Immunogenicity of SARS-CoV-2 mRNA Vaccine in Breast Cancer Patients Undergoing Active Treatment: A Prospective Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ethical Considerations
2.3. Blood Sample Analysis
2.3.1. Flow Cytometry Immunophenotyping
2.3.2. Detection of IgG Antibodies Against SARS-CoV-2
2.3.3. Detection of Specific SARS-CoV-2 CD8+ T Cell Response
2.4. Microbiome Library Preparation and Sequencing
2.4.1. DNA Extraction
2.4.2. Microbiome Library Preparation and Sequencing
2.5. Statistical Analysis
2.5.1. Blood Sample Analysis
2.5.2. Microbiome Analysis
3. Results
3.1. Patient and Disease Characteristics
3.2. Humoral and Cellular Response After Vaccine Doses
3.3. Humoral Response and Cellular Response After Two Vaccine Doses
3.4. Effect of Booster Doses
3.5. Antigen-Specific CD8+ T Cell Response
3.6. Relationship Between Antibody Levels and Cellular Immune Response
3.7. Effect of Treatment Modality on Vaccine-Induced Immunity (Exploratory)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monin, L.; Laing, A.G.; Muñoz-Ruiz, M.; McKenzie, D.R.; del Molino del Barrio, I.; Alaguthurai, T.; Domingo-Vila, C.; Hayday, T.S.; Graham, C.; Seow, J.; et al. Safety and Immunogenicity of One versus Two Doses of the COVID-19 Vaccine BNT162b2 for Patients with Cancer: Interim Analysis of a Prospective Observational Study. Lancet Oncol. 2021, 22, 765–778. [Google Scholar] [CrossRef]
- Thakkar, A.; Gonzalez-Lugo, J.D.; Goradia, N.; Gali, R.; Shapiro, L.C.; Pradhan, K.; Rahman, S.; Kim, S.Y.; Ko, B.; Sica, R.A.; et al. Seroconversion Rates Following COVID-19 Vaccination among Patients with Cancer. Cancer Cell 2021, 39, 1081–1090.e2. [Google Scholar] [CrossRef]
- Corti, C.; Curigliano, G. Commentary: SARS-CoV-2 Vaccines and Cancer Patients. Ann. Oncol. 2021, 32, 569–571. [Google Scholar] [CrossRef]
- Fendler, A.; de Vries, E.G.E.; GeurtsvanKessel, C.H.; Haanen, J.B.; Wörmann, B.; Turajlic, S.; von Lilienfeld-Toal, M. COVID-19 Vaccines in Patients with Cancer: Immunogenicity, Efficacy and Safety. Nat. Rev. Clin. Oncol. 2022, 19, 385–401. [Google Scholar] [CrossRef]
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. COVID-19 Vaccine BNT162b1 Elicits Human Antibody and TH1 T Cell Responses. Nature 2020, 586, 594–599. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 MRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.J.; Rouphael, N.G.; Widge, A.T.; Jackson, L.A.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; et al. Safety and Immunogenicity of SARS-CoV-2 MRNA-1273 Vaccine in Older Adults. N. Engl. J. Med. 2020, 383, 2427–2438. [Google Scholar] [CrossRef] [PubMed]
- Ehmsen, S.; Asmussen, A.; Jeppesen, S.S.; Nilsson, A.C.; Østerlev, S.; Vestergaard, H.; Justesen, U.S.; Johansen, I.S.; Frederiksen, H.; Ditzel, H.J. Antibody and T Cell Immune Responses Following MRNA COVID-19 Vaccination in Patients with Cancer. Cancer Cell 2021, 39, 1034–1036. [Google Scholar] [CrossRef]
