Effect of Serotype and Strain Diversity on Dengue Virus Replication in Australian Mosquito Vectors
Abstract
:1. Introduction
2. Results
3. Effects of Mosquito Species, Virus Strain and Incubation Time on DENV Loads
4. Discussion
5. Materials and Methods
5.1. Viruses
5.2. Mosquitoes
5.3. Immunofocus Assay
5.4. Mosquito DENV Challenge Experiments
5.5. Detection of Dengue Virus in Mosquito Tissue by qRT-PCR
5.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gubler, D.J. Dengue, urbanization and globalization: The unholy trinity of the 21(st) century. Trop. Med. Health 2011, 39 (Suppl. 4), 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hare, F.E. The 1897 epidemic of dengue in north Queensland. Aust. Med. Gaz. 1898, 17, 98–107. [Google Scholar]
- Hanna, J.N.; Ritchie, S.A. An apparent recent decline in importations of dengue from Papua New Guinea into north Queensland. Commun. Dis. Intell. Q. Rep. 2009, 33, 34–35. [Google Scholar]
- Warrilow, D.; Northill, J.A.; Pyke, A.T. Sources of dengue viruses imported into Queensland, Australia, 2002–2010. Emerg. Infect. Dis. 2012, 18, 1850–1857. [Google Scholar] [CrossRef] [PubMed]
- Viennet, E.; Ritchie, S.A.; Faddy, H.M.; Williams, C.R.; Harley, D. Epidemiology of dengue in a high-income country: A case study in Queensland, Australia. Parasites Vectors 2014, 7, 379. [Google Scholar] [CrossRef] [Green Version]
- Russell, R.C.; Currie, B.J.; Lindsay, M.D.; Mackenzie, J.S.; Ritchie, S.A.; Whelan, P.I. Dengue and climate change in Australia: Predictions for the future should incorporate knowledge from the past. Med. J. Aust. 2009, 190, 265–268. [Google Scholar] [CrossRef]
- Halstead, S.B. Dengue. Lancet 2007, 370, 1644–1652. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Reiner, R.C., Jr.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef]
- Bonizzoni, M.; Gasperi, G.; Chen, X.; James, A.A. The invasive mosquito species Aedes albopictus: Current knowledge and future perspectives. Trends Parasitol. 2013, 29, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Gratz, N.G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 2004, 18, 215–227. [Google Scholar] [CrossRef]
- Thomas, S.M.; Obermayr, U.; Fischer, D.; Kreyling, J.; Beierkuhnlein, C. Low-temperature threshold for egg survival of a post-diapause and non-diapause European aedine strain, Aedes albopictus (Diptera: Culicidae). Parasite Vectors 2012, 5, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholson, J.; Ritchie, S.A.; Van Den Hurk, A.F. Aedes albopictus (Diptera: Culicidae) as a potential vector of endemic and exotic arboviruses in Australia. J. Med. Entomol. 2014, 51, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Trewin, B.J.; Darbro, J.M.; Jansen, C.C.; Schellhorn, N.A.; Zalucki, M.P.; Hurst, T.P.; Devine, G.J. The elimination of the dengue vector, Aedes aegypti, from Brisbane, Australia: The role of surveillance, larval habitat removal and policy. PLoS Negl. Trop. Dis. 2017, 11, e0005848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beebe, N.W.; Ambrose, L.; Hill, L.A.; Davis, J.B.; Hapgood, G.; Cooper, R.D.; Russell, R.C.; Ritchie, S.A.; Reimer, L.J.; Lobo, N.F.; et al. Tracing the tiger: Population genetics provides valuable insights into the Aedes (Stegomyia) albopictus Invasion of the Australasian Region. PLoS Negl. Trop. Dis. 2013, 7, e2361. [Google Scholar] [CrossRef] [Green Version]
- Sly, A.; Mack, C. Protecting Australia from disease vectors: Exotic mosquito management at the border. Microbiol. Aust. 2018, 39, 108–110. [Google Scholar] [CrossRef]
- Muzari, M.O.; Devine, G.; Davis, J.; Crunkhorn, B.; van den Hurk, A.; Whelan, P.; Russell, R.; Walker, J.; Horne, P.; Ehlers, G.; et al. Holding back the tiger: Successful control program protects Australia from Aedes albopictus expansion. PLoS Negl. Trop. Dis. 2017, 11, e0005286. [Google Scholar] [CrossRef]
