Culture-Independence for Surveillance and Epidemiology
Abstract
:1. Introduction
1.1. The Advent of Culture Independence
1.2. The Clinical Relevance of Microbial Diversity
2. The Example of Wound Infections
2.1. Infection Rates
2.2. The Identity of the Isolates from the Wounds
2.3. The Identity and Quantity of Bacteria from Environmental Surveillance
3. Hope and Change
4. Conclusions
Acknowledgments
Disclaimer
Conflicts of Interest
References
- Wagner, M.; Amann, R.; Lemmer, H.; Schleifer, K.H. Probing activated sludge with oligonucleotides specific for proteobacteria: Inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 1993, 59, 1520–1525. [Google Scholar]
- Versalovic, J. Manual of Clinical Microbiology; ASM Press: Washington, DC, USA, 2011. [Google Scholar]
- Lester, J.N.; Perry, R.; Dadd, A.H. Cultivation of a mixed bacterial population of sewage origin in the chemostat. Water Res. 1979, 13, 545–551. [Google Scholar] [CrossRef]
- Ordal, E.J.; Palmer, F.E. Steady-state enrichment cultures of bacteria. In Continuous Culture of Microorganisms; Malek, I., Ed.; Academic Press: New York, NY, USA, 1964; pp. 133–139. [Google Scholar]
- Kogure, K.; Simidu, U.; Taga, N. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 1979, 25, 415–420. [Google Scholar] [CrossRef]
- Austin, B.; Goodfellow, M.; Dickinson, C.H. Numerical taxonomy of phylloplane bacteria isolated from Lolium perenne. J. Gen. Microbiol. 1978, 104, 139–155. [Google Scholar] [CrossRef]
- Staley, J.T.; Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 1985, 39, 321–346. [Google Scholar] [CrossRef]
- Woese, C.R.; Fox, G.E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci. USA 1977, 74, 5088–5090. [Google Scholar] [CrossRef]
- Heineman, H.S.; Chawla, J.K.; Lopton, W.M. Misinformation from sputum cultures without microscopic examination. J. Clin. Microbiol. 1977, 6, 518–527. [Google Scholar]
- Allen, E.E.; Banfield, J.F. Community genomics in microbial ecology and evolution. Nat. Rev. Microbiol. 2005, 3, 489–498. [Google Scholar] [CrossRef]
- Amann, R.I.; Binder, B.J.; Olson, R.J.; Chisholm, S.W.; Devereux, R.; Stahl, D.A. Combination of 16s ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial-populations. Appl. Environ. Microbiol. 1990, 56, 1919–1925. [Google Scholar]
- Schloss, P.D.; Handelsman, J. Metagenomics for studying unculturable microorganisms: Cutting the Gordian knot. Genome Biol. 2005, 6, e229. [Google Scholar] [CrossRef]
- Special Issue: The Gut Microbiota. Science 2012, 336, 1197–1352.