- Bange, E.M.; Han, N.A.; Wileyto, P.; Kim, J.Y.; Gouma, S.; Robinson, J.; Greenplate, A.R.; Hwee, M.A.; Porterfield, F.; Owoyemi, O.; et al. CD8+ T Cells Contribute to Survival in Patients with COVID-19 and Hematologic Cancer. Nat. Med. 2021, 27, 1280–1289. [Google Scholar] [CrossRef]
- Grinshpun, A.; Rottenberg, Y.; Ben-Dov, I.Z.; Djian, E.; Wolf, D.G.; Kadouri, L. Serologic Response to COVID-19 Infection and/or Vaccine in Cancer Patients on Active Treatment. ESMO Open 2021, 6, 100283. [Google Scholar] [CrossRef] [PubMed]
- Lynn, D.J.; Pulendran, B. The Potential of the Microbiota to Influence Vaccine Responses. J. Leukoc. Biol. 2018, 103, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Belkaid, Y.; Hand, T.W. Role of the Microbiota in Immunity and Inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Ruck, C.; Odumade, O.A.; Smolen, K.K. Vaccine-Induced T Follicular Helper Cell Responses Are Impaired in Human Infants. J. Immunol. 2016, 196, 4311–4321. [Google Scholar]
- Alexander, J.L.; Wilson, I.D.; Teare, J.; Marchesi, J.R.; Nicholson, J.K.; Kinross, J.M. Gut Microbiota Modulation of Chemotherapy Efficacy and Toxicity. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef]
- Galloway-Peña, J.R.; Smith, D.P.; Sahasrabhojane, P.; Ajami, N.J.; Wadsworth, W.D.; Daver, N.G.; Chemaly, R.F.; Marsh, L.; Ghantoji, S.S.; Pemmaraju, N.; et al. The Role of the Gastrointestinal Microbiome in Infectious Complications during Induction Chemotherapy for Acute Myeloid Leukemia. Cancer 2016, 122, 2186–2196. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, J.; Lee, C.M.; Lee, D.-W.; Kang, C.K.; Choe, P.G.; Kim, N.J.; Oh, M.; Lee, C.-H.; Park, W.B.; et al. Prospective Longitudinal Analysis of Antibody Response after Standard and Booster Doses of SARS-CoV2 Vaccination in Patients with Early Breast Cancer. Front. Immunol. 2022, 13, 1028102. [Google Scholar] [CrossRef]
- Ligumsky, H.; Dor, H.; Etan, T.; Golomb, I.; Nikolaevski-Berlin, A.; Greenberg, I.; Halperin, T.; Angel, Y.; Henig, O.; Spitzer, A.; et al. Immunogenicity and Safety of BNT162b2 MRNA Vaccine Booster in Actively Treated Patients with Cancer. Lancet Oncol. 2022, 23, 193–195. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Labaki, C.; Bakouny, Z.; Hsu, C.-Y.; Schmidt, A.L.; de Lima Lopes, G.; Hwang, C.; Singh, S.R.K.; Jani, C.; Weissmann, L.B.; et al. Breakthrough SARS-CoV-2 Infections among Patients with Cancer Following Two and Three Doses of COVID-19 MRNA Vaccines: A Retrospective Observational Study from the COVID-19 and Cancer Consortium. Lancet Reg. Health-Am. 2023, 19, 100445. [Google Scholar] [CrossRef]
- Terada, M.; Kondo, N.; Wanifuchi-Endo, Y.; Fujita, T.; Asano, T.; Hisada, T.; Uemoto, Y.; Kato, A.; Yamanaka, N.; Sugiura, H.; et al. Efficacy and Impact of SARS-CoV-2 Vaccination on Cancer Treatment for Breast Cancer Patients: A Multi-Center Prospective Observational Study. Breast Cancer Res. Treat. 2022, 195, 311–323. [Google Scholar] [CrossRef]