- Halstead, S.B.; Katzelnick, L.C.; Russell, P.K.; Markoff, L.; Aguiar, M.; Dans, L.R.; Dans, A.L. Ethics of a partially effective dengue vaccine: Lessons from the Philippines. Vaccine 2020, 38, 5572–5576. [Google Scholar] [CrossRef]
- Guy, B.; Ooi, E.E.; Ramos-Castaneda, J.; Thomas, S.J. When can one vaccinate with a live vaccine after wild-type dengue infection? Vaccines 2020, 8, 174. [Google Scholar] [CrossRef] [Green Version]
- WHO. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Hoffmann, A.A.; Ross, P.A.; Rasic, G. Wolbachia strains for disease control: Ecological and evolutionary considerations. Evol. Appl. 2015, 8, 751–768. [Google Scholar] [CrossRef]
- Gubler, D.J.; Rosen, L. Variation among geographic strains of Aedes albopictus in susceptibility to infection with dengue viruses. Am. J. Trop. Med. Hyg. 1976, 25, 318–325. [Google Scholar] [CrossRef]
- Tesh, R.B.; Gubler, D.J.; Rosen, L. Variation among goegraphic strains of Aedes albopictus in susceptibility to infection with chikungunya virus. Am. J. Trop. Med. Hyg. 1976, 25, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Gubler, D.J.; Nalim, S.; Tan, R.; Saipan, H.; Sulianti Saroso, J. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti. Am. J. Trop. Med. Hyg. 1979, 28, 1045–1052. [Google Scholar] [CrossRef]
- Vazeille-Falcoz, M.; Mousson, L.; Rodhain, F.; Chungue, E.; Failloux, A.B. Variation in oral susceptibility to dengue type 2 virus of populations of Aedes aegypti from the islands of Tahiti and Moorea, French Polynesia. Am. J. Trop. Med. Hyg. 1999, 60, 292–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, S.C.; Vasilakis, N. Molecular evolution of dengue viruses: Contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect. Genet. Evol. 2009, 9, 523–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, M.; Johansson, M.A. The incubation periods of Dengue viruses. PLoS ONE 2012, 7, e50972. [Google Scholar] [CrossRef] [PubMed]
- Christofferson, R.C.; Mores, C.N. Estimating the magnitude and direction of altered arbovirus transmission due to viral phenotype. PLoS ONE 2011, 6, e16298. [Google Scholar] [CrossRef] [PubMed]
- Rico-Hesse, R.; Harrison, L.M.; Salas, R.A.; Tovar, D.; Nisalak, A.; Ramos, C.; Boshell, J.; de Mesa, M.T.; Nogueira, R.M.; da Rosa, A.T. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 1997, 230, 244–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Moura, A.J.; de Melo Santos, M.A.; Oliveira, C.M.; Guedes, D.R.; de Carvalho-Leandro, D.; da Cruz Brito, M.L.; Rocha, H.D.; Gomez, L.F.; Ayres, C.F. Vector competence of the Aedes aegypti population from Santiago Island, Cape Verde, to different serotypes of dengue virus. Parasites Vectors 2015, 8, 114. [Google Scholar] [CrossRef] [Green Version]
- Poole-Smith, B.K.; Hemme, R.R.; Delorey, M.; Felix, G.; Gonzalez, A.L.; Amador, M.; Hunsperger, E.A.; Barrera, R. Comparison of vector competence of Aedes mediovittatus and Aedes aegypti for dengue virus: Implications for dengue control in the Caribbean. PLoS Negl. Trop. Dis. 2015, 9, e0003462. [Google Scholar] [CrossRef]
- Fontaine, A.; Lequime, S.; Moltini-Conclois, I.; Jiolle, D.; Leparc-Goffart, I.; Reiner, R.C.; Lambrechts, L. Epidemiological significance of dengue virus genetic variation in mosquito infection dynamics. PLoS Pathog. 2018, 14, e1007187. [Google Scholar] [CrossRef] [Green Version]