- Fodor, A.A.; Desantis, T.Z.; Wylie, K.M.; Badger, J.H.; Ye, Y.; Hepburn, T.; Hu, P.; Sodergren, E.; Liolios, K.; Huot-Creasy, H.; et al. The “most wanted” taxa from the human microbiome for whole genome sequencing. PLoS One 2012, 7, e41294. [Google Scholar] [CrossRef]
- Goodman, A.L.; Kallstrom, G.; Faith, J.J.; Reyes, A.; Moore, A.; Dantas, G.; Gordon, J.I. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl. Acad. Sci. USA 2011, 108, 6252–6257. [Google Scholar]
- Tuttle, M.S.; Mostow, E.; Mukherjee, P.; Hu, F.Z.; Melton-Kreft, R.; Ehrlich, G.D.; Dowd, S.E.; Ghannoum, M.A. Characterization of bacterial communities in venous insufficiency wounds by use of conventional culture and molecular diagnostic methods. J. Clin. Microbiol. 2011, 49, 3812–3819. [Google Scholar] [CrossRef]
- Shade, A.; Hogan, C.S.; Klimowicz, A.K.; Linske, M.; McManus, P.S.; Handelsman, J. Culturing captures members of the soil rare biosphere. Environ. Microbiol. 2012, 14, 2247–2252. [Google Scholar] [CrossRef]
- Smith, C.J.; Osborn, A.M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 2009, 67, 6–20. [Google Scholar] [CrossRef]
- Harris, K.A.; Hartley, J.C. Development of broad-range 16S rDNA PCR for use in the routine diagnostic clinical microbiology service. J. Med. Microbiol. 2003, 52, 685–691. [Google Scholar]
- Barczak, A.K.; Gomez, J.E.; Kaufmann, B.B.; Hinson, E.R.; Cosimi, L.; Borowsky, M.L.; Hung, D.T. RNA signatures allow rapid identification of pathogens and antibiotic susceptibilities. Proc. Natl. Acad. Sci. USA 2012, 109, 6217–6222. [Google Scholar]
- Peter, H.; Berggrav, K.; Thomas, P.; Pfeifer, Y.; Witte, W.; Templeton, K.; Bachmann, T.T. Direct detection and genotyping of Klebsiella pneumoniae carbapenemases from urine by use of a new DNA microarray test. J. Clin. Microbiol. 2012, 50, 3990–3998. [Google Scholar] [CrossRef]
- Ballarini, A.; Segata, N.; Huttenhower, C.; Jousson, O. Simultaneous quantification of multiple bacteria by the BactoChip microarray designed to target species-specific marker genes. PLoS One 2013, 8, e55764. [Google Scholar]
- Morgan, M.A. Ten years of experience with peptide nucleic acid fluorescent in situ hybridization in the clinical microbiology laboratory. Clin. Microbiol. Newsl. 2013, 35, 79–83. [Google Scholar] [CrossRef]
- Loonen, A.J.M.; Jansz, A.R.; Stalpers, J.; Wolffs, P.F.G.; van den Brule, A.J.C. An evaluation of three processing methods and the effect of reduced culture times for faster direct identification of pathogens from BacT/ALERT blood cultures by MALDI-TOF MS. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1575–1583. [Google Scholar] [CrossRef]
- Chen, J.H.; Ho, P.L.; Kwan, G.S.; She, K.K.; Siu, G.K.; Cheng, V.C.; Yam, W.C. Direct bacterial identification in positive blood cultures using two commercial MALDI-TOF mass spectrometry systems. J. Clin. Microbiol. 2013. [Google Scholar] [CrossRef]
- Köhling, H.L.; Bittner, A.; Müller, K.D.; Buer, J.; Becker, M.; Rübben, H.; Mosel, F. Direct identification of bacteria in urine samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and relevance of defensins as interfering factors. J. Med. Microbiol. 2012, 61, 339–344. [Google Scholar] [CrossRef]
- Joo, E.J.; Kang, C.I.; Ha, Y.E.; Park, S.Y.; Kang, S.J.; Wi, Y.M.; Lee, N.Y.; Chung, D.R.; Peck, K.R.; Song, J.H. Impact of inappropriate empiric antimicrobial therapy on outcome in Pseudomonas aeruginosa bacteraemia: A stratified analysis according to sites of infection. Infection 2011, 39, 309–318. [Google Scholar] [CrossRef]
- Davis, M.E.; Anderson, D.J.; Sharpe, M.; Chen, L.F.; Drew, R.H. Constructing unit-specific empiric treatment guidelines for catheter-related and primary bacteremia by determining the likelihood of inadequate therapy. Infect. Control. Hosp. Epidemiol. 2012, 33, 416–420. [Google Scholar] [CrossRef]
