Shape-Memory Polymers for Biomedical Applications. In Shape Memory Polymers for Biomedical Applications; Yahia, L.H., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2015; pp. 167–195. [Google Scholar] [CrossRef]
- Perspective on Polylactic Acid (PLA) Based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance|ACS Sustainable Chemistry & Engineering. Available online: https://pubs.acs.org/doi/10.1021/acssuschemeng.6b00321 (accessed on 24 December 2022).
- Roudbarian, N.; Baniasadi, M.; Nayyeri, P.; Ansari, M.; Hedayati, R.; Baghani, M. Enhancing shape memory properties of multi-layered and multi-material polymer composites in 4D printing. Smart Mater. Struct. 2021, 30, 105006. [Google Scholar] [CrossRef]
- Quantitative Predictions of Shape-Memory Effects in Polymers—Hornat—2017—Advanced Materials—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201603334 (accessed on 24 December 2022).
- Lee, A.Y.; An, J.; Chua, C.K. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials. Engineering 2017, 3, 663–674. [Google Scholar] [CrossRef]
- Melocchi, A.; Uboldi, M.; Cerea, M.; Foppoli, A.; Maroni, A.; Moutaharrik, S.; Palugan, L.; Zema, L.; Gazzaniga, A. Shape memory materials and 4D printing in pharmaceutics. Adv. Drug Deliv. Rev. 2021, 17, 216–237. [Google Scholar] [CrossRef]
- Lei, D.; Yang, Y.; Liu, Z.; Chen, S.; Song, B.; Shen, A.; Yang, B.; Li, S.; Yuan, Z.; Qi, Q. A general strategy of 3D printing thermosets for diverse applications. Mater. Horiz. 2019, 6, 394–404. [Google Scholar] [CrossRef]
- Zhang, C.; Cai, D.; Liao, P.; Su, J.-W.; Deng, H.; Vardhanabhuti, B.; Ulery, B.D.; Chen, S.-Y.; Lin, J. 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomater. 2021, 122, 101–110. [Google Scholar] [CrossRef]
- Roach, D.J.; Kuang, X.; Yuan, C.; Chen, K.; Qi, H.J. Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing. Smart Mater. Struct. 2018, 27, 125011. [Google Scholar] [CrossRef]
- Hingorani, H.; Zhang, Y.-F.; Zhang, B.; Serjouei, A.; Ge, Q. Modified commercial UV curable elastomers for passive 4D printing. Int. J. Smart Nano Mater. 2019, 10, 225–236. [Google Scholar] [CrossRef]
- Sinha, S.K. Chapter 5—Additive manufacturing (AM) of medical devices and scaffolds for tissue engineering based on 3D and 4D printing. In 3D and 4D Printing of Polymer Nanocomposite Materials; Sadasivuni, K.K., Deshmukh, K., Almaadeed, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 119–160. [Google Scholar] [CrossRef]
- Kirillova, A.; Ionov, L. Shape-changing polymers for biomedical applications. J. Mater. Chem. B 2019, 7, 1597–1624. [Google Scholar] [CrossRef]
- Xie, R.; Hu, J.; Hoffmann, O.; Zhang, Y.; Ng, F.; Qin, T.; Guo, X. Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 2018, 1862, 936–945. [Google Scholar] [CrossRef]
- Arzberger, S.C.; Tupper, M.L.; Lake, M.S.; Barrett, R.; Mallick, K.; Hazelton, C.; Francis, W.; Keller, P.N.; Campbell, D.; Feucht, S.; et al. Elastic memory composites (EMC) for deployable industrial and commercial applications. In Proceedings Volume 5762, Smart Structures and Materials 2005: Industrial and Commercial Applications of Smart Structures Technologies; SPIE: San Diego, CA, USA, 2005. [Google Scholar] [CrossRef]
- Shape Memory Polymers for Smart Textile Applications|IntechOpen. Available online: https://www.intechopen.com/chapters/56078 (accessed on 24 December 2022).
- Safranski, D.L.; Griffis, J.C. Applications of Shape-Memory Polymers, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780323377973. [Google Scholar] [CrossRef]
- Repurposedbook-Metalsandalloys.pdf. Available online: https://www.mnhs.org/preserve/conservation/connectingmn/docs_pdfs/repurposedbook-metalsandalloys.pdf (accessed on 24 December 2022).
- Khorsandi, D.; Fahimipour, A.; Abasian, P.; Saber, S.S.; Seyedi, M.; Ghanavati, S.; Ahmad, A.; De Stephanis, A.A.; Taghavinezhaddilami, F.; Leonova, A.; et al. 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomater. 2019, 122, 26–49. [Google Scholar] [CrossRef]
- Matta, A.K.; Kodali, S.P.; Ivvala, J.; Kumar, J. Metal Prototyping the future of Automobile Industry: A review. Mater. Today Proc. 2018, 5, 17597–17601. [Google Scholar] [CrossRef]
- Rapp, B. Nitinol for stents. Mater. Today 2004, 5, 13. [Google Scholar] [CrossRef]
- He, Y.; Yu, R.; Li, X.; Zhang, M.; Zhang, Y.; Yang, X.; Zhao, X.; Huang, W. Digital Light Processing 4D Printing of Transparent, Strong, Highly Conductive Hydrogels. ACS Appl. Mater. Interfaces 2021, 13, 36286–36294. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, S.; Ke, Y.; Ding, L.; Zeng, X.; Magdassi, S.; Long, Y. 4D Printed Hydrogels: Fabrication, Materials, and Applications. Adv. Mater. Technol. 2020, 5, 2000034. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Y.; Wang, M.; Liang, Y.; Ren, L.; Ren, L. Recent progress in 4D printing of stimuli-responsive polymeric materials. Sci. China Technol. Sci. 2020, 63, 532–544. [Google Scholar] [CrossRef]
- Liu, S.; Chen, X.; Zhang, Y. Chapter 14—Hydrogels and hydrogel composites for 3D and 4D printing applications. In 3D and 4D Printing of Polymer Nanocomposite Materials; Sadasivuni, K.K., Deshmukh, K., Almaadeed, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 427–465. [Google Scholar] [CrossRef]
- Monolithic Dual-Material 3D Printing of Ionic Skins with Long-Term Performance Stability—Yin—2019—Advanced Functional Materials—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201904716 (accessed on 24 December 2022).
- Tran, T.S.; Balu, R.; Mettu, S.; Choudhury, N.R.; Dutta, N.K. 4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery. Pharmaceuticals 2022, 15, 1282. [Google Scholar] [CrossRef]
- Zastrow, M. 3D printing gets bigger, faster and stronger. Nature 2020, 578, 20–23. [Google Scholar] [CrossRef]
- Rastogi, P.; Kandasubramanian, B. Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing. Chem. Eng. J. 2019, 366, 264–304. [Google Scholar] [CrossRef]
- 4D Printing: A Critical Review of Current Developments, and Future Prospects|SpringerLink. Available online: https://link.springer.com/article/10.1007/s00170-019-04258-0 (accessed on 24 December 2022).
