Flavescence Dorée and Grapevine Susceptibility: From Host–Pathogen Interaction to Cultivar Categorization
Abstract
1. Flavescence Dorée and Its Distribution
2. Host–Pathogen Interaction and Resistance Factors
2.1. GY Symptoms
2.2. Colonization and Plant Resistance Mechanisms
3. Susceptibility of Main Grapevine Cultivars
Susceptibility to FD | Cultivar | Notes |
---|---|---|
High | Cortese (W) 11, Dolcetto (R) 11, Frankovka (R) 5, Garganega (W) 7, Istrian Malvasia (W) 8, Loureiro (W) 10, Perera (W) 7, Pinot Blanc (W) 4, Plovdina (R) 5, Ruché (R) 11, Sangiovese (R) 7, Vermentino (W) 1 | High vulnerability to infection with low recovery ability. |
Medium | Albarola (W) 1, Arneis (W) 11, Barbera (R) 11, Black Burgundy (R) 5, Cabernet Franc (R) 6, Cabernet Sauvignon (R) 6, Chardonnay (W) 12, Erbaluce (W) 11, Glera (W) 7, Grenache Noir (R) 6, Italian Riesling (W) 5, Pinot Gris (W) 12, Refosco D’Istria (R) 7, Riesling (W) 7, Sauvignon Blanc (W) 6, Smederevka (W) 5, Timorasso (W) 11, Trebbiano (W) 9, Zupski bojadiser (R) 5 | Intermediate recovery ability; decision to maintain or replace depends on agronomic and economic factors. |
Low | Brachetto (R) 11, Croatina (R) 3, Erbamat (W) 2, Freisa (R) 11, Magdaleine (W) 6, Merlot (R) 6, Moscato (W) 12, Nebbiolo (R) 11, Pinot Noir (R) 6, Syrah (R) 6, Teran (R) 8, Tocai Friulano (W) 12 | Good recovery ability and tolerance; lower need for replacement. |
4. Important Local Cultivars That Have Received Little Attention
5. Innovative Strategies for Management of Grapevine Yellows and Addressing Susceptibility
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FD | Flavescence dorée |
FDp | Flavescence dorée phytoplasma |
BN | Bois Noir |
GY | Grapevine Yellows |
ROS | Reactive Oxygen Species |
TCA | Tricarboxylic acid |
IAA | Auxin-Indole-3-Acetic Acid |
PAMPs | Pathogen-Associated Molecular Patterns |
DAMPs | Damage-Associated Molecular Patterns |
ETI | Effector-Triggered Immunity |
JA | Jasmonic Acid |
SA | Salicylic Acid |
NGS | Next-generation Sequencing |
ELISA | Enzyme-Linked Immunosorbent Assay |
PCR | Polymerase Chain Reaction |
qPCR | Real time Quantitative Polymerase Chain Reaction |
dPCR | Digital Polymerase Chain Reaction |
ddPCR | Droplet Digital Polymerase Chain Reaction |
LAMP | Loop-Mediated Isothermal Amplification |
MAS | Marker-Assisted Selection |
CRISPR/Cas9 | Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 |
References
- International Organisation of Vine and Wine (OIV). State of the World Vine and Wine Sector 2023; International Organisation of Vine and Wine Intergovernmental Organisation: Dijon, France, 2024; Volume 10. [Google Scholar]
- Margaria, P.; Palmano, S. Response of the Vitis vinifera L. Cv. “Nebbiolo” Proteome to Flavescence Dorée Phytoplasma Infection. Proteomics 2011, 11, 212–224. [Google Scholar] [CrossRef]
- Angelini, E.; Constable, F.; Duduk, B.; Fiore, N.; Quaglino, F.; Bertaccini, A. Grapevine Phytoplasmas. In Phytoplasmas: Plant Pathogenic Bacteria—I: Characterisation and Epidemiology of Phytoplasma—Associated Diseases; Springer: Singapore, 2018; pp. 123–151. [Google Scholar]