- Safarchi, A.; Al-Qadami, G.; Tran, C.D.; Conlon, M. Understanding Dysbiosis and Resilience in the Human Gut Microbiome: Biomarkers, Interventions, and Challenges. Front. Microbiol. 2025, 16, 1559521. [Google Scholar] [CrossRef]
- Fahnøe, U.; Feng, S.; Underwood, A.P.; Jacobsen, K.; Ameri, A.; Blicher, T.H.; Sølund, C.S.; Rosenberg, B.R.; Brix, L.; Weis, N.; et al. T Cell Receptor Usage and Epitope Specificity amongst CD8+ and CD4+ SARS-CoV-2-Specific T Cells. Front. Immunol. 2025, 16, 1510436. [Google Scholar] [CrossRef]
- Underwood, A.P.; Sølund, C.; Jacobsen, K.; Binderup, A.; Fernandez-Antunez, C.; Mikkelsen, L.S.; Inekci, D.; Villadsen, S.L.; Castruita, J.A.S.; Pinholt, M.; et al. Neutralizing Antibody and CD8+ T Cell Responses Following BA.4/5 Bivalent COVID-19 Booster Vaccination in Adults with and without Prior Exposure to SARS-CoV-2. Front. Immunol. 2024, 15, 1353353. [Google Scholar] [CrossRef]
- Lane, D.J.E. Sequencing. In Nucleic Acid Techniques in Bacterial Systematic; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Callahan, B.J.; Wong, J.; Heiner, C.; Oh, S.; Theriot, C.M.; Gulati, A.S.; McGill, S.K.; Dougherty, M.K. High-Throughput Amplicon Sequencing of the Full-Length 16S RRNA Gene with Single-Nucleotide Resolution. Nucleic Acids Res. 2019, 47, e103. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Lê Cao, K.-A.; Boitard, S.; Besse, P. Sparse PLS Discriminant Analysis: Biologically Relevant Feature Selection and Graphical Displays for Multiclass Problems. BMC Bioinform. 2011, 12, 253. [Google Scholar] [CrossRef] [PubMed]
- Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.-A. MixOmics: An R Package for ‘omics Feature Selection and Multiple Data Integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef]
- Singh, A.; Shannon, C.P.; Gautier, B.; Rohart, F.; Vacher, M.; Tebbutt, S.J.; Lê Cao, K.-A. DIABLO: An Integrative Approach for Identifying Key Molecular Drivers from Multi-Omics Assays. Bioinformatics 2019, 35, 3055–3062. [Google Scholar] [CrossRef] [PubMed]
- Barrière, J.; Chamorey, E.; Adjtoutah, Z.; Castelnau, O.; Mahamat, A.; Marco, S.; Petit, E.; Leysalle, A.; Raimondi, V.; Carles, M. Impaired Immunogenicity of BNT162b2 Anti-SARS-CoV-2 Vaccine in Patients Treated for Solid Tumors. Ann. Oncol. 2021, 32, 1053–1055. [Google Scholar] [CrossRef]
- Wan, Y.; Shang, J.; Sun, S.; Tai, W.; Chen, J.; Geng, Q.; He, L.; Chen, Y.; Wu, J.; Shi, Z.; et al. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J. Virol. 2020, 94, e02015–e02019. [Google Scholar] [CrossRef]
- Goel, R.R.; Apostolidis, S.A.; Painter, M.M.; Mathew, D.; Pattekar, A.; Kuthuru, O.; Gouma, S.; Hicks, P.; Meng, W.; Rosenfeld, A.M.; et al. Distinct Antibody and Memory B Cell Responses in SARS-CoV-2 Naïve and Recovered Individuals after MRNA Vaccination. Sci. Immunol. 2021, 6, eabi6950. [Google Scholar] [CrossRef]