- Hoh, D.J.; Hoh, B.L.; Amar, A.; Wang, M.Y. Shape memory alloys: Metallurgy, biocompatibility, and biomechanics for neurosurgical applications. Neurosurgery 2009, 64, 199–214. [Google Scholar] [CrossRef]
- Auricchio, F.; Boatti, E.; Conti, M.; Marconi, S. Chapter 19—SMA biomedical applications. In Shape Memory Alloy Engineering (Second Edition); Concilio, A., Antonucci, V., Auricchio, F., Lecce, L., Sacco, E., Eds.; Butterworth-Heinemann: Boston, MA, USA, 2021; pp. 627–658. [Google Scholar] [CrossRef]
- Ahmed, J. Recent Advances of Novel Materials for 3D/4D Printing in Biomedical Applications. In 3D and 4D Printing in Biomedical Applications; John Wiley & Sons, Ltd.: New York, NY, USA, 2019; pp. 239–271. [Google Scholar] [CrossRef]
- Eckel, Z.C.; Zhou, C.; Martin, J.H.; Jacobsen, A.J.; Carter, W.B.; Schaedler, T.A. Additive manufacturing of polymer-derived ceramics. Science 2016, 351, 58–62. [Google Scholar] [CrossRef]
- Huebsch, N.; Mooney, D.J. Inspiration and application in the evolution of biomaterials. Nature 2009, 462, 426–432. [Google Scholar] [CrossRef]
- Yan, C.; Yang, X.; Wu, H. 4D Printing of Stimuli-Responsive Materials. In Additive Manufacturing: Materials, Functionalities and Applications; Zhou, K., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 85–112. [Google Scholar] [CrossRef]
- Padture, N. Advanced structural ceramics in aerospace propulsion. Nat. Mater. 2016, 15, 804–809. [Google Scholar] [CrossRef]
- Munch, E.; Launey, M.E.; Alsem, D.H.; Saiz, E.; Tomsia, A.; Ritchie, R.O. Tough, Bio-Inspired Hybrid Materials. Science 2008, 322, 1516–1520. [Google Scholar] [CrossRef]
- White, T.; Broer, D. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Ula, S.W.; Traugutt, N.A.; Volpe, R.H.; Patel, R.R.; Yu, K.; Yakacki, C.M. Liquid crystal elastomers: An introduction and review of emerging technologies. Liq. Cryst. Rev. 2018, 6, 78–107. [Google Scholar] [CrossRef]
- del Pozo, M.; Sol, J.A.H.; Schenning, A.H.J.; Debije, M.G. 4D Printing of Liquid Crystals: What’s Right for Me? Adv. Mater. 2022, 34, 2104390. [Google Scholar] [CrossRef] [PubMed]
- 4D Pine Scale: Biomimetic 4D Printed Autonomous Scale and Flap Structures Capable of Multi-Phase Movement|Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. Available online: https://royalsocietypublishing.org/doi/full/10.1098/rsta.2019.0445 (accessed on 24 December 2022).
- Wang, Q.; Tian, X.; Huang, L.; Li, D.; Malakhov, A.V.; Polilov, A.N. Programmable morphing composites with embedded continuous fibers by 4D printing. Mater. Des. 2018, 155, 404–413. [Google Scholar] [CrossRef]
- Uchida, T.; Onoe, H. Multi-Hydrogel 4D Printing for Deformation Control. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 1780–1783. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Ren, B.; Zhang, Y.; Ma, J.; Xu, L.; Chen, Q.; Zheng, J. Super Bulk and Interfacial Toughness of Physically Crosslinked Double-Network Hydrogels. Adv. Funct. Mater. 2017, 27, 1703086. [Google Scholar] [CrossRef]
- 195. You, D.; Chen, G.; Liu, C.; Ye, X.; Wang, S.; Dong, M.; Sun, M.; He, J.; Yu, X.; Ye, G.; et al. 4D Printing of Multi-Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate. Adv. Funct. Mater. 2021, 31, 2103920. [Google Scholar] [CrossRef]
- Kang, M.K.; Pyo, Y.; Jang, J.Y.; Park, Y.; Son, Y.; Choi, M.; Ha, J.W.; Chang, Y.; Lee, C.S. Design of a shape memory composite (SMC) using 4D printing technology. Sens. Actuators A-Phys. 2018, 283, 187–195. [Google Scholar] [CrossRef]
- Bodaghi, M.; Serjouei, A.; Zolfagharian, A.; Fotouhi, M.; Rahman, H.; Durand, D. Reversible energy absorbing meta-sandwiches by FDM 4D printing. Int. J. Mech. Sci. 2020, 173, 105451. [Google Scholar] [CrossRef]
- Barletta, M.; Gisario, A.; Mehrpouya, M. 4D printing of shape memory polylactic acid (PLA) components: Investigating the role of the operational parameters in fused deposition modelling (FDM). J. Manuf. Process. 2021, 61, 473–480. [Google Scholar] [CrossRef]
- 4D Printing—Fused Deposition Modeling Printing with Thermal-Responsive Shape Memory Polymers|SpringerLink. Available online: https://link.springer.com/article/10.1007/s40684-017-0032-z (accessed on 25 December 2022).
- 4D Printing Via an Unconventional Fused Deposition Modeling Route to High-Performance Thermosets|ACS Applied Materials & Interfaces. Available online: https://pubs.acs.org/doi/10.1021/acsami.0c13976 (accessed on 25 December 2022).
- Uchida, T.; Onoe, H. 4D Printing of Multi-Hydrogels Using Direct Ink Writing in a Supporting Viscous Liquid. Micromachines 2019, 10, 433. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Q.; Zhou, C.; Shi, Y.; Sun, C.; Sun, H.; Yin, C.; Hu, J.; Zhou, S.; Zhang, Y.; et al. 4D Printing of Lead Zirconate Titanate Piezoelectric Composites Transducer Based on Direct Ink Writing. Front. Mater. 2021, 8, 659441. [Google Scholar] [CrossRef]
- Stereolithographic 4D Bioprinting of Multiresponsive Architectures for Neural Engineering—Google Search. Available online: https://www.google.com/search?q=Stereolithographic+4D+Bioprinting+of+Multiresponsive+Architectures+for+Neural+Engineering&oq=Stereolithographic+4D+Bioprinting+of+Multiresponsive+Architectures+for+Neural+Engineering&aqs=chrome.0.69i59j69i61l3.271j0j4&sourceid=chrome&ie=UTF-8 (accessed on 25 December 2022).