- Bernardini, C.; Santi, S.; Mian, G.; Levy, A.; Buoso, S.; Suh, J.H.; Wang, Y.; Vincent, C.; van Bel, A.J.E.; Musetti, R. Increased susceptibility to Chrysanthemum Yellows phytoplasma infection in Atcals7ko plants is accompanied by enhanced expression of carbohydrate transporters. Planta 2022, 256, 43. [Google Scholar] [CrossRef] [PubMed]
- Bertaccini, A.; Duduk, B.; Paltrinieri, S.; Contaldo, N. Phytoplasmas and Phytoplasma Diseases: A Severe Threat to Agriculture. Am. J. Plant Sci. 2014, 5, 1763–1788. [Google Scholar] [CrossRef]
- Kube, M.; Schneider, B.; Kuhl, H.; Dandekar, T.; Heitmann, K.; Migdoll, A.M.; Reinhardt, R.; Seemüller, E. The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genom. 2008, 9, 306. [Google Scholar] [CrossRef]
- Foissac, X.; Wilson, M.R. Current and possible future distributions of phytoplasma diseases and their vectors. In Phytoplasmas: Genomes, Plant Hosts and Vectors, 1st ed.; Weintraub, P.G., Jones, P., Eds.; CABI: Wallingford, UK, 2009; pp. 309–324. [Google Scholar]
- Weintraub, P.G.; Beanland, L. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 2006, 51, 91–111. [Google Scholar] [CrossRef]
- Bertaccini, A. Phytoplasmas: Diversity, Taxonomy, and Epidemiology. Front. Biosci. 2007, 12, 673–689. [Google Scholar] [CrossRef]
- Canel, A.; Zambon, Y.; Bertaccini, A.; Paltrinieri, S.; Contaldo, N. Flavescenza Dorata Della Vite Sotto Controllo Nel Trevigiano. L’Informatore Agrar. 2014, 20, 48–53. [Google Scholar]
- Wang, R.; Bai, B.; Li, D.; Wang, J.; Huang, W.; Wu, Y.; Zhao, L. Phytoplasma: A plant pathogen that cannot be ignored in agricultural production—Research progress and outlook. Mol. Plant Pathol. 2024, 25, e13437. [Google Scholar] [CrossRef]
- Debonneville, C.; Mandelli, L.; Brodard, J.; Groux, R.; Roquis, D.; Schumpp, O. The Complete Genome of the “Flavescence dorée” Phytoplasma Reveals Characteristics of Low Genome Plasticity. Biology 2022, 11, 953. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.E.; Dally, E.L.; Tanne, E.; Rumbos, I.C. Phytoplasmas associated with grapevine yellows in Israel and Greece belong to the stolbur Phytoplasma subgroup, 16SrXII-A. J. Plant Pathol. 1997, 79, 181–187. [Google Scholar]
- Rao, G.P.; Fiore, N.; Bertaccini, A.; Liefting, L.W. Phytoplasmas: An Update. In Phytoplasmas: Plant Pathogenic Bacteria—I: Characterisation and Epidemiology of Phytoplasma—Associated Diseases; Springer: Singapore, 2018; pp. 1–313. [Google Scholar]
- Firrao, G.; Andersen, M.T.; Bertaccini, A.; Boudon-Padieu, E.; Bové, J.; Daire, X.; Davis, R.E.; Fletcher, J.; Garnier, M.; Gibb, K.S.; et al. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 2004, 54, 1243–1255. [Google Scholar]
- Quaglino, F.; Zhao, Y.; Casati, P.; Bulgari, D.; Bianco, P.A.; Wei, W.; Davis, R.E. ‘Candidatus Phytoplasma solani’, a novel taxon associated with stolbur-and bois noir-related diseases of plants. Int. J. Syst. Evol. Microbiol. 2013, 63, 2879–2894. [Google Scholar] [CrossRef] [PubMed]
- EPPO. Grapevine Flavescence Dorée Phytoplasma (PHYP64). Available online: https://gd.eppo.int/taxon/PHYP64 (accessed on 4 February 2025).