- Painter, M.M.; Mathew, D.; Goel, R.R.; Apostolidis, S.A.; Pattekar, A.; Kuthuru, O.; Baxter, A.E.; Herati, R.S.; Oldridge, D.A.; Gouma, S.; et al. Rapid Induction of Antigen-Specific CD4+ T Cells Is Associated with Coordinated Humoral and Cellular Immunity to SARS-CoV-2 MRNA Vaccination. Immunity 2021, 54, 2133–2142.e3. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Muik, A.; Vogler, I.; Derhovanessian, E.; Kranz, L.M.; Vormehr, M.; Quandt, J.; Bidmon, N.; Ulges, A.; Baum, A.; et al. BNT162b2 Vaccine Induces Neutralizing Antibodies and Poly-Specific T Cells in Humans. Nature 2021, 595, 572–577. [Google Scholar] [CrossRef]
- Oberhardt, V.; Luxenburger, H.; Kemming, J.; Schulien, I.; Ciminski, K.; Giese, S.; Csernalabics, B.; Lang-Meli, J.; Janowska, I.; Staniek, J.; et al. Rapid and Stable Mobilization of CD8+ T Cells by SARS-CoV-2 MRNA Vaccine. Nature 2021, 597, 268–273. [Google Scholar] [CrossRef]
- Tan, A.T.; Linster, M.; Tan, C.W.; Le Bert, N.; Chia, W.N.; Kunasegaran, K.; Zhuang, Y.; Tham, C.Y.L.; Chia, A.; Smith, G.J.D.; et al. Early Induction of Functional SARS-CoV-2-Specific T Cells Associates with Rapid Viral Clearance and Mild Disease in COVID-19 Patients. Cell Rep. 2021, 34, 108728. [Google Scholar] [CrossRef]
- Keeton, R.; Tincho, M.B.; Ngomti, A.; Baguma, R.; Benede, N.; Suzuki, A.; Khan, K.; Cele, S.; Bernstein, M.; Karim, F.; et al. T Cell Responses to SARS-CoV-2 Spike Cross-Recognize Omicron. Nature 2022, 603, 488–492. [Google Scholar] [CrossRef]
- Wang, W.; Su, B.; Pang, L.; Qiao, L.; Feng, Y.; Ouyang, Y.; Guo, X.; Shi, H.; Wei, F.; Su, X.; et al. High-Dimensional Immune Profiling by Mass Cytometry Revealed Immunosuppression and Dysfunction of Immunity in COVID-19 Patients. Cell Mol. Immunol. 2020, 17, 650–652. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Mentzer, A.J.; Liu, G.; Yao, X.; Yin, Z.; Dong, D.; Dejnirattisai, W.; Rostron, T.; Supasa, P.; Liu, C.; et al. Broad and Strong Memory CD4+ and CD8+ T Cells Induced by SARS-CoV-2 in UK Convalescent Individuals Following COVID-19. Nat. Immunol. 2020, 21, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A.; Makarov, V.; Merghoub, T.; Yuan, J.; Zaretsky, J.M.; Desrichard, A.; Walsh, L.A.; Postow, M.A.; Wong, P.; Ho, T.S.; et al. Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. N. Engl. J. Med. 2014, 371, 2189–2199. [Google Scholar] [CrossRef]
- Reiss, S.; Baxter, A.E.; Cirelli, K.M.; Dan, J.M.; Morou, A.; Daigneault, A.; Brassard, N.; Silvestri, G.; Routy, J.-P.; Havenar-Daughton, C.; et al. Comparative Analysis of Activation Induced Marker (AIM) Assays for Sensitive Identification of Antigen-Specific CD4 T Cells. PLoS ONE 2017, 12, e0186998. [Google Scholar] [CrossRef]
- Lefebvre, J.S.; Masters, A.R.; Hopkins, J.W.; Haynes, L. Age-Related Impairment of Humoral Response to Influenza Is Associated with Changes in Antigen Specific T Follicular Helper Cell Responses. Sci. Rep. 2016, 6, 25051. [Google Scholar] [CrossRef]
- Hou, C.; Wang, Z.; Lu, X. Impact of Immunosenescence and Inflammaging on the Effects of Immune Checkpoint Inhibitors. Cancer Pathog. Ther. 2024, 2, 24–30. [Google Scholar] [CrossRef]