- Choong, Y.Y.C.; Maleksaeedi, S.; Eng, H.; Wei, J.; Su, P.-C. 4D printing of high performance shape memory polymer using stereolithography. Mater. Des. 2017, 126, 219–225. [Google Scholar] [CrossRef]
- Zhao, T.; Yu, R.; Li, X.; Cheng, B.; Zhang, Y.; Yang, X.; Zhao, X.; Zhao, Y.; Huang, W. 4D printing of shape memory polyurethane via stereolithography. Eur. Polym. J. 2018, 101, 120–126. [Google Scholar] [CrossRef]
- Zhang, B.; Li, H.; Cheng, J.; Ye, H.; Sakhaei, A.H.; Yuan, C.; Rao, P.; Zhang, Y.-F.; Chen, Z.; Wang, R.; et al. Mechanically Robust and UV-Curable Shape-Memory Polymers for Digital Light Processing Based 4D Printing. Adv. Mater. 2021, 33, 2101298. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, M.; Turri, S.; Levi, M.; Suriano, R. 4D printed thermally activated self-healing and shape memory polycaprolactone-based polymers. Eur. Polym. J. 2018, 101, 169–176. [Google Scholar] [CrossRef]
- Choong, Y.Y.C.; Maleksaeedi, S.; Eng, H.; Yu, S.; Wei, J.; Su, P.-C. High speed 4D printing of shape memory polymers with nanosilica. Appl. Mater. Today 2020, 18, 100515. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Speirs, M.; Kruth, J.-P.; Schrooten, J.; Luyten, J.; Van Humbeeck, J. Effect of SLM Parameters on Transformation Temperatures of Shape Memory Nickel Titanium Parts. Adv. Eng. Mater. 2014, 16, 1140–1146. [Google Scholar] [CrossRef]
- Wu, H.; Wang, O.; Tian, Y.; Wang, M.; Su, B.; Yan, C.; Zhou, K.; Shi, Y. Selective Laser Sintering-Based 4D Printing of Magnetism-Responsive Grippers. ACS Appl. Mater. Interfaces 2021, 13, 12679–12688. [Google Scholar] [CrossRef]
- Ouyang, H.; Li, X.; Lu, X.; Xia, H. Selective Laser Sintering 4D Printing of Dynamic Cross-linked Polyurethane Containing Diels–Alder Bonds. ACS Appl. Polym. Mater. 2022, 4, 4035–4046. [Google Scholar] [CrossRef]
- 4D-Printing—Fused Deposition Modeling Printing and PolyJet Printing with Shape Memory Polymers Composite|SpringerLink. Available online: https://link.springer.com/article/10.1007/s12221-020-9882-z (accessed on 25 December 2022).
- Ding, Z.; Yuan, C.; Peng, X.; Wang, T.; Qi, H.J.; Dunn, M.L. Direct 4D printing via active composite materials. Sci. Adv. 2017, 3, e1602890. [Google Scholar] [CrossRef]
- Abolhasani, D.; Han, S.W.; VanTyne, C.J.; Kang, N.; Moon, Y.H. Powder bed fusion of two-functional Cu-Al-Ni shape memory alloys utilized for 4D printing. J. Alloys Compd. 2022, 922, 166228. [Google Scholar] [CrossRef]
- Malachowski, K.; Breger, J.; Kwag, H.R.; Wang, M.O.; Fisher, J.P.; Selaru, F.M.; Gracias, D.H. Stimuli-Responsive Theragrippers for Chemomechanical Controlled Release. Angew. Chem. Int. Ed. 2014, 53, 8045–8049. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Franco, B.; Tapia, G.; Karayagiz, K.; Johnson, L.; Liu, J.; Arroyave, R.; Karaman, I.; Elwany, A. Spatial Control of Functional Response in 4D-Printed Active Metallic Structures. Sci. Rep. 2017, 7, 46707. [Google Scholar] [CrossRef] [PubMed]
- Nadgorny, M.; Xiao, Z.; Chen, C.; Connal, L.A. Three-Dimensional Printing of pH-Responsive and Functional Polymers on an Affordable Desktop Printer. ACS Appl. Mater. Interfaces 2016, 8, 28946–28954. [Google Scholar] [CrossRef]
- Yang, H.; Leow, W.R.; Wang, T.; Wang, J.; Yu, J.; He, K.; Qi, D.; Wan, C.; Chen, X. 3D Printed Photoresponsive Devices Based on Shape Memory Composites. Adv. Mater. 2017, 29, 1701627. [Google Scholar] [CrossRef]
- Le Duigou, A.; Castro, M.; Bevan, R.; Martin, N. 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Mater. Des. 2016, 96, 106–114. [Google Scholar] [CrossRef]
- Megdich, A.; Habibi, M.; Laperrière, L. A review on 4D printing: Material structures, stimuli and additive manufacturing techniques. Mater. Lett. 2023, 337, 133977. [Google Scholar] [CrossRef]
- Carrell, J.; Gruss, G.; Gomez, E. Four-dimensional printing using fused-deposition modeling: A review. Rapid Prototyp. J. 2020, 26, 855–869. [Google Scholar] [CrossRef]
- Nanostructural Computation of 4D Printing Carboxymethylcellulose (CMC) Composite|Request PDF. Available online: https://www.researchgate.net/publication/338700957_Nanostructural_computation_of_4D_printing_carboxymethylcellulose_CMC_composite (accessed on 25 December 2022).