- Ehrlich, G.D.; DeMeo, P.; Palmer, M.; Sauber, T.J.; Altman, D.; Altman, G.; Stoodley, P. Culture-negative infections in orthopedic surgery. In Culture Negative Orthopedic Biofilm Infections; Springer: Berlin/Heidelberg, Germany, 2012; pp. 17–27. [Google Scholar]
- Ehrlich, G.D.; DeMeo, P.J.; Costerton, J.W. The problem of culture-negative infections. In Culture Negative Orthopedic Biofilm Infections; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–15. [Google Scholar]
- Al Masalma, M.; Armougom, F.; Scheld, W.M.; Dufour, H.; Roche, P.H.; Drancourt, M.; Raoult, D. The expansion of the microbiological spectrum of brain abscesses with use of multiple 16S ribosomal DNA sequencing. Clin. Infect. Dis. 2009, 48, 1169–1178. [Google Scholar] [CrossRef]
- Al Masalma, M.; Lonjon, M.; Richet, H.; Dufour, H.; Roche, P.H.; Drancourt, M.; Fournier, P.E. Metagenomic analysis of brain abscesses identifies specific bacterial associations. Clin. Infect. Dis. 2012, 54, 202–210. [Google Scholar] [CrossRef]
- Siqueira, J.F., Jr.; Rôças, I.N. As-yet-uncultivated oral bacteria: Breadth and association with oral and extra-oral diseases. J. Oral Microbiol. 2013. [Google Scholar] [CrossRef] [Green Version]
- Rogers, G.B.; Marsh, P.; Stressmann, A.F.; Allen, C.E.; Daniels, T.V.; Carroll, M.P.; Bruce, K.D. The exclusion of dead bacterial cells is essential for accurate molecular analysis of clinical samples. Clin. Microbiol. Infect. 2010, 16, 1656–1658. [Google Scholar] [CrossRef]
- Yao, G.J.; Gong, J.; Zhang, G.; Li, C.C.; Liu, Z.; Du, W.; Xu, G.; Wei, K. Resolution of intracerebral Bacillus cereus infection following open neck injury after comprehensive treatment. Afr. J. Microbiol. Res. 2012, 6, 1624–1628. [Google Scholar]
- Sontakke, S.; Cadenas, M.B.; Maggi, R.G.; Diniz, P.P.V.P.; Breitschwerdt, E.B. Use of broad range 16S rDNA PCR in clinical microbiology. J. Microbiol. Methods 2009, 76, 217–225. [Google Scholar]
- Shaw, G.B. Man and Superman; The University Press: Cambridge, MA, USA, 1903. [Google Scholar]
- Rastogi, S.; Shah, R.; Perlman, J.; Bhutada, A.; Grossman, S.; Pagala, M.; Lazzaro, M. Pattern of bacterial colonization in a new neonatal intensive care unit and its association with infections in infants. Am. J. Infect. Control 2012, 40, 512–515. [Google Scholar] [CrossRef]
- Weber, D.J.; Rutala, W.A.; Miller, M.B.; Huslage, K.; Sickbert-Bennett, E. Role of hospital surfaces in the transmission of emerging health care-associated pathogens: Norovirus, Clostridium difficile, and Acinetobacter species. Am. J. Infect. Control 2010, 38, S25–S33. [Google Scholar] [CrossRef]
- Samore, M.H.; Venkataraman, L.; DeGirolami, P.C.; Arbeit, R.D.; Karchmer, A.W. Clinical and molecular epidemiology of sporadic and clustered cases of nosocomial Clostridium difficile diarrhea. Am. J. Med. 1996, 100, 32–40. [Google Scholar] [CrossRef]
- Fawley, W.N.; Parnell, P.; Verity, P.; Freeman, J.; Wilcox, M.H. Molecular epidemiology of endemic Clostridium difficile infection and the significance of subtypes of the United Kingdom epidemic strain (PCR ribotype 1). J. Clin. Microbiol. 2005, 43, 2685–2696. [Google Scholar] [CrossRef]
- Ayliffe, G.A. Role of the environment of the operating suite in surgical wound infection. Rev. Infect. Dis. 1991, 13, S800–S804. [Google Scholar] [CrossRef]
- Cutting, K.F.; White, R.J. Criteria for identifying wound infection—Revisited. Ostomy Wound Manag. 2005, 51, 28–34. [Google Scholar]
- Cook, L. Wound assessment: Exploring competency and current practice. Br. J. Community Nurs. Wound Care Suppl. 2011, 16, S34–S40. [Google Scholar]
- Johnson and Johnson Company. Applied Wound Management Assessment and Continuation Chart; Johnson and Johnson Company: New Brunswick, NJ, USA, 2004. [Google Scholar]
- Centers for Medicare and Medicaid Services. OASIS-C; 24 March 2012. Available online: www.cms.gov (accessed on 28 August 2013).