- Kundu, P.; Blacher, E.; Elinav, E.; Pettersson, S. Our Gut Microbiome: The Evolving Inner Self. Cell 2017, 171, 1481–1493. [Google Scholar] [CrossRef]
- Honda, K.; Littman, D.R. The Microbiota in Adaptive Immune Homeostasis and Disease. Nature 2016, 535, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Kundu, M.; Butti, R.; Panda, V.K.; Malhotra, D.; Das, S.; Mitra, T.; Kapse, P.; Gosavi, S.W.; Kundu, G.C. Modulation of the Tumor Microenvironment and Mechanism of Immunotherapy-Based Drug Resistance in Breast Cancer. Mol. Cancer 2024, 23, 92. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Flint, H.J. Formation of Propionate and Butyrate by the Human Colonic Microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Abriouel, H.; Lerma, L.L.; Casado Muñoz, M.d.C.; Montoro, B.P.; Kabisch, J.; Pichner, R.; Cho, G.-S.; Neve, H.; Fusco, V.; Franz, C.M.A.P.; et al. The Controversial Nature of the Weissella Genus: Technological and Functional Aspects versus Whole Genome Analysis-Based Pathogenic Potential for Their Application in Food and Health. Front. Microbiol. 2015, 6, 1197. [Google Scholar] [CrossRef]
- Gerritsen, J.; Hornung, B.; Renckens, B.; van Hijum, S.A.F.T.; Martins dos Santos, V.A.P.; Rijkers, G.T.; Schaap, P.J.; de Vos, W.M.; Smidt, H. Genomic and Functional Analysis of Romboutsia ilealis CRIB T Reveals Adaptation to the Small Intestine. PeerJ 2017, 5, e3698. [Google Scholar] [CrossRef]
- Clavel, T.; Desmarchelier, C.; Haller, D.; Gérard, P.; Rohn, S.; Lepage, P.; Daniel, H. Intestinal Microbiota in Metabolic Diseases. Gut Microbes 2014, 5, 544–551. [Google Scholar] [CrossRef]
- Alhinai, E.A.; Walton, G.E.; Commane, D.M. The Role of the Gut Microbiota in Colorectal Cancer Causation. Int. J. Mol. Sci. 2019, 20, 5295. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. The Influence of Probiotics on Vaccine Responses—A Systematic Review. Vaccine 2018, 36, 207–213. [Google Scholar] [CrossRef] [PubMed]
Variable | N = 23 |
---|---|
Age (median, IQR) | 54 (45–76) |
Breast tumor phenotype | |
Luminal HER-2 Triple-negative | 11 (48%) 9 (39%) 3 (13%) |
Hormonal status | |
Pre-menopausal Post-menopausal | 11 (48%) 12 (52%) |
Presence of comorbidity | |
Hypertension Allergy Dyslipidemia Hypothyroidism Diabetes Other | 1 (4%) 1 (4%) 2 (8%) 2 (8%) 1 (4%) 2 (8%) |
Cancer status | |
Remission or no evidence of disease Present, stable Present and metastasis | 7 (30%) 11 (48%) 5 (22%) |
Current medication | |
Target therapy Chemotherapy | 11 (48%) 12 (52%) |
Outcomes | |
Hospitalization Intensive care unit Death | 0 (0%) 0 (0%) 1 (4%) |
Smoking habits | |
Ex-smoker Smoker Non-smoker | 0 (0%) 3 (13%) 20 (87%) |
Baseline Median | 2nd Dose Median | Booster Dose Median | Friedman | p | |
---|---|---|---|---|---|
Anti-SARS-CoV-2 IgG (BAU/mL) | 0.000 | 327.026 | 2253.770 | 21.535 | 0.000 |
CD3+ T cells (%) | 19.030 | 18.200 | 17.460 | 16.545 | 0.120 |