- Zhou, W.; Qiao, Z.; Nazarzadeh Zare, E.; Huang, J.; Zheng, X.; Sun, X.; Shao, M.; Wang, H.; Wang, X.; Chen, D.; et al. 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector. J. Med. Chem. 2020, 63, 8003–8024. [Google Scholar] [CrossRef]
- Wan, X.; Luo, L.; Liu, Y.; Leng, J. Direct Ink Writing Based 4D Printing of Materials and Their Applications. Adv. Sci. 2020, 7, 2001000. [Google Scholar] [CrossRef]
- Boparai, K.; Singh, R.; Singh, H. Development of rapid tooling using fused deposition modeling: A review. Rapid Prototyp. J. 2016, 22, 281–299. [Google Scholar] [CrossRef]
- Senatov, F.S.; Niaza, K.V.; Zadorozhnyy, M.Y.; Maksimkin, A.V.; Kaloshkin, S.D.; Estrin, Y.Z. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J. Mech. Behav. Biomed. Mater. 2016, 57, 139–148. [Google Scholar] [CrossRef]
- Tian, X.; Liu, T.; Yang, C.; Wang, Q.; Li, D. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part Appl. Sci. Manuf. 2016, 88, 198–205. [Google Scholar] [CrossRef]
- Baker, A.B.; Bates, S.R.G.; Llewellyn-Jones, T.M.; Valori, L.B.; Dicker, M.M.; Trask, R.S. 4D printing with robust thermoplastic polyurethane hydrogel-elastomer trilayers. Mater. Des. 2019, 163, 107544. [Google Scholar] [CrossRef]
- Boyle, B.M.; French, T.A.; Pearson, R.M.; McCarthy, B.G.; Miyake, G.M. Structural Color for Additive Manufacturing: 3D-Printed Photonic Crystals from Block Copolymers. ACS Nano 2017, 11, 3052–3058. [Google Scholar] [CrossRef]
- Wang, Z.; Abdulla, R.; Parker, B.; Samanipour, R.; Ghosh, S.; Kim, K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 2015, 7, 045009. [Google Scholar] [CrossRef] [PubMed]
- Qu, H. Additive manufacturing for bone tissue engineering scaffolds. Mater. Today Commun. 2020, 24, 101024. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Khan, R.H.; Suman, R. 3D printing applications in bone tissue engineering. J. Clin. Orthop. Trauma 2020, 11, S118–S124. [Google Scholar] [CrossRef]
- Melchels, F.W.; Feijen, J.; Grijpma, D.W. A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010, 31, 6121–6130. [Google Scholar] [CrossRef]
- Odent, J.; Toncheva, A.; Dubois, P.; Raquez, J.M. From 3D to 4D-Printing: On the Road to Smart 3D-Printed Polymer Devices. In How Smart Are the Polymers? Polymer Science and Technology; Nova Science Publishers: New York, NY, USA, 2018; pp. 391–422. [Google Scholar]
- Ren, L.; Li, B.; Song, Z.; Liu, Q.; Ren, L.; Zhou, X. Bioinspired fiber-regulated composite with tunable permanent shape and shape memory properties via 3d magnetic printing. Compos. Part B Eng. 2019, 164, 458–466. [Google Scholar] [CrossRef]
- Han, D.; Morde, R.S.; Mariani, S.; La Mattina, A.A.; Vignali, E.; Yang, C.; Barillaro, G.; Lee, H. 4D Printing of a Bioinspired Microneedle Array with Backward-Facing Barbs for Enhanced Tissue Adhesion. Adv. Funct. Mater. 2020, 30, 1909197. [Google Scholar] [CrossRef]
- Zarek, M.; Mansour, N.; Shapira, S.; Cohn, D. 4D Printing of Shape Memory-Based Personalized Endoluminal Medical Devices. Macromol. Rapid Commun. 2017, 38, 1600628. [Google Scholar] [CrossRef]
- Cui, H.; Liu, C.; Esworthy, T.; Huang, Y.; Yu, Z.X.; Zhou, X.; San, H.; Lee, S.J.; Hann, S.Y.; Boehm, M.; et al. 4D physiologically adaptable cardiac patch: A 4-month in vivo study for the treatment of myocardial infarction. Sci. Adv. 2020, 6, eabb5067. [Google Scholar] [CrossRef] [PubMed]
- Leong, K.F.; Wiria, F.E.; Chua, C.K.; Li, S.H. Characterization of a poly-epsilon-caprolactone polymeric drug delivery device built by selective laser sintering. Biomed. Mater. Eng. 2007, 17, 147–157. [Google Scholar] [PubMed]
- Ahmed, A.; Arya, S.; Gupta, V.; Furukawa, H.; Khosla, A. 4D printing: Fundamentals, materials, applications and challenges. Polymer 2021, 228, 123926. [Google Scholar] [CrossRef]
- Wohlers, T.; Gornet, T. History of Additive Manufacturing. In Wohlers Report 2014—3D Printing and Additive Manufacturing State of the Industry; Cambridge University Press: Cambridge, UK, 2014; pp. 1–34. [Google Scholar]
- Melly, S.K.; Liu, L.; Liu, Y.; Leng, J. On 4D printing as a revolutionary fabrication technique for smart structures. Smart Mater. Struct. 2020, 29, 083001. [Google Scholar] [CrossRef]
- Fang, J.H.; Hsu, H.H.; Hsu, R.S.; Peng, C.K.; Lu, Y.J.; Chen, Y.Y.; Chen, S.Y.; Hu, S.H. 4D printing of stretchable nanocookie@conduit material hosting biocues and magnetoelectric stimulation for neurite sprouting. NPG Asia Mater. 2020, 12, 61. [Google Scholar] [CrossRef]
- Kim, S.H.; Seo, Y.B.; Yeon, Y.K.; Lee, Y.J.; Park, H.S.; Sultan, M.T.; Lee, J.M.; Lee, J.S.; Lee, O.J.; Hong, H.; et al. 4D-bioprinted silk hydrogels for tissue engineering. Biomaterials 2020, 260, 120281. [Google Scholar] [CrossRef]
- Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices. Adv. Mater. 2016, 28, 4449–4454. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Domínguez-Fernández, A.; Gómez-Gejo, A. Effect of Printing Parameters on Dimensional Error and Surface Roughness Obtained in Direct Ink Writing (DIW) Processes. Materials 2020, 13, 2157. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Z.; Wu, H.; Li, W.; Zheng, L.; Zhao, J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater. Sci. Eng. C 2018, 83, 195–201. [Google Scholar] [CrossRef]
- Kim, Y.; Yuk, H.; Zhao, R.; Chester, S.A.; Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 2018, 558, 274–279. [Google Scholar] [CrossRef]
- Liu, J.; Erol, O.; Pantula, A.; Liu, W.; Jiang, Z.; Kobayashi, K.; Chatterjee, D.; Hibino, N.; Romer, L.H.; Kang, S.H.; et al. Dual-Gel 4D Printing of Bioinspired Tubes. ACS Appl. Mater. Interfaces 2019, 11, 8492–8498. [Google Scholar] [CrossRef]
- Felton, S.M.; Tolley, M.T.; Shin, B.H.; Onal, C.D.; Demaine, E.D.; Rus, D.; Wood, R.J. Self-folding with shape memory composites. Soft Matter 2013, 9, 7688–7694. [Google Scholar] [CrossRef]
- Carcassi, O.B.; Contrada, F.; Grassi, G. A review of bio-reactive envelopes and their future developments for 3D/4D printing technologies. Adv. Build. Ski. 2018, 139. [Google Scholar]
- Kim, S.-K.; Joo, Y.-S.; Lee, Y. Sensible Media Simulation in an Automobile Application and Human Responses to Sensory Effects. ETRI J. 2013, 35, 1001–1010. [Google Scholar] [CrossRef]
- Global 4D Printing in Healthcare Market Size to Reach USD. Available online: https://www.globenewswire.com/en/news-release/2022/02/08/2380570/0/en/Global-4D-Printing-in-Healthcare-Market-Size-to-Reach-USD-35-8-Million-by-2028-Rising-Adoption-of-4D-Printing-in-Healthcare-to-Boost-Market-Vantage-Market-Research.html (accessed on 25 December 2022).
- 4D Printing in Healthcare Market Size, Growth, Drivers & Opportunities. MarketsandMarkets. Available online: https://www.marketsandmarkets.com/Market-Reports/4d-printing-healthcare-market-196612645.html (accessed on 25 December 2022).
- “4D Printing in Healthcare Market Size USD 35.8 Million by 2028,” Vantage Market Research. Available online: https://www.vantagemarketresearch.com (accessed on 25 December 2022).
- INNOVATION|Dental 4D Printing: An Innovative Approach. Available online: https://innovation.ctor.press/articles/dental-4d-printing-an-innovative-approach/ (accessed on 25 December 2022).