- Reddy, M.; Gill, S.S.; Wu, W.; Kalkar, S.R.; Rochon, P.A. Does this patient have an infection of a chronic wound? JAMA 2012, 307, 605–611. [Google Scholar] [CrossRef]
- Falanga, V.; Grinnell, F.; Gilchrest, B.; Maddox, Y.T.; Moshell, A. Workshop on the pathogenesis of chronic wounds. J. Invest. Dermatol. 1994, 102, 125–127. [Google Scholar]
- Robson, M.C.; Maggi, S.P.; Smith, P.D.; Wassermann, R.J.; Mosiello, G.C.; Hill, D.P.; Cooper, D.M. Ease of wound closure as an endpoint of treatment efficacy. Wound Repair Regen. 1999, 7, 90–96. [Google Scholar] [CrossRef]
- Patel, G.K. How to diagnose and treat haemorrhagic skin necrosis. Wounds UK 2007, 3, 40–54. [Google Scholar]
- Gardner, S.E.; Frantz, R.A.; Doebbeling, B.N. The validity of the clinical signs and symptoms used to identify localized chronic wound infection. Wound Repair Regen. 2001, 9, 178–186. [Google Scholar] [CrossRef]
- Moore, K.; Hall, V.; Paull, A.; Morris, T.; Brown, S.; McCulloch, D.; Richardson, M.C.; Harding, K.G. Surface bacteriology of venous leg ulcers and healing outcome. J. Clin. Pathol. 2010, 63, 830–834. [Google Scholar] [CrossRef]
- Kaftandzieva, A.; Cekovska, Z.; Kaftandziev, I.; Petrovska, M.; Panovski, N. Bacteriology of wound—Clinical utility of gram stain microscopy and the correlation with culture. Maced. J. Med. Sci. 2012, 5, 72–77. [Google Scholar]
- Patten, H. “Identifying wound infection: Taking a swab.”. Available online: http://www.wounds-uk.com/pdf/content_9492.pdf (accessed on 18 September 2013).
- Bonham, P.A. Swab cultures for diagnosing wound infections: A literature review and clinical guideline. J. Wound Ostomy Cont. 2009, 36, 389–395. [Google Scholar] [CrossRef]
- Gardner, S.E.; Frantz, R.A.; Saltzman, C.L.; Hillis, S.L.; Park, H.; Scherubel, M. Diagnostic validity of three swab techniques for identifying chronic wound infection. Wound Repair Regen. 2006, 14, 548–557. [Google Scholar] [CrossRef]
- Levine, N.S.; Lindberg, R.B.; Mason, A.D., Jr.; Pruitt, B.A., Jr. The quantitative swab culture and smear: A quick, simple method for determining the number of viable aerobic bacteria on open wounds. J. Trauma Acute Care Surg. 1976, 16, 89–94. [Google Scholar] [CrossRef]
- Lipsky, B.A.; Berendt, A.R.; Deery, H.G.; Embil, J.M.; Joseph, W.S.; Karchmer, A.W.; LeFrock, J.L.; Lew, D.P.; Mader, J.T.; Horden, C.; et al. Diagnosis and treatment of diabetic foot infections. Clin. Infect. Dis. 2004, 39, 885–910. [Google Scholar] [CrossRef]
- Angel, D.E.; Lloyd, P.; Carville, K.; Santamaria, N. The clinical efficacy of two semi-quantitative wound-swabbing techniques in identifying the causative organism(s) in infected cutaneous wounds. Int. Wound J. 2011, 8, 176–185. [Google Scholar] [CrossRef]
- Robson, M.C. Infection in the surgical patient: An imbalance in the normal equilibrium. Clin. Plast. Surg. 1979, 6, 493–503. [Google Scholar]
- Kandula, S.; Zenilman, J.M.; Melendez, J.H.; Lazarus, G.S. New frontiers of molecular microbiology in wound healing. In Advances in Wound Care; Sen, C.K., Ed.; Mary Ann Liebert, Inc.: New Rochelle, NY, USA, 2010; Volume 1, pp. 281–286. [Google Scholar]
