Brake Pressure Estimation of the Integrated Braking System Considering Vehicle Dynamics
Abstract
:1. Introduction
2. Physical Models
2.1. Electromagnetic Model
2.2. Fluid Dynamics Model
2.3. Vehicle–Road Dynamics Model
3. Estimator Design
4. Vehicle Experiment Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiong, L.; Xu, S.Y.; Yu, Z.P. Optimization of Hydraulic Pressure Control System of Integrated Electro-Hydraulic Brake System Based on Chatter-Compensation. Chin. J. Mech. Eng. 2016, 52, 100–106. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.Y.; Cheng, S.; Chen, X.; Huang, C.; Ping, X.Y.; Wei, L.T. Technologies of control-by-wire and dynamic domain control for automotive chassis. J. Automot. Saf. Energy 2020, 11, 143–160. [Google Scholar]
- Yang, X.; Li, J.; Miao, H.; Shi, Z.T. Hydraulic Pressure Control and Parameter Optimization of Integrated Electro-Hydraulic Brake System. In Proceedings of the 35th of SAE 2017 Brake Colloquium, Orlando, FL, USA, 24–27 September 2017. [Google Scholar]
- Li, J.; Yang, X.; Miao, H.; Shi, Z.T. Co-simulation research of integrated electro-hydraulic braking system. In Proceedings of the SAE 2016 World Congress, Detroit, MI, USA, 21–23 April 2016. [Google Scholar]
- Todeschini, F.; Formentin, S.; Panzani, G.; Corno, M.; Savaresi, S.M.; Zaccarian, L. Nonlinear pressure control for BBW systems via dead-zone and antiwindup compensation. IEEE Trans. Control Syst. Technol. 2015, 24, 1419–1431. [Google Scholar] [CrossRef]
- Gong, X.; Ge, W.; Yan, J.; Zhang, Y.; Gongye, X. Review on the Development, Control Method and Application Prospect of Brake-by-Wire Actuator. Actuators 2020, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Žuraulis, V.; Garbinčius, G.; Skačkauskas, P.; Prentkovskis, O. Experimental Study of Winter Tyre Usage According to Tread Depth and Temperature in Vehicle Braking Performance. Iran. J. Sci. Technol. Trans. Mech. Eng. 2020, 44, 83–91. [Google Scholar] [CrossRef]
- Leiber, T.; Köglsperger, C.; Unterfrauner, V. Modular brake system with integrated functionalities. ATZ Worldw. Emagazine 2011, 113, 20–25. [Google Scholar] [CrossRef]
- Žuraulis, V.; Nagurnas, S.; Pečeliūnas, R.; Pumputis, V.; Skačkauskas, P. The analysis of drivers’ reaction time using cell phone in the case of vehicle stabilization task. Int. J. Occup. Med. Environ. Health. 2018, 31, 1–16. [Google Scholar] [CrossRef]
- Otremba, F.; Romero Navarrete, J.A.; Lozano Guzmán, A.A. Modelling of a Partially Loaded Road Tanker during a Braking-in-a-Turn Maneuver. Actuators 2018, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Castillo, J.J.; Cabrera, J.A.; Guerra, A.J.; Simón, A. A Novel Electrohydraulic Brake System With Tire–Road Friction Estimation and Continuous Brake Pressure Control. IEEE Trans. Ind. Electron. 2016, 63, 1863–1875. [Google Scholar] [CrossRef]
- Li, Q.Y.; Keith, W.B.; Quan, Z. A model-based brake pressure estimation strategy for traction control system. SAE Tech. Pap. 2001, 01, 0595. [Google Scholar]
- O’Dea, K. Anti-Lock Braking Performance and Hydraulic Brake Pressure Estimation. SAE Tech. Pap. Ser. 2005, 1, 1061. [Google Scholar]
- Shi, B.; Xiong, L.; Yu, Z. Pressure Estimation of the Electro-Hydraulic Brake System Based on Signal Fusion. Actuators 2021, 10, 240. [Google Scholar] [CrossRef]
- Shi, B.; Xiong, L.; Yu, Z. Pressure estimation based on vehicle dynamics considering the evolution of the brake linings’ coefficient of friction. Actuators 2021, 10, 76. [Google Scholar] [CrossRef]
- Yang, X.; Chen, L. Dynamic state estimation for the advanced brake system of electric vehicles by using deep recurrent neural networks. IEEE Trans. Ind. Electron. 2019, 67, 9536–9547. [Google Scholar]
- Chen, L.; Yang, X.; Zhang, J.Z.; Na, X.X.; Li, Y.T.; Liu, T.; Cao, D.P.; Wang, F.Y. Levenberg–Marquardt backpropagation training of multilayer neural networks for state estimation of a safety-critical cyber-physical system. IEEE Trans. Ind. Inform. 2017, 14, 3436–3446. [Google Scholar]
- Zhao, X.; Li, L.; Song, J.; Li, C.F.; Gao, X. Linear control of switching valve in vehicle hydraulic control unit based on sensorless solenoid position estimation. IEEE Trans. Ind. Electron. 2016, 63, 4073–4085. [Google Scholar] [CrossRef]