- Cre, C.; Agop-Forna, D.; Forna, N.-C. Computerized Techniques Used for 3D Printing in Proshodontics. Syst. Rev. 2021, 13, 1. [Google Scholar]
- Elshazly, T.M.; Keilig, L.; Alkabani, Y.; Ghoneima, A.; Abuzayda, M.; Talaat, W.; Talaat, S.; Bourauel, C.P. Potential Application of 4D Technology in Fabrication of Orthodontic Aligners. Front. Mater. 2022, 8, 586. Available online: https://www.frontiersin.org/articles/10.3389/fmats.2021.794536 (accessed on 25 December 2022). [CrossRef]
- Pradhan, S.R.; Husain, M.; Singh, R.; Banwait, S.S. A Case Study of 4D-Imaging-Assisted 4D Printing for Clinical Dentistry for Canines; CRC Press: Boca Raton, FL, USA, 2022; pp. 119–136. [Google Scholar] [CrossRef]
- Singh, R. 4D Imaging to 4D Printing: Biomedical Applications; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Haleem, A.; Javaid, M.; Vaishya, R. 4D printing and its applications in Orthopaedics. J. Clin. Orthop. Trauma 2018, 9, 275–276. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Significant advancements of 4D printing in the field of orthopaedics. J. Clin. Orthop. Trauma 2020, 11, S485–S490. [Google Scholar] [CrossRef]
- Govindarajan, T.; Shandas, R. Shape Memory Polymers Containing Higher Acrylate Content Display Increased Endothelial Cell Attachment. Polymers 2017, 9, 572. [Google Scholar] [CrossRef]
- Yuan, B.; Zhu, M.; Chung, C.Y. Biomedical Porous Shape Memory Alloys for Hard-Tissue Replacement Materials. Materials 2018, 11, 1716. [Google Scholar] [CrossRef] [PubMed]
- Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials|Chemical Reviews. Available online: https://pubs.acs.org/doi/10.1021/acs.chemrev.5b00299 (accessed on 25 December 2022).
- Wang, J.; Wang, Z.; Song, Z.; Ren, L.; Liu, Q.; Ren, L. Programming Multistage Shape Memory and Variable Recovery Force with 4D Printing Parameters. Adv. Mater. Technol. 2019, 4, 1900535. [Google Scholar] [CrossRef]
- Grinberg, D.; Siddique, S.; Le, M.-Q.; Liang, R.; Capsal, J.-F.; Cottinet, P.-J. 4D Printing based piezoelectric composite for medical applications. J. Polym. Sci. Part B Polym. Phys. 2019, 57, 109–115. [Google Scholar] [CrossRef]
- Hoa, S.V. Development of composite springs using 4D printing method. Compos. Struct. 2019, 210, 869–876. [Google Scholar] [CrossRef]
- 4D Printing of Magnetically Functionalized Chainmail for Exoskeletal Biomedical Applications|MRS Advances|Cambridge Core. Available online: https://www.cambridge.org/core/journals/mrs-advances/article/abs/4d-printing-of-magnetically-functionalized-chainmail-for-exoskeletal-biomedical-applications/48D7BF04DD70435E953957B41D8FAABA (accessed on 25 December 2022).
- 3D Printing of Pharmaceuticals|SpringerLink. Available online: https://link.springer.com/book/10.1007/978-3-319-90755-0 (accessed on 25 December 2022).
- Bae, Y.H.; Park, K. Advanced drug delivery 2020 and beyond: Perspectives on the future. Adv. Drug Deliv. Rev. 2020, 158, 4–16. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, X.; Liu, Y.; Ramakrishna, S. Review of mechanisms and deformation behaviors in 4D printing. Int. J. Adv. Manuf. Technol. 2019, 105, 4633–4649. [Google Scholar] [CrossRef]
- Toit, L.C.; Choonara, Y.E.; Kumar, P.; Pillay, V. V. 6—4D printing and beyond: Where to from here? In Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering; du Toit, L.C., Kumar, P., Choonara, Y.E., Pillay, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 139–157. [Google Scholar] [CrossRef]
- Melocchi, A.; Uboldi, M.; Inverardi, N.; Briatico-Vangosa, F.; Baldi, F.; Pandini, S.; Scalet, G.; Auricchio, F.; Cerea, M.; Foppoli, A.; et al. Expandable drug delivery system for gastric retention based on shape memory polymers: Development via 4D printing and extrusion. Int. J. Pharm. 2019, 571, 118700. [Google Scholar] [CrossRef]
- Melocchi, A.; Inverardi, N.; Uboldi, M.; Baldi, F.; Maroni, A.; Pandini, S.; Briatico-Vangosa, F.; Zema, L.; Gazzaniga, A. Retentive device for intravesical drug delivery based on water-induced shape memory response of poly(vinyl alcohol): Design concept and 4D printing feasibility. Int. J. Pharm. 2019, 559, 299–311. [Google Scholar] [CrossRef]
- Villar, G.; Heron, A.J.; Bayley, H. Formation of droplet networks that function in aqueous environments. Nat. Nanotechnol. 2011, 6, 803–808. [Google Scholar] [CrossRef]
- Su, J.W.; Gao, W.; Trinh, K.; Kenderes, S.M.; Tekin Pulatsu, E.; Zhang, C.; Whittington, A.; Lin, M.; Lin, J. 4D printing of polyurethane paint-based composites. Int. J. Smart Nano Mater. 2019, 10, 237–248. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, D.; Cao, P.; Zhang, X.; Wang, Q.; Wang, T.; Li, Z.; He, W.; Ju, J.; Zhang, Y. 4D Printing of Shape Memory Vascular Stent Based on βCD-g-Polycaprolactone. Macromol. Rapid Commun. 2021, 42, 2100176. [Google Scholar] [CrossRef] [PubMed]
- Freitag, L.; Gördes, M.; Zarogoulidis, P.; Darwiche, K.; Franzen, D.; Funke, F.; Hohenforst-Schmidt, W.; Dutau, H. Towards Individualized Tracheobronchial Stents: Technical, Practical and Legal Considerations. Respir. Int. Rev. Thorac. Dis. 2017, 94, 442–456. [Google Scholar] [CrossRef]
- Lin, C.; Liu, L.; Liu, Y.; Leng, J. 4D Printing of Bioinspired Absorbable Left Atrial Appendage Occluders: A Proof-of-Concept Study. ACS Appl. Mater. Interfaces 2021, 13, 12668–12678. [Google Scholar] [CrossRef]
- 4D Printing of Shape Memory Aliphatic Copolyester via UV-Assisted FDM Strategy for Medical Protective Devices|Request PDF. Available online: https://www.researchgate.net/publication/341046379_4D_Printing_of_Shape_Memory_Aliphatic_Copolyester_via_UV-assisted_FDM_Strategy_for_Medical_Protective_Devices (accessed on 25 December 2022).