- Dupont, C.; Sivadon‐Tardy, V.; Bille, E.; Dauphin, B.; Beretti, J.L.; Alvarez, A.S.; Carbonnelle, E. Identification of clinical coagulase‐negative staphylococci, isolated in microbiology laboratories, by matrix‐assisted laser desorption/ionization‐time of flight mass spectrometry and two automated systems. Clin. Microbiol. Infect. 2010, 16, 998–1004. [Google Scholar]
- Facklam, R.; Elliott, J.A. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin. Microbiol. Rev. 1995, 8, 479–495. [Google Scholar]
- Facklam, R. What happened to the streptococci: Overview of taxonomic and nomenclature changes. Clin. Microbiol. Rev. 2002, 15, 613–630. [Google Scholar] [CrossRef]
- Huebner, J.; Goldmann, D.A. Coagulase-negative staphylococci: Role as pathogens. Annu. Rev. Med. 1999, 50, 223–236. [Google Scholar] [CrossRef]
- Khasriya, R.; Sathiananthamoorthy, S.; Ismail, S.; Kelsey, M.; Wilson, M.; Rohn, J.L.; Malone-Lee, J. Spectrum of bacterial colonization associated with urothelial cells from patients with chronic lower urinary tract symptoms. J. Clin. Microbiol. 2013, 51, 2054–2062. [Google Scholar] [CrossRef]
- Kleiner, E.; Monk, A.B.; Archer, G.L.; Forbes, B.A. Clinical significance of Staphylococcus lugdunensis isolated from routine cultures. Clin. Infect. Dis. 2010, 51, 801–803. [Google Scholar] [CrossRef]
- Kline, K.A.; Schwartz, D.J.; Gilbert, N.M.; Hultgren, S.J.; Lewis, A.L. Immune modulation by group B Streptococcus influences host susceptibility to urinary tract infection by uropathogenic Escherichia coli. Infect. Immun. 2012, 80, 4186–4194. [Google Scholar] [CrossRef]
- Klotchko, A.; Wallace, M.R.; Licitra, C.; Sieger, B. Staphylococcus lugdunensis: An emerging pathogen. South. Med. J. 2011, 104, 509–514. [Google Scholar] [CrossRef]
- Kobayashi, K.; Kami, M.; Ikeda, M.; Kishi, Y.; Murashige, N.; Tanosaki, R.; Takaue, Y. Fulminant septicemia caused by Bacillus cereus following reduced-intensity umbilical cord blood transplantation. Haematologica 2005, 90, ECR06–ECR06. [Google Scholar]
- Nickel, J.C.; Xiang, J. Clinical significance of nontraditional bacterial uropathogens in the management of chronic prostatitis. J. Urol. 2008, 179, 1391–1395. [Google Scholar] [CrossRef]
- Papapetropoulos, N.; Papapetropoulou, M.; Vantarakis, A. Abscesses and wound infections due to Staphylococcus lugdunensis: Report of 16 cases. Infection 2013, 41, 525–528. [Google Scholar] [CrossRef]
- Peters, B.M.; Jabra-Rizk, M.A.; Graeme, A.O.; Costerton, J.W.; Shirtliff, M.E. Polymicrobial interactions: Impact on pathogenesis and human disease. Clin. Microbiol. Rev. 2012, 25, 193–213. [Google Scholar] [CrossRef]
- Xu, Y.; Moser, C.; Al-Soud, W.A.; Sørensen, S.; Høiby, N.; Nielsen, P.H.; Thomsen, T.R. Culture-dependent and-independent investigations of microbial diversity on urinary catheters. J. Clin. Microbiol. 2012, 50, 3901–3908. [Google Scholar] [CrossRef]
- Wolcott, R.D.; Gontcharova, V.; Sun, Y.; Dowd, S.E. Evaluation of the bacterial diversity among and within individual venous leg ulcers using bacterial tag-encoded FLX and titanium amplicon pyrosequencing and metagenomic approaches. BMC Microbiol. 2009, 9, e226. [Google Scholar] [CrossRef]
- Dowd, S.E.; Wolcott, R.D.; Kennedy, J.; Jones, C.; Cox, S.B. Molecular diagnostics and personalised medicine in wound care: Assessment of outcomes. J. Wound Care 2011, 20, 234–239. [Google Scholar]