CD3+CD4+ T cells (%) | 33.595 | 45.610 | 37.710 | 3.818 | 0.148 |
CD3+CD8+T Cells (%) | 21.305 | 21.460 | 25.270 | 2.364 | 0.307 |
CD3+CD56+ (NKT, %) | 4.455 | 6.800 | 0.980 | 17.636 | 0.000 |
CD3-CD56+ (NK, %) | 16.100 | 15.690 | 11.560 | 3.818 | 0.148 |
CD19+ T cells (%) | 3.975 | 8.390 | 11.430 | 6.837 | 0.033 |
CD3+CD4+ T cells naïve (%) | 20.780 | 28.350 | 17.590 | 7.818 | 0.020 |
CD3+CD4+ T cells central memory (%) | 45.760 | 49.790 | 63.240 | 7.818 | 0.020 |
CD3+CD4+ peripheral memory (%) | 27.375 | 17.250 | 18.140 | 2.364 | 0.307 |
CD3+CD4+ TEMRA* (%) | 1.455 | 1.260 | 0.870 | 1.273 | 0.529 |
CD3+CD8+ naïve (%) | 29.580 | 40.370 | 22.260 | 6.545 | 0.038 |
CD3+CD8+ central memory (%) | 7.825 | 7.840 | 12.860 | 5.091 | 0.078 |
CD3+CD8+ peripheral memory (%) | 15.850 | 11.480 | 21.860 | 15.273 | 0.000 |
CD3+CD8+ TEMRA* (%) | 27.175 | 25.510 | 38.710 | 1.273 | 0.529 |
Doses | Median | Wilcoxon Z | p-value | |
---|---|---|---|---|
Anti-SARS-CoV2 IgG (BAU/mL) | B | 0.000 | −4.015 | 0.000 |
2 | 327.026 | |||
CD3+ T cells (%) | B | 19.030 | −1.344 | 0.179 |
2 | 18.200 | |||
CD3+CD4+ T cells (%) | B | 33.595 | −1.293 | 0.196 |
2 | 45.610 | |||
CD3+CD8+T Cells (%) | B | 21.305 | −1.138 | 0.255 |
2 | 21.460 | |||
CD3+CD56+ (NKT, %) | B | 4.455 | −1.189 | 0.234 |
2 | 6.680 | |||
CD3+CD56+ (NK, %) | B | 16.100 | −0.103 | 0.918 |
2 | 15.690 | |||
CD19+ T cells (%) | B | 3.975 | −0.982 | 0.326 |
2 | 8.390 | |||
CD3vCD4+ T cells naïve (%) | B | 20.780 | −0.621 | 0.535 |
2 | 28.350 | |||
CD3+CD4+ T cells central memory (%) | B | 45.760 | −1.500 | 0.134 |
2 | 49.790 | |||
CD3+CD4+ peripheral memory (%) | B | 27.375 | −1.500 | 0.134 |
2 | 17.250 | |||
CD3+CD4+ TEMRA* (%) | B | 1.455 | −0.414 | 0.679 |
2 | 1.260 | |||
CD3+CD8+ naïve (%) | B | 29.580 | −1.913 | 0.050 |
2 | 40.370 | |||
CD3+CD8+ central memory (%) | B | 7.825 | −0.621 | 0.535 |
2 | 7.840 | |||
CD3+CD8+ peripheral memory (%) | B | 15.850 | −2.223 | 0.026 |
2 | 11.480 | |||
CD3+CD8+ TEMRA* (%) | B | 27.175 | −1.551 | 0.121 |
2 | 25.510 |
Doses | Median | Wilcoxon Z | p-Value | |
---|---|---|---|---|
Anti-SARS-CoV2 IgG (BAU/mL) | 2 | 327.026 | −3.237 | 0.001 |
Booster | 2253.770 | |||
CD3+ T cells (%) | 2 | 18.200 | −1.343 | 0.179 |
Booster | 17.460 | |||
CD3+CD4+ T cells (%) | 2 | 45.610 | −2.158 | 0.031 |
Booster | 37.710 | |||
CD3+CD8+T Cells (%) | 2 | 21.460 | −0.114 | 0.910 |
Booster | 25.270 | |||
CD3+CD56+ (NKT, %) | 2 | 6.800 | −3.408 | 0.001 |
Booster | 0.980 | |||
CD3-CD56+ (NK, %) | 2 | 15.690 | −1.363 | 0.173 |
Booster | 11.560 | |||
CD19+ T cells (%) | 2 | 8.390 | −1.915 | 0.056 |
Booster | 11.430 | |||
CD3+CD4+ T cells naïve (%) | 2 | 28.350 | −2.727 | 0.006 |
Booster | 17.590 | |||
CD3+CD4+ T cells central memory (%) | 2 | 49.790 | −3.408 | 0.001 |
Booster | 63.240 | |||
CD3+CD4+ peripheral memory (%) | 2 | 17.250 | −3.237 | 0.001 |
Booster | 18.140 | |||
CD3+CD4+ TEMRA* (%) | 2 | 1.260 | −1.136 | 0.256 |
Booster | 0.870 | |||