- Kuang, X.; Chen, K.; Dunn, C.K.; Wu, J.; Li, V.C.F.; Qi, H.J. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing. ACS Appl. Mater. Interfaces 2018, 10, 7381–7388. [Google Scholar] [CrossRef] [PubMed]
- de Marco, C.; Alcântara CC, J.; Kim, S.; Briatico, F.; Kadioglu, A.; de Bernardis, G.; Chen, X.; Marano, C.; Nelson, B.J.; Pané, S. Indirect 3D and 4D Printing of Soft Robotic Microstructures. Adv. Mater. Technol. 2019, 4, 1900332. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, L.; Liu, Y.; Liu, L.; Leng, J. 4D printing of personalized shape memory polymer vascular stents with negative Poisson’s ratio structure: A preliminary study. Sci. China Technol. Sci. 2020, 63, 578–588. [Google Scholar] [CrossRef]
- Carpio, M.B.; Dabaghi, M.; Ungureanu, J.; Kolb, M.R.; Hirota, J.A.; Moran-Mirabal, J.M. 3D Bioprinting Strategies, Challenges, and Opportunities to Model the Lung Tissue Microenvironment and Its Function. Front. Bioeng. Biotechnol. 2021, 9, 773511. Available online: https://www.frontiersin.org/articles/10.3389/fbioe.2021.773511 (accessed on 25 December 2022). [CrossRef]
- Roato, I.; Masante, B.; Putame, G.; Massai, D.; Mussano, F. Challenges of Periodontal Tissue Engineering: Increasing Biomimicry through 3D Printing and Controlled Dynamic Environment. Nanomaterials 2022, 12, 3878. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. 4D printing applications in medical field: A brief review. Clin. Epidemiol. Glob. Health 2019, 7, 317–321. [Google Scholar] [CrossRef]
- Cui, C.; Kim, D.-O.; Pack, M.Y.; Han, B.; Han, L.; Sun, Y.; Han, L.-H. 4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications. Biofabrication 2020, 12, 045018. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Li, J.; Wang, M. 3D Printed porous tissue engineering scaffolds with the self-folding ability and controlled release of growth factor. MRS Commun. 2020, 10, 579–586. [Google Scholar] [CrossRef]
- D’Amora, U.; Russo, T.; Gloria, A.; Rivieccio, V.; D’Antò, V.; Negri, G.; Ambrosio, L.; De Santis, R. 3D additive-manufactured nanocomposite magnetic scaffolds: Effect of the application mode of a time-dependent magnetic field on hMSCs behavior. Bioact. Mater. 2017, 2, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Devillard, C.D.; Mandon, C.A.; Lambert, S.A.; Blum, L.J.; Marquette, C.A. Bioinspired Multi-Activities 4D Printing Objects: A New Approach Toward Complex Tissue Engineering. Biotechnol. J. 2018, 13, e1800098. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.; Cui, H.; Nowicki, M.; Lee, S.; Almeida, J.; Zhou, X.; Zhu, W.; Yao, X.; Masood, F.; Plesniak, M.W.; et al. Photolithographic-stereolithographic-tandem fabrication of 4D smart scaffolds for improved stem cell cardiomyogenic differentiation. Biofabrication 2018, 10, 035007. [Google Scholar] [CrossRef]
- Optogenetic Skeletal Muscle-Powered Adaptive Biological Machines. Available online: https://www.pnas.org/doi/10.1073/pnas.1516139113 (accessed on 25 December 2022).
- Zhang, J.; Zhao, S.; Zhu, M.; Zhu, Y.; Zhang, Y.; Liu, Z.; Zhang, C. 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J. Mater. Chem. B 2014, 2, 7583–7595. [Google Scholar] [CrossRef]
- Miao, S.; Zhu, W.; Castro, N.J.; Leng, J.; Zhang, L.G. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications. Tissue Eng. Part C Methods 2016, 22, 952–963. [Google Scholar] [CrossRef]
- Song, K.H.; Highley, C.B.; Rouff, A.; Burdick, J.A. Complex 3D-Printed Microchannels within Cell-Degradable Hydrogels. Adv. Funct. Mater. 2018, 28, 1801331. [Google Scholar] [CrossRef]
- Saadat, M. Challenges in the Assembly of Large Aerospace Components. In Integrated Systems, Design and Technology 2010; Springer: Berlin/Heidelberg, Germany, 2011; pp. 37–46. [Google Scholar] [CrossRef]
- Sun, L.; Zuo, H. Multi-echelon inventory optimal model of civil aircraft spare parts. In Proceedings of the 2010 Chinese Control and Decision Conference, Xuzhou, China, 26–28 May 2010; pp. 824–828. [Google Scholar] [CrossRef]
- Six Key Trends Impacting Global Supply Chains in 2022—KPMG Singapore, KPMG, 26 July 2022. Available online: https://home.kpmg/sg/en/home/insights/2022/03/six-key-trends-impacting-global-supply-chains-in-2022.html (accessed on 26 December 2022).
- Ntouanoglou, K.; Stavropoulos, P.; Mourtzis, D. 4D Printing Prospects for the Aerospace Industry: A critical review. Procedia Manuf. 2018, 18, 120–129. [Google Scholar] [CrossRef]
- Sokolowski, W.; Tan, S.; Pryor, M. Light weight shape memory self-deployable structures for gossamer applications. In Proceedings of the 45th AIAA/ASME Conference on Structures, Structural Dynamic and Materials, Palm Springs, CA, USA, 19–22 April 2004; Volume 1660, pp. 1–10. [Google Scholar] [CrossRef]
- Sossou, G.; Demoly, F.; Belkebir, H.; Qi, H.J.; Gomes, S.; Montavon, G. Design for 4D printing: Modeling and computation of smart materials distributions. Mater. Des. 2019, 181, 108074. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Yi, S.; Lin, Z.; Wang, C.; Chen, Z.; Jiang, L. 4D Printing of Magnetoactive Soft Materials for On-Demand Magnetic Actuation Transformation. ACS Appl. Mater. Interfaces 2021, 13, 4174–4184. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.; Zhang, Y.; Wang, T.; Yang, Z.; Wang, Q.; Zhang, X. Dual-method molding of 4D shape memory polyimide ink. Mater. Des. 2020, 191, 108606. [Google Scholar] [CrossRef]
- Eid, A.; He, X.; Bahr, R.; Lin, T.H.; Cui, Y.; Adeyeye, A.; Tehrani, B.; Tentzeris, M.M. Inkjet-/3D-/4D-Printed Perpetual Electronics and Modules: RF and mm-Wave Devices for 5G+, IoT, Smart Agriculture, and Smart Cities Applications. IEEE Microw. Mag. 2020, 21, 87–103. [Google Scholar] [CrossRef]
- Mu, Q.; Dunn, C.K.; Wang, L.; Dunn, M.L.; Qi, H.J.; Wang, T. Thermal cure effects on electromechanical properties of conductive wires by direct ink write for 4D printing and soft machines. Smart Mater. Struct. 2017, 26, 045008. [Google Scholar] [CrossRef]
- Cesarano, F.; Maurizi, M.; Gao, C.; Berto, F.; Penta, F.; Bertolin, C. Experimental Investigation of Thermal Passive-Reactive Sensors Using 4D-Printing and Shape-Memory Biopolymers. Sustainability 2022, 14, 14788. [Google Scholar] [CrossRef]
- Simińska-Stanny, J.; Nizioł, M.; Szymczyk-Ziółkowska, P.; Brożyna, M.; Junka, A.; Shavandi, A.; Podstawczyk, D. 4D printing of patterned multimaterial magnetic hydrogel actuators. Addit. Manuf. 2022, 49, 102506. [Google Scholar] [CrossRef]
- Catalytic Antimicrobial Robots for Biofilm Eradication|Science Robotics. Available online: https://www.science.org/doi/10.1126/scirobotics.aaw2388 (accessed on 26 December 2022).