- Gontcharova, V.; Youn, E.; Sun, Y.; Wolcott, R.D.; Dowd, S.E. A comparison of bacterial composition in diabetic ulcers and contralateral intact skin. Open Microbiol. J. 2010, 4, 8–19. [Google Scholar] [CrossRef]
- Wolcott, R.D.; Gontcharova, V.; Sun, Y.; Zischakau, A.; Dowd, S.E. Bacterial diversity in surgical site infections: Not just aerobic cocci any more. J. Wound Care 2009, 18, 317–323. [Google Scholar]
- Percival, S.L.; Dowd, S.E. The microbiology of wounds. In Microbiology of Wounds; Percival, S., Cutting, K., Eds.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Shin, J.A.; Chang, Y.S.; Kim, H.J.; Kim, S.K.; Chang, J.; Ahn, C.M.; Byun, M.K. Clinical outcomes of tigecycline in the treatment of multidrug-resistant Acinetobacter baumannii infection. Yonsei Med. J. 2012, 53, 974–984. [Google Scholar] [CrossRef]
- Brady, R.R.; Kalima, P.; Damani, N.N.; Wilson, R.G.; Dunlop, M.G. Bacterial contamination of hospital bed-control handsets in a surgical setting: A potential marker of contamination of the healthcare environment. Ann. Roy. Coll. Surg. 2007, 89, 656–660. [Google Scholar] [CrossRef]
- Goodman, E.R.; Platt, R.; Bass, R.; Onderdonk, A.B.; Yokoe, D.S.; Huang, S.S. Impact of an environmental cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on surfaces in intensive care unit rooms. Infect. Control. Hosp. Epidemiol. 2008, 29, 593–599. [Google Scholar] [CrossRef]
- Sutter, D.E.; Bradshaw, L.U.; Simkins, L.H.; Summers, A.M.; Atha, M.; Elwood, R.L.; Robertson, J.L.; Murray, C.K.; Wortmann, G.W.; Hospenthal, D.R. High incidence of multidrug-resistant gram-negative bacteria recovered from Afghan patients at a deployed US military hospital. Infect. Control. Hosp. Epidemiol. 2011, 32, 854–860. [Google Scholar] [CrossRef]
- Zhanel, G.G.; DeCorby, M.; Adam, H.; Mulvey, M.R.; McCracken, M.; Lagacé-Wiens, P.; Nichol, K.A.; Wierzbowski, A.; Baudry, P.J.; Tailor, F.; et al. Prevalence of antimicrobial-resistant pathogens in Canadian hospitals: Results of the Canadian ward surveillance study (CANWARD 2008). Antimicrob. Agents Chemother. 2010, 54, 4684–4693. [Google Scholar] [CrossRef]
- Dawson, L.F.; Valiente, E.; Donahue, E.H.; Birchenough, G.; Wren, B.W. Hypervirulent Clostridium difficile PCR-ribotypes exhibit resistance to widely used disinfectants. PLoS One 2011, 6, e25754. [Google Scholar]
- Stabler, R.A.; Valiente, E.; Dawson, L.F.; He, M.; Parkhill, J.; Wren, B.W. In-depth genetic analysis of Clostridium difficile PCR-ribotype 027 strains reveals high genome fluidity including point mutations and inversions. Gut Microbes 2010, 1, 269–276. [Google Scholar] [CrossRef]
- He, M.; Sebaihia, M.; Lawley, T.D.; Stabler, R.A.; Dawson, L.F.; Martin, M.J.; Holt, K.E.; Seth-Smith, H.M.; Quail, M.A.; Rance, R.; et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc. Natl. Acad. Sci. USA 2010, 107, 7527–7532. [Google Scholar] [CrossRef]
- Stabler, R.A.; He, M.; Dawson, L.; Martin, M.; Valiente, E.; Corton, C.; Lawley, T.D.; Sebaihia, M.; Quail, M.A.; Rose, G.; et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 2009, 10, R102. [Google Scholar] [CrossRef]