- Allotta, B.; Pugi, L.; Gelli, J.; Lupia, M. Design and Fast Prototyping of a Wearable Safety Device for Divers. IFAC PapersOnLine 2016, 49, 547–552. [Google Scholar] [CrossRef]
- Chen, L.; Hong, W.; Cao, D. High-Precision Hydraulic Pressure Control Based on Linear Pressure-Drop Modulation in Valve Critical Equilibrium State. IEEE Trans. Ind. Electron. 2017, 64, 7984–7993. [Google Scholar]
- Meng, A.; Gao, X.; Li, N.; Garris, C. Study on the Effect of Structural Parameters on the Linear Control Performance of High Speed On-Off Valve Based on Flow Field Analysis. SAE Tech. Pap. Ser. 2020, 1, 1644. [Google Scholar]
- Li, C.; Zhang, J.; Hou, X.; Ji, Y.; Han, J.; He, C.; Hao, J. A Novel Double Redundant Brake-by-Wire System for High Automation Driving Safety: Design, Optimization and Experimental Validation. Actuators 2021, 10, 287. [Google Scholar] [CrossRef]
- Chen, X.; Wei, L.T.; Wang, X.Y.; Li, L.; Wu, Q.; Xiao, L.Y. Hierarchical cooperative control of anti-lock braking and energy regeneration for electromechanical brake-by-wire system. Mech. Syst. Signal Process. 2021, 159, 107796. [Google Scholar] [CrossRef]
- Hu, C.; Wang, R.R.; Wang, Z.J.; Mohammed, C.; Yan, F.J. Integrated optimal dynamics control of 4wd4ws electric ground vehicle with tire-road frictional coefficient estimation. Mech. Syst. Signal Process. 2015, 60, 727–741. [Google Scholar]
- Bogdevičius, M.; Karpenko, M.; Rožytė, D. Methodology for determination coefficients values of the proposed rheological model for the tire tread. In TRANSBALTICA XII: Transportation Science and Technology, Proceedings of the 12th International Conference TRANSBALTICA, Vilnius, Lithuania, 16–17 September 2021; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Jiang, G.R.; Miao, X.L.; Wang, Y.H.; Chen, J.; Li, D.L.; Liu, L.F.; Muhammad, F. Real-time estimation of the pressure in the wheel cylinder with a hydraulic control unit in the vehicle braking control system based on the extended Kalman filter. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 1340–1352. [Google Scholar] [CrossRef]
- Katriniok, A.; Abel, D. Adaptive EKF-based vehicle state estimation with online assessment of local observability. IEEE Trans. Control Syst. Technol. 2016, 24, 1368–1381. [Google Scholar] [CrossRef]
- Pugi, L.; Alfatti, F.; Berzi, L.; Favilli, T.; Pierini, M.; Forrier, B.; D’hondt, T.; Sarrazin, M. Fast modelling and identification of hydraulic brake plants for automotive applications. Int. J. Fluid Power 2020, 21, 169–210. [Google Scholar] [CrossRef]
Symbol | Name |
---|---|
Valve1 | Electrical cylinder decoupling valve |
Valve2 | Electrical cylinder decoupling valve |
Valve3 | Mechanical cylinder decoupling valve |
Valve4 | Mechanical cylinder decoupling valve |
Valve5 | Apply valve |
Valve6 | Apply valve |
Valve7 | Apply valve |
Valve8 | Apply valve |
Valve9 | Release valve |
Valve10 | Release valve |
Valve11 | Release valve |
Valve12 | Release valve |
Valve13 | Test valve |
Valve14 | Pedal feel simulator control valve |
Item | Value |
---|---|
Vehicle type | SUV electric vehicle |
Powertrain type | Front-wheel drive |
Braking system type | IBC |
Steering system type | Electric power steering |
Vehicle mass | 1660 kg |
Wheelbase | 2610 mm |
Distance between the front axle and the center of gravity | 1167 mm |
Distance between the rear axle and the center of gravity | 1443 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wei, L.; Liu, H.; Wu, J.; Li, L. Brake Pressure Estimation of the Integrated Braking System Considering Vehicle Dynamics. Actuators 2022, 11, 329. https://doi.org/10.3390/act11110329
Liu H, Wei L, Liu H, Wu J, Li L. Brake Pressure Estimation of the Integrated Braking System Considering Vehicle Dynamics. Actuators. 2022; 11(11):329. https://doi.org/10.3390/act11110329
Chicago/Turabian StyleLiu, Haichao, Lingtao Wei, Hongqi Liu, Jinjun Wu, and Liang Li. 2022. "Brake Pressure Estimation of the Integrated Braking System Considering Vehicle Dynamics" Actuators 11, no. 11: 329. https://doi.org/10.3390/act11110329
APA StyleLiu, H., Wei, L., Liu, H., Wu, J., & Li, L. (2022). Brake Pressure Estimation of the Integrated Braking System Considering Vehicle Dynamics. Actuators, 11(11), 329. https://doi.org/10.3390/act11110329