- Rapid Volatilization Induced Mechanically Robust Shape-Morphing Structures toward 4D Printing|ACS Applied Materials & Interfaces. Available online: https://pubs.acs.org/doi/pdf/10.1021/acsami.0c02038 (accessed on 26 December 2022).
- 4D Printing of MXene Hydrogels for High-Efficiency Pseudocapacitive Energy Storage|Nature Communications. Available online: https://www.nature.com/articles/s41467-022-34583-0 (accessed on 26 December 2022).
- Zhou, Y.; Parker, C.B.; Joshi, P.; Naskar, A.K.; Glass, J.T.; Cao, C. 4D Printing of Stretchable Supercapacitors via Hybrid Composite Materials. Adv. Mater. Technol. 2021, 6, 2001055. [Google Scholar] [CrossRef]
- Wu, L.; Huang, J.; Zhai, M.; Sun, B.; Chang, H.; Huang, S.; Liu, H. Deformable Bowtie Antenna Realized by 4D Printing. Electronics 2021, 10, 1792. [Google Scholar] [CrossRef]
- Hansen, A.; Renner, M.; Griesbeck, A.G.; Büsgen, T. From 3D to 4D printing: A reactor for photochemical experiments using hybrid polyurethane acrylates for vat-based polymerization and surface functionalization. Chem. Commun. 2020, 56, 15161–15164. [Google Scholar] [CrossRef]
- Chan, B.Q.Y.; Chong, Y.T.; Wang, S.; Lee CJ, J.; Owh, C.; Wang, F.; Wang, F. Synergistic combination of 4D printing and electroless metallic plating for the fabrication of a highly conductive electrical device. Chem. Eng. J. 2022, 430, 132513. [Google Scholar] [CrossRef]
- Barnawi, M.I. Investigation of Electroplating 4D Printed Antenna & Developing 3D Printed Lithium Batteries, Youngstown State University. 2022. Available online: https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?clear=10&p10_accession_num=ysu1652186088321697 (accessed on 26 December 2022).
- Cersoli, T.; Barnawi, M.; Johnson, K.; Burden, E.; Li, F.; MacDonald, E.; Cortes, P. 4D Printed Shape Memory Polymers: Morphology and Fabrication of a Functional Antenna. Recent Prog. Mater. 2022, 4, 109771. [Google Scholar] [CrossRef]
- Shiblee, M.N.I.; Ahmed, K.; Kawakami, M.; Furukawa, H. 4D Printing of Shape-Memory Hydrogels for Soft-Robotic Functions. Adv. Mater. Technol. 2019, 4, 1900071. [Google Scholar] [CrossRef]
- Shan, W.; Chen, Y.; Hu, M.; Qin, S.; Liu, P. 4D printing of shape memory polymer via liquid crystal display (LCD) stereolithographic 3D printing. Mater. Res. Express 2020, 7, 105305. [Google Scholar] [CrossRef]
- Lu, R.; Han, Y.; Zhang, W.; Zhu, X.; Fei, Z.; Hodsden, T.; Anthopoulos, T.; Heeney, M. Alkylated indacenodithieno[3,2-b]thiophene-based all donor ladder-type conjugated polymers for organic thin film transistors. J. Mater. Chem. C 2018, 6, 2004–2009. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, J.; Mu, X.; Chen, H.; Qi, H.J.; Fang, D. Desolvation Induced Origami of Photocurable Polymers by Digit Light Processing. Macromol. Rapid Commun. 2017, 38, 1600625. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Li, Z.; Li, H.; Li, H.; Xiong, Y.; Zhu, X.; Lan, H.; Ge, Q. Fractal-Based Stretchable Circuits via Electric-Field-Driven Microscale 3D Printing for Localized Heating of Shape Memory Polymers in 4D Printing. ACS Appl. Mater. Interfaces 2021, 13, 41414–41423. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Q.; Han, Z.; Zhang, J.; Song, H.; Wang, K.; Song, Z.; Wen, S.; Zhou, Y.; Yan, C.; et al. 4D Printing Strain Self-Sensing and Temperature Self-Sensing Integrated Sensor–Actuator with Bioinspired Gradient Gaps. Adv. Sci. 2020, 7, 2000584. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X. 4D printing reversible actuator with strain self-sensing function via structural design. Compos. Part B Eng. 2021, 211, 108644. [Google Scholar] [CrossRef]
- Teng, X.; Zhang, M.; Mujumdar, A.S. 4D printing: Recent advances and proposals in the food sector. Trends Food Sci. Technol. 2021, 110, 349–363. [Google Scholar] [CrossRef]
- Jiang, Q.; Binks, B.; Meng, Z. Double scaffold networks regulate edible Pickering emulsion gel for designing thermally actuated 4D printing. Food Hydrocoll. 2022, 133, 107969. [Google Scholar] [CrossRef]
- Gıda, A. Dairy Products in Space Nutrition and Potential Processing of Dairy Products with 3D/4D Printers as a Space Food. Submission 2022, 20, 182–188. [Google Scholar]
- Pulatsu, E.; Su, J.-W.; Lin, J.; Lin, M. Factors affecting 3D printing and post-processing capacity of cookie dough. Innov. Food Sci. Emerg. Technol. 2020, 61, 102316. [Google Scholar] [CrossRef]
- He, C.; Zhang, M.; Devahastin, S. Microwave-induced deformation behaviors of 4D printed starch-based food products as affected by edible salt and butter content. Innov. Food Sci. Emerg. Technol. 2021, 70, 102699. [Google Scholar] [CrossRef]
- He, C.; Zhang, M.; Guo, C. 4D printing of mashed potato/purple sweet potato puree with spontaneous color change. Innov. Food Sci. Emerg. Technol. 2020, 59, 102250. [Google Scholar] [CrossRef]
- Phuhongsung, P.; Zhang, M.; Bhandari, B. 4D printing of products based on soy protein isolate via microwave heating for flavor development. Food Res. Int. 2020, 137, 109605. [Google Scholar] [CrossRef] [PubMed]
- Morphlour|Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. Available online: https://dl.acm.org/doi/10.1145/3332165.3347949 (accessed on 26 December 2022).
- 4D Printing: The Technology Making Self-Repairing Clothes a Reality|Verdict. Available online: https://www.verdict.co.uk/4d-printing/ (accessed on 26 December 2022).