- Guggenheim, M.; Zbinden, R.; Handschin, A.E.; Gohritz, A.; Altintas, M.A.; Giovanoli, P. Changes in bacterial isolates from burn wounds and their antibiograms: A 20-year study (1986–2005). Burns 2009, 35, 553–560. [Google Scholar] [CrossRef]
- Gadsby, N.J. Evaluation of real-time 16S rDNA PCR and pyrosequencing for routine identification of bacteria in joint fluid and tissue specimens. Open J. Med. Microbiol. 2011, 1, 1–6. [Google Scholar] [CrossRef]
- Sibley, C.D.; Church, D.L.; Surette, M.G.; Dowd, S.E.; Parkins, M.D. Pyrosequencing reveals the complex polymicrobial nature of invasive pyogenic infections: Microbial constituents of empyema, liver abscess, and intracerebral abscess. Eur. J. Clin. Microbiol. 2012, 31, 2679–2691. [Google Scholar] [CrossRef]
- Nelson, C.L.; McLaren, A.C.; McLaren, S.G.; Johnson, J.W.; Smeltzer, M.S. Is aseptic loosening truly aseptic? Clin. Orthop. Relat. R 2005, 437, 25–30. [Google Scholar]
- Hoenders, C.S.; Harmsen, M.C.; van Luyn, M.J. The local inflammatory environment and microorganisms in “aseptic” loosening of hip prostheses. J. Biomed. Mater. Res. B 2008, 86, 291–301. [Google Scholar]
- Diaz, R.R.; Picciafuoco, S.; Paraje, M.G.; Villegas, N.A.; Miranda, J.A.; Albesa, I.; Cremonezzi, D.; Commisso, R.; Paglini-Oliva, P. Relevance of biofilms in pediatric tonsillar disease. Eur. J. Clin. Microbiol. 2011, 30, 1503–1509. [Google Scholar] [CrossRef]
- Saylam, G.; Tatar, E.C.; Tatar, I.; Ozdek, A.; Korkmaz, H. Association of adenoid surface biofilm formation and chronic otitis media with effusion. Arch. Otolaryngol. Head Neck Surg. 2010, 136, 550–555. [Google Scholar] [CrossRef]
- Liu, C.M.; Cosetti, M.K.; Aziz, M.; Buchhagen, J.L.; Contente-Cuomo, T.L.; Price, L.B.; Keim, P.S.; Lalwani, A.K. The otologic microbiome: A study of the bacterial microbiota in a pediatric patient with chronic serous otitis media using 16SrRNA gene-based pyrosequencing. Arch. Otolaryngol. Head Neck Surg. 2011, 137, 664–668. [Google Scholar] [CrossRef]
- Huebner, R.J. Virologists dilemma. Ann. NY Acad. Sci. 1957, 67, 430–438. [Google Scholar] [CrossRef]
- Jabes, D. The antibiotic R and D pipeline: An update. Curr. Opin. Microbiol. 2011, 14, 564–569. [Google Scholar] [CrossRef]
- Cooper, M.A.; Shlaes, D. Fix the antibiotics pipeline. Nature 2011, 472, e32. [Google Scholar] [CrossRef]
- Loman, N.J.; Misra, R.V.; Dallman, T.J.; Constantinidou, C.; Gharbia, S.E.; Wain, J.; Pallen, M.J. Performance comparison of benchtop high-throughput sequencing platforms. Nature Biotechnol. 2012, 30, 434–439. [Google Scholar] [CrossRef] [Green Version]
- Oinn, T.; Addis, M.; Ferris, J.; Marvin, D.; Senger, M.; Greenwood, M.; Li, P. Taverna: A tool for the composition and enactment of bioinformatics workflows. Bioinformatics 2004, 20, 3045–3054. [Google Scholar] [CrossRef]
- Goecks, J.; Nekrutenko, A.; Taylor, J.; Team, T.G. Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010, 11, R86. [Google Scholar] [CrossRef]