CD3+CD8+ naïve (%) | 2 | 40.370 | −3.237 | 0.001 |
Booster | 22.260 | |||
CD3+CD8+ central memory (%) | 2 | 7.840 | −3.237 | 0.001 |
Booster | 12.860 | |||
CD3+CD8+ peripheral memory (%) | 2 | 11.480 | −3.237 | 0.001 |
Booster | 21.860 | |||
CD3+CD8+ TEMRA* (%) | 2 | 25.510 | −3.237 | 0.001 |
Booster | 38.710 |
Bacterial Genus | Functional Type | Immunological Role | Potential Impact on Vaccine Response | References |
---|---|---|---|---|
Alistipes | SCFA producer (propionate, butyrate) | Modulates inflammation; promotes regulatory T cell and Th1 differentiation | Positive—associated with enhanced immune response | [11,15,46,47,48] |
routyRomboutsia | SCFA producer (acetate) | Associated with gut homeostasis and symbiosis; potential immune modulation | Possibly positive—requires further study | [15,49] |
Butyricimonas | SCFA producer (butyrate) | Enhances dendritic cell maturation and Tfh cell differentiation; supports IgG production | Positive—supports humoral response | [11,15,50] |
Weissella | Lactic acid bacterium (facultative) | Reported as a pathobiont in immunocompromised hosts; linked to dysbiosis and inflammation | Negative—potentially inhibits vaccine efficacy | [51] |
Slackia | Actinobacterium, metabolizes isoflavones | Associated with dysbiosis, inflammation, and metabolic disruption | Negative—linked to poor immune modulation | [52,53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Murga, M.L.; Serrano-García, L.; D’Auria, G.; Hernández, M.P.; Martínez-Priego, L.; Ferrús-Abad, L.; de Marco, G.; Domínguez-Márquez, M.V.; Llombart-Cussac, A. Immunogenicity of SARS-CoV-2 mRNA Vaccine in Breast Cancer Patients Undergoing Active Treatment: A Prospective Observational Study. Pathogens 2025, 14, 947. https://doi.org/10.3390/pathogens14090947
Fernández-Murga ML, Serrano-García L, D’Auria G, Hernández MP, Martínez-Priego L, Ferrús-Abad L, de Marco G, Domínguez-Márquez MV, Llombart-Cussac A. Immunogenicity of SARS-CoV-2 mRNA Vaccine in Breast Cancer Patients Undergoing Active Treatment: A Prospective Observational Study. Pathogens. 2025; 14(9):947. https://doi.org/10.3390/pathogens14090947
Chicago/Turabian StyleFernández-Murga, María Leonor, Lucía Serrano-García, Giuseppe D’Auria, María Portero Hernández, Llúcia Martínez-Priego, Loreto Ferrús-Abad, Griselda de Marco, María Victoria Domínguez-Márquez, and Antonio Llombart-Cussac. 2025. "Immunogenicity of SARS-CoV-2 mRNA Vaccine in Breast Cancer Patients Undergoing Active Treatment: A Prospective Observational Study" Pathogens 14, no. 9: 947. https://doi.org/10.3390/pathogens14090947
APA StyleFernández-Murga, M. L., Serrano-García, L., D’Auria, G., Hernández, M. P., Martínez-Priego, L., Ferrús-Abad, L., de Marco, G., Domínguez-Márquez, M. V., & Llombart-Cussac, A. (2025). Immunogenicity of SARS-CoV-2 mRNA Vaccine in Breast Cancer Patients Undergoing Active Treatment: A Prospective Observational Study. Pathogens, 14(9), 947. https://doi.org/10.3390/pathogens14090947