- Batlle, A.; Angeles Martínez, M.; Laviña, A. Occurrence, Distribution and Epidemiology of Grapevine Yellows in Spain. Europ. J. Plant Pathol. 2000, 106, 811–816. [Google Scholar] [CrossRef]
- Constable, F.; Bertaccini, A. Worldwide Distribution and Identification of Grapevine Yellows Diseases. In Grapevine Yellows Diseases and Their Phytoplasma Agents; Springer: Cham, Switzerland, 2017; pp. 17–46. [Google Scholar]
- Davis, R.E.; Dally, E.L.; Zhao, Y.; Wolf, T.K. Genotyping Points to Divergent Evolution of ‘Candidatus Phytoplasma Asteris’ Strains Causing North American Grapevine Yellows and Strains Causing Aster Yellows. Plant Dis. 2018, 102, 1696–1702. [Google Scholar] [CrossRef] [PubMed]
- Abu Alloush, A.H.; Bianco, P.A.; Busato, E.; Alkhawaldeh, Y.; Alma, A.; Tedeschi, R.; Quaglino, F. Grapevine Yellows in Jordan: Associated Phytoplasmas, Putative Insect Vectors and Reservoir Plants. Plant Pathol. 2023, 72, 1380–1392. [Google Scholar] [CrossRef]
- Belli, G.; Bianco, P.A.; Conti, M. Grapevine Yellows in Italy: Past, present and future. J. Plant Pathol. 2010, 92, 303–326. [Google Scholar]
- Arnaud, G.; Malembic-Maher, S.; Salar, P.; Bonnet, P.; Maixner, M.; Marcone, C.; Boudon-Padieu, E.; Foissac, X. Multilocus Sequence Typing Confirms the Close Genetic Interrelatedness of Three Distinct Flavescence Doreé Phytoplasma Strain Clusters and Group 16SrV Phytoplasmas Infecting Grapevine and Alder in Europe. Appl. Environ. Microbiol. 2007, 73, 4001–4010. [Google Scholar] [CrossRef]
- Pedrelli, A.; Carli, M.; Panattoni, A.; Pellegrini, E.; Rizzo, D.; Nali, C.; Cotrozzi, L. Investigating a New Alarming Outbreak of Flavescence Dorée in Tuscany (Central Italy): Molecular Characterization and Map Gene Typing Elucidate the Complex Phytoplasma Ecology in the Vineyard Agroecosystem. Front. Plant Sci. 2024, 15, 1489790. [Google Scholar] [CrossRef]
- Malembic-Maher, S.; Desqué, D.; Khalil, D.; Salar, P.; Bergey, B.; Danet, J.L.; Duret, S.; Dubrana-Ourabah, M.P.; Beven, L.; Ember, I.; et al. When a Palearctic Bacterium Meets a Nearctic Insect Vector: Genetic and Ecological Insights into the Emergence of the Grapevine Flavescence Dorée Epidemics in Europe. PLoS Pathog. 2020, 16, e1007967. [Google Scholar] [CrossRef]
- Boudon-Padieu, E. Flavescence doree of the grapevine. Knowledge and new developments in epidemiology-aetiology and diagnosis [Vitis vinifera L.]. Atti Delle Giornate Fitopatol. 2002, 1, 15–34. [Google Scholar]
- Filippin, L.; Jovic’, J.; Cvrkovic’, T.; Forte, V.; Clair, D.; Tosevski, I.; Boudon-Padieu, E.; Borgo, M.; Angelini, E. Molecular characteristics of phytoplasmas associated with Flavescence doreé in clematis and grapevine and preliminary results on the role of Dictyophara europaea as a vector. Plant Pathol. 2009, 58, 826–837. [Google Scholar] [CrossRef]
- Caudwell, A. Deux années d’étude sur la Flavescence dorée, nouvelle maladie grave de la vigne. Ann. Amélior. Plantes 1957, 4, 359–363. [Google Scholar]
- Caudwell, A. Epidemiology and Characterization of Flavescence Dorée (FD) and Other Grapevine Yellows. Agronomie 1990, 10, 655–663. [Google Scholar] [CrossRef]
- Oliveira, M.J.R.A.; Roriz, M.; Vasconcelos, M.W.; Bertaccini, A.; Carvalho, S.M.P. Conventional and Novel Approaches for Managing “Flavescence Dorée” in Grapevine: Knowledge Gaps and Future Prospects. Plant Pathol. 2019, 68, 3–17. [Google Scholar] [CrossRef]
- Pierro, R.; Semeraro, T.; Luvisi, A.; Garg, H.; Vergine, M.; De Bellis, L.; Gill, H.K. The Distribution of Phytoplasmas in South and East Asia: An Emerging Threat to Grapevine Cultivation. Front. Plant Sci. 2019, 10, 1108. [Google Scholar] [CrossRef]
- Bigozzi, M. Indagine Sul Ruolo Di Orientus ishidae (Matsumura, 1902) Nella Diffusione Della Flavescenza Dorata Della Vite in Piemonte. Master’s Thesis, Università degli studi di Torino, Torino, Italy, 2023. [Google Scholar]