- Active Shoes—Self-Assembly Lab. Available online: https://selfassemblylab.mit.edu/active-shoes (accessed on 26 December 2022).
- Movable, A. 4D Printed Dress Made with Kinematics|Fashion, Dresses, 3d Printing Fashion. Available online: https://www.pinterest.com/pin/97601516901009713/ (accessed on 26 December 2022).
- Nervous System Creates 4D-Printed Petals Dress. Available online: https://www.dezeen.com/2016/03/08/nervous-system-4d-3d-printed-kinematic-nylon-petals-dress-fashion/ (accessed on 26 December 2022).
- Self-Assembly Lab. Available online: https://selfassemblylab.mit.edu/ (accessed on 26 December 2022).
- (PDF) Towards Ultra Personalized 4D Printed Shoes. Available online: https://www.researchgate.net/publication/324660035_Towards_Ultra_Personalized_4D_Printed_Shoes (accessed on 26 December 2022).
- Zarek, M.; Layani, M.; Eliazar, S.; Mansour, N.; Cooperstein, I.; Shukrun, E.; Szlar, A.; Cohn, D.; Magdassi, S. 4D printing shape memory polymers for dynamic jewellery and fashionwear. Virtual Phys. Prototyp. 2016, 11, 263–270. [Google Scholar] [CrossRef]
- Nespoli, A.; Bennato, N.; Bassani, E.; Passaretti, F. Use of 4D-printing and shape memory alloys to fabricate customized metal jewels with functional properties. Rapid Prototyp. J. 2021, 28, 805–813. [Google Scholar] [CrossRef]
- Huang, J.; Xia, S.; Li, Z.; Wu, X.; Ren, J. Applications of four-dimensional printing in emerging directions: Review and prospects. J. Mater. Sci. Technol. 2021, 91, 105–120. [Google Scholar] [CrossRef]
- Burela, R.G.; Kamineni, J.N.; Harursampath, D. Chapter 8—Multifunctional polymer composites for 3D and 4D printing. In 3D and 4D Printing of Polymer Nanocomposite Materials; Sadasivuni, K.K., Deshmukh, K., Almaadeed, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 231–257. [Google Scholar] [CrossRef]
- Momeni, F.; Ni, J. Nature-inspired smart solar concentrators by 4D printing. Renew. Energy 2018, 122, 35–44. [Google Scholar] [CrossRef]
- Momeni, F.; Sabzpoushan, S.; Valizadeh, R.; Morad, M.R.; Liu, X.; Ni, J. Plant leaf-mimetic smart wind turbine blades by 4D printing. Renew. Energy 2019, 130, 329–351. [Google Scholar] [CrossRef]
- Military 4D Printing Market Size, Share, Analysis, Trends by 2040. Available online: https://www.alliedmarketresearch.com/military-4d-printing-market-A10662 (accessed on 26 December 2022).
- Adaptive Airpower: Arming America for the Future through 4D Printing. Available online: https://apps.dtic.mil/sti/citations/AD1012775 (accessed on 26 December 2022).
- 4D Printing: MIT Self-Folding Strand. Available online: https://vimeo.com/59185591 (accessed on 26 December 2022).
- Chen, A.Y.; Pegg, E.; Chen, A.; Jin, Z.; Gu, G.X. 4D Printing of Electroactive Materials. Adv. Intell. Syst. 2021, 3, 2100019. [Google Scholar] [CrossRef]
- Kantareddy, S.N.R.; Simpson, T.W.; Ounaies, Z.; Frecker, M. 3D Printing of Shape Changing Polymer Structures: Design and Characterization of Materials. 2016. Available online: https://repositories.lib.utexas.edu/handle/2152/89768 (accessed on 26 December 2022).
- Farid, M.I.; Wu, W.; Liu, X.; Wang, P. Additive manufacturing landscape and materials perspective in 4D printing. Int. J. Adv. Manuf. Technol. 2021, 115, 2973–2988. [Google Scholar] [CrossRef] [PubMed]
- Nikkanen—State-of-the-Art, Challenges, Applications and Fut.pdf. Available online: https://trepo.tuni.fi/bitstream/handle/10024/140485/NikkanenValtteri.pdf?sequence=2 (accessed on 26 December 2022).
- Zhang, Q.; Kuang, X.; Weng, S.; Yue, L.; Roach, D.J.; Fang, D.; Qi, H.J. Shape-Memory Balloon Structures by Pneumatic Multi-material 4D Printing. Adv. Funct. Mater. 2021, 31, 2010872. [Google Scholar] [CrossRef]
- Recent 3D and 4D Intelligent Printing Technologies: A Comparative Review and Future Perspective—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S1877050920309017 (accessed on 29 December 2022).
- Haleem, A.; Javaid, M.; Vaishya, R. 5D printing and its expected applications in Orthopaedics. J. Clin. Orthop. Trauma 2019, 10, 809–810. [Google Scholar] [CrossRef]
- Georgantzinos, S.K.; Giannopoulos, G.I.; Bakalis, A. Additive Manufacturing for Effective Smart Structures: The Idea of 6D Printing. J. Compos. Sci. 2021, 5, 119. [Google Scholar] [CrossRef]
- Vasiliadis, A.V.; Koukoulias, N.; Katakalos, K. From Three-Dimensional (3D)-to 6D-Printing Technology in Orthopedics: Science Fiction or Scientific Reality? J. Funct. Biomater. 2022, 13, 101. [Google Scholar] [CrossRef] [PubMed]
Advantages | Disadvantages |
---|---|
Saves energy, material, cost and time | Complexity |
Sustainable | Requires special programming to adjust the responsiveness |
Rapid production | Lack of literature |
Response to stimulus | Limited options for materials |
Criteria | 3D Printing | 4D Printing |
---|---|---|
Maturity | Sufficiently mature (4 decades) | Not mature |
Body mechanics | Static | Dynamic |
Printing a complex design | Easy and fast | Difficult to print |
Materials | Normal materials | Smart materials |
Manufacturing approach | Parts are printed with a layer-upon-layer technique | Printed part is exposed to a specific stimulus |
Printer/software | 3D printer/software | 4D printer/software |
Properties of programming | Not applied | Mathematical modeling must apply |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldawood, F.K. A Comprehensive Review of 4D Printing: State of the Arts, Opportunities, and Challenges. Actuators 2023, 12, 101. https://doi.org/10.3390/act12030101
Aldawood FK. A Comprehensive Review of 4D Printing: State of the Arts, Opportunities, and Challenges. Actuators. 2023; 12(3):101. https://doi.org/10.3390/act12030101
Chicago/Turabian StyleAldawood, Faisal Khaled. 2023. "A Comprehensive Review of 4D Printing: State of the Arts, Opportunities, and Challenges" Actuators 12, no. 3: 101. https://doi.org/10.3390/act12030101
APA StyleAldawood, F. K. (2023). A Comprehensive Review of 4D Printing: State of the Arts, Opportunities, and Challenges. Actuators, 12(3), 101. https://doi.org/10.3390/act12030101