- Meyer, F.; Paarmann, D.; D’Souza, M.; Olson, R.; Glass, E.M.; Kubal, M.; Edwards, R.A. The metagenomics RAST server—A public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 2008, 9, e386. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Knight, R. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Lynch, M.D.; Masella, A.P.; Hall, M.W.; Bartram, A.K.; Neufeld, J.D. AXIOME: Automated exploration of microbial diversity. GigaScience 2013, 2, e3. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Weber, C.F. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Afgan, E.; Baker, D.; Coraor, N.; Goto, H.; Paul, I.M.; Makova, K.D.; Taylor, J. Harnessing cloud computing with Galaxy Cloud. Nat. Biotechnol. 2011, 29, 972–974. [Google Scholar] [CrossRef]
- Angiuoli, S.V.; Matalka, M.; Gussman, A.; Galens, K.; Vangala, M.; Riley, D.R.; Fricke, W.F. CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing. BMC Bioinformatics 2011, 12, e356. [Google Scholar] [CrossRef]
- Ragan-Kelley, B.; Walters, W.A.; McDonald, D.; Riley, J.; Granger, B.E.; Gonzalez, A.; Caporaso, J.G. Collaborative cloud-enabled tools allow rapid, reproducible biological insights. ISME J. 2013, 7, 461–464. [Google Scholar] [CrossRef]
- Angiuoli, S.V.; White, J.R.; Matalka, M.; White, O.; Fricke, W.F. Resources and costs for microbial sequence analysis evaluated using virtual machines and cloud computing. PLoS One 2011, 6, e26624. [Google Scholar]
- Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Guyer, M. The NIH human microbiome project. Genome Res. 2009, 19, 2317–2323. [Google Scholar] [CrossRef]
- Wortman, J.; Giglio, M.; Creasy, H.; Chen, A.; Liolios, K.; Chu, K.; White, O. A data analysis and coordination center for the human microbiome project. Genome Biol. 2010, 11, O13. [Google Scholar] [CrossRef]
- Markowitz, V.M.; Chen, I.M.A.; Chu, K.; Szeto, E.; Palaniappan, K.; Jacob, B.; Kyrpides, N.C. IMG/M-HMP: A metagenome comparative analysis system for the human microbiome project. PLoS One 2012, 7, e40151. [Google Scholar]
- Smati, M.; Clermont, O.; Le Gal, F.; Schichmanoff, O.; Jauréquy, F.; Eddi, A.; Denamur, E.; Picard, B. Real-time PCR for quantitative analysis of human commensal Escherichia coli populations reveals a high frequency of sub-dominant phylogroups. Appl. Environ. Microbiol. 2013, 79, 5005–5012. [Google Scholar] [CrossRef]
- Eyre, D.W.; Cule, M.L.; Griffiths, D.; Crook, D.W.; Peto, T.E.; Walker, A.S.; Wilson, D.J. Detection of mixed infection from bacterial whole genome sequence data allows assessment of its role in Clostridium difficile transmission. PLoS Comput. Biol. 2013, 9, e1003059. [Google Scholar] [CrossRef]
- Keynes, J.M. The General Theory of Employment, Interest and Money; Macmillan: London, UK, 1936. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kirkup, B.C., Jr. Culture-Independence for Surveillance and Epidemiology. Pathogens 2013, 2, 556-570. https://doi.org/10.3390/pathogens2030556
Kirkup BC Jr. Culture-Independence for Surveillance and Epidemiology. Pathogens. 2013; 2(3):556-570. https://doi.org/10.3390/pathogens2030556
Chicago/Turabian StyleKirkup, Benjamin C., Jr. 2013. "Culture-Independence for Surveillance and Epidemiology" Pathogens 2, no. 3: 556-570. https://doi.org/10.3390/pathogens2030556
APA StyleKirkup, B. C., Jr. (2013). Culture-Independence for Surveillance and Epidemiology. Pathogens, 2(3), 556-570. https://doi.org/10.3390/pathogens2030556