- Novelo, M.; Hall, M.D.; Pak, D.; Young, P.R.; Holmes, E.C.; McGraw, E.A. Intra-host growth kinetics of dengue virus in the mosquito Aedes aegypti. PLoS Pathog. 2019, 15, e1008218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehorn, J.; Kien, D.T.; Nguyen, N.M.; Nguyen, H.L.; Kyrylos, P.P.; Carrington, L.B.; Tran, C.N.; Quyen, N.T.; Thi, L.V.; Le Thi, D.; et al. Comparative susceptibility of Aedes albopictus and Aedes aegypti to dengue virus infection after feeding on blood of viremic humans: Implications for public health. J. Infect. Dis. 2015, 212, 1182–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messina, J.P.; Brady, O.J.; Scott, T.W.; Zou, C.; Pigott, D.M.; Duda, K.A.; Bhatt, S.; Katzelnick, L.; Howes, R.E.; Battle, K.E.; et al. Global spread of dengue virus types: Mapping the 70 year history. Trends Microbiol. 2014, 22, 138–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, P.M.; Rico-Hesse, R. Differential susceptibility of Aedes aegypti to infection by the American and Southeast Asian genotypes of dengue type 2 virus. Vector Borne Zoonotic Dis. 2001, 1, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Rohani, A.; Wong, Y.C.; Zamre, I.; Lee, H.L.; Zurainee, M.N. The effect of extrinsic incubation temperature on development of dengue serotype 2 and 4 viruses in Aedes aegypti (L.). Southeast Asian J. Trop. Med. Public Health 2009, 40, 942–950. [Google Scholar]
- Tjaden, N.B.; Thomas, S.M.; Fischer, D.; Beierkuhnlein, C. Extrinsic incubation period of dengue: Knowledge, backlog, and applications of temperature dependence. PLoS Negl. Trop. Dis. 2013, 7, e2207. [Google Scholar] [CrossRef] [Green Version]
- Watts, D.M.; Burke, D.S.; Harrison, B.A.; Whitmire, R.E.; Nisalak, A. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am. J. Trop. Med. Hyg. 1987, 36, 143–152. [Google Scholar] [CrossRef]
- Carrington, L.B.; Armijos, M.V.; Lambrechts, L.; Scott, T.W. Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti. PLoS Negl. Trop. Dis. 2013, 7, e2190. [Google Scholar] [CrossRef]
- Ye, Y.H.; Chenoweth, S.F.; Carrasco, A.M.; Allen, S.L.; Frentiu, F.D.; van den Hurk, A.F.; Beebe, N.W.; McGraw, E.A. Evolutionary potential of the extrinsic incubation period of dengue virus in Aedes aegypti. Evolution 2016, 70, 2459–2469. [Google Scholar] [CrossRef]
- Reiner, R.C., Jr.; Perkins, T.A.; Barker, C.M.; Niu, T.; Chaves, L.F.; Ellis, A.M.; George, D.B.; Le Menach, A.; Pulliam, J.R.; Bisanzio, D.; et al. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. J. R. Soc. Interface 2013, 10, 20120921. [Google Scholar] [CrossRef] [Green Version]
- Lambrechts, L.; Scott, T.W.; Gubler, D.J. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 2010, 4, e646. [Google Scholar] [CrossRef] [PubMed]
- Vazeille, M.; Rosen, L.; Mousson, L.; Failloux, A.B. Low oral receptivity for dengue type 2 viruses of Aedes albopictus from Southeast Asia compared with that of Aedes aegypti. Am. J. Trop. Med. Hyg. 2003, 68, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Turell, M.J.; Beaman, J.R.; Tammariello, R.F. Susceptibility of selected strains of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to chikungunya virus. J. Med. Entomol. 1992, 29, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, N.M.; Kien, D.T.; Clapham, H.; Aguas, R.; Trung, V.T.; Chau, T.N.; Popovici, J.; Ryan, P.A.; O’Neill, S.L.; McGraw, E.A.; et al. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci. Trans. Med. 2015, 7, 279ra237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.H.; Nguyen, H.L.; Nguyen, T.Y.; Vu, S.N.; Tran, N.D.; Le, T.N. Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control. Parasites Vectors 2015, 8, 563. [Google Scholar] [CrossRef] [Green Version]
- Duong, V.; Lambrechts, L.; Paul, R.E.; Ly, S.; Lay, R.S.; Long, K.C.; Huy, R.; Tarantola, A.; Scott, T.W.; Sakuntabhai, A.; et al. Asymptomatic humans transmit dengue virus to mosquitoes. Proc. Natl. Acad. Sci. USA 2015, 112, 14688–14693. [Google Scholar] [CrossRef] [Green Version]
- Henchal, E.A.; Gentry, M.K.; McCown, J.M.; Brandt, W.E. Dengue virus-specific and flavivirus group determinants identified with monoclonal antibodies by indirect immunofluorescence. Am. J. Trop. Med. Hyg. 1982, 31, 830–836. [Google Scholar] [CrossRef]
- Terradas, G.; McGraw, E.A. Wolbachia-mediated virus blocking in the mosquito vector Aedes aegypti. Curr. Opin. Insect Sci. 2017, 22, 37–44. [Google Scholar] [CrossRef]
Serotype | Strain | Country of Origin | Date of Isolation |
---|---|---|---|
DENV-1 | NC483 | New Caledonia | 2008 |
ET243 * | Timor-Leste | 2013 | |
DENV-2 | VN130604 | Vietnam | 2002 |
55763 | Timor-Leste | 1985 | |
DENV-3 | ET-3 * | Timor-Leste | 2000 |
DENV-4 | 31298 | Cook Islands | 1988 |
MY1261 | Myanmar | 2000 | |
NC-39 | New Caledonia | 2009 |
Mosquito Infection Rate (n Tested) at Various Days Post Exposure (dpe) to Dengue Virus | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
3 dpe | 6 dpe | 10 dpe | 14 dpe | |||||||
Mosquito | Serotype | Strain | Bodies | Legs/Wings | Bodies | Legs/Wings | Bodies | Legs/Wings | Bodies | Legs/Wings |
Ae. aegypti | DENV-1 | NC-483 | 15 (20) | 0 (20) | 40 (20) | 25 (20) | 50 (20) | 25 (20) | 70 (20) | 25 (20) |
ET-243 | 0 (20) | 0 (20) | 5 (20) | 0 (20) | 30 (20) | 25 (20) | nt | nt | ||
DENV-2 | VN-130604 | 5 (20) | 0 (20) | 10 (20) | 5 (20) | 45 (20) | 40 (20) | 35 (20) | 20 (20) | |
55763 | 5 (20) | 0 (20) | 30 (20) | 10 (20) | 30 (20) | 20 (20) | 40 (20) | 25 (20) | ||
DENV-3 | 31298 | 5 (20) | 0 (20) | 5 (20) | 5 (20) | 10 (20) | 5 (20) | 25 (20) | 20 (20) | |
ET-3 | 0 (20) | 0 (20) | 0 (20) | 0 (20) | 20 (20) | 5 (20) | 25 (20) | 10 (20) | ||
DENV-4 | NC-39 | 0 (20) | 0 (20) | 5 (20) | 0 (20) | 10 (20) | 5 (20) | 30 (20) | 10 (20) | |
MY-1261 | 5 (20) | 0 (20) | 15 (20) | 10 (20) | 25 (20) | 20 (20) | 25 (20) | 20 (20) | ||
Ae. albopictus | DENV-1 | NC-483 | 0 (20) | 0 (20) | 40 (20) | 20 (20) | 40 (20) | 20 (20) | 55 (20) | 30 (20) |
ET-243 | 0 (20) | 0 (20) | 0 (20) | 0 (20) | 15 (20) | 10 (20) | 25 (20) | 15 (20) | ||
DENV-2 | VN-130604 | 5 (20) | 0 (20) | 10 (20) | 0 (20) | 35 (20) | 30 (20) | 40 (20) | 30 (20) | |
55763 | 5 (20) | 0 (20) | 15 (20) | 10 (20) | 25 (20) | 10 (20) | 20 (20) | 10 (20) | ||
DENV-3 | 31298 | 0 (20) | 0 (20) | 0 (20) | 0 (20) | 10 (20) | 10 (20) | 45 (20) | 20 (20) | |
ET-3 | 0 (20) | 0 (20) | 0 (20) | 0 (20) | 10 (20) | 5 (20) | 40 (20) | 10 (20) | ||
DENV-4 | NC-39 | 0 (20) | 0 (20) | 0 (20) | 0 (20) | 0 (20) | 0 (20) | 10 (20) | 5 (20) | |
MY-1261 | 10 (20) | 0 (20) | 10 (20) | 10 (20) | 15 (20) | 10 (20) | 15 (20) | 10 (20) |
Effect | Body (Error df = 37) | Legs/Wings (Error df = 26) | ||||
---|---|---|---|---|---|---|
df | F | p-Value † | df | F | p-Value † | |
Incubation period | 3 | 4.09 | 0.013 | 2 * | 19.66 | <0.001 |
Mosquito Species | 1 | 0.48 | 0.49 | 1 | 2.96 | 0.097 |
Virus strain | 7 | 4.12 | 0.002 | 7 | 4.77 | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekwudu, O.; Marquart, L.; Webb, L.; Lowry, K.S.; Devine, G.J.; Hugo, L.E.; Frentiu, F.D. Effect of Serotype and Strain Diversity on Dengue Virus Replication in Australian Mosquito Vectors. Pathogens 2020, 9, 668. https://doi.org/10.3390/pathogens9080668
Ekwudu O, Marquart L, Webb L, Lowry KS, Devine GJ, Hugo LE, Frentiu FD. Effect of Serotype and Strain Diversity on Dengue Virus Replication in Australian Mosquito Vectors. Pathogens. 2020; 9(8):668. https://doi.org/10.3390/pathogens9080668
Chicago/Turabian StyleEkwudu, O’mezie, Louise Marquart, Lachlan Webb, Kym S. Lowry, Gregor J. Devine, Leon E. Hugo, and Francesca D. Frentiu. 2020. "Effect of Serotype and Strain Diversity on Dengue Virus Replication in Australian Mosquito Vectors" Pathogens 9, no. 8: 668. https://doi.org/10.3390/pathogens9080668
APA StyleEkwudu, O., Marquart, L., Webb, L., Lowry, K. S., Devine, G. J., Hugo, L. E., & Frentiu, F. D. (2020). Effect of Serotype and Strain Diversity on Dengue Virus Replication in Australian Mosquito Vectors. Pathogens, 9(8), 668. https://doi.org/10.3390/pathogens9080668