- Dermastia, M. Plant Hormones in Phytoplasma Infected Plants. Front. Plant Sci. 2019, 10, 477. [Google Scholar] [CrossRef] [PubMed]
- Margaria, P.; Abbà, S.; Palmano, S. Novel Aspects of Grapevine Response to Phytoplasma Infection Investigated by a Proteomic and Phospho-Proteomic Approach with Data Integration into Functional Networks. BMC Genom. 2013, 14, 38. [Google Scholar] [CrossRef]
- Coppari, F. Flavescenza Dorata e Sue Implicazioni Nel Panorama Viticolo. Bachelor’s Thesis, Università Politecnica delle Marche, Ancona, Italy, 2019. [Google Scholar]
- Casarin, S.; Vincenzi, S.; Esposito, A.; Filippin, L.; Forte, V.; Angelini, E.; Bertazzon, N. A successful defence strategy in grapevine cultivar ‘Tocai friulano’ provides compartmentation of grapevine Flavescence dorée phytoplasma. BMC Plant Biol. 2023, 23, 161. [Google Scholar] [CrossRef] [PubMed]
- Huancas, F.; Coronel, A.; Vidal, R.; Berres, S.; Brito, H. A Mathematical Model of Flavescence Dorée in Grapevines by Considering Seasonality. Math. Biosci. Eng. 2024, 21, 7554–7581. [Google Scholar] [CrossRef]
- Rigamonti, I.E.; Salvetti, M.; Girgenti, P.; Bianco, P.A.; Quaglino, F. Investigation on Flavescence Dorée in North-Western Italy Identifies Map-M54 (16SrV-D/Map-FD2) as the Only Phytoplasma Genotype in Vitis vinifera L. and Reveals the Presence of New Putative Reservoir Plants. Biology 2023, 12, 1216. [Google Scholar] [CrossRef]
- Pearson, R.C.; Pool, R.M.; Gonsalves, D.; Goffinet, M.C. Occurrence of Flavescence Dorée-like Symptoms on “White Riesling” Grape Vines in New York, U.S.A. Phytopathol. Mediterr. 1985, 24, 82–87. [Google Scholar]
- Seemüller, E.; Garnier, M.; Schneider, B. Mycoplasmas of Plants and Insects. In Molecular Biology and Pathogenicity of Mycoplasmas; Razin, S., Herrmann, R., Eds.; Springer: New York, NY, USA, 2002; pp. 91–115. [Google Scholar]
- Haider, M.W.; Sharma, A.; Majumdar, A.; Fayaz, F.; Bromand, F.; Rani, U.; Singh, V.K.; Saharan, M.S.; Tiwari, R.K.; Lal, M.K.; et al. Unveiling the Phloem: A Battleground for Plant Pathogens. Phytopathol. Res. 2024, 6, 65. [Google Scholar] [CrossRef]
- van Bel, A.J.E. Sieve Elements: The Favourite Habitat of Phytoplasmas. In Methods in Molecular Biology; Humana Press Inc.: New York, NY, USA, 2019; Volume 1875, pp. 255–277. [Google Scholar]
- Trivellone, V.; Dietrich, C.H. Evolutionary Diversification in Insect Vector-Phytoplasma-Plant Associations. Ann. Entomol. Soc. Am. 2021, 114, 137–150. [Google Scholar] [CrossRef]
- Van Bel, A.J.E.; Musetti, R. Sieve Element Biology Provides Leads for Research on Phytoplasma Lifestyle in Plant Hosts. J. Exp. Bot. 2019, 70, 3737–3755. [Google Scholar] [CrossRef]
- Christensen, N.M.; Axelsen, K.B.; Nicolaisen, M.; Schulz, A. Phytoplasmas and Their Interactions with Hosts. Trends Plant Sci. 2005, 10, 526–535. [Google Scholar] [CrossRef]
- Hogenhout, S.A.; Oshima, K.; Ammar, E.D.; Kakizawa, S.; Kingdom, H.N.; Namba, S. Phytoplasmas: Bacteria that manipulate plants and insects. Mol. Plant Pathol. 2008, 9, 403–423. [Google Scholar] [CrossRef] [PubMed]
- Marcone, C. Molecular Biology and Pathogenicity of Phytoplasmas. Ann. Appl. Biol. 2014, 165, 199–221. [Google Scholar] [CrossRef]
- Buoso, S.; Pagliari, L.; Musetti, R.; Martini, M.; Marroni, F.; Schmidt, W.; Santi, S. “Candidatus Phytoplasma Solani” Interferes with the Distribution and Uptake of Iron in Tomato. BMC Genom. 2019, 20, 703. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Anee, T.I.; Fujita, M. Glutathione in Plants: Biosynthesis and Physiological Role in Environmental Stress Tolerance. Physiol. Mol. Biol. Plants 2017, 23, 249–268. [Google Scholar] [CrossRef]
- dos Santos, C.; Franco, O.L. Pathogenesis-Related Proteins (PRs) with Enzyme Activity Activating Plant Defense Responses. Plants 2023, 12, 2226. [Google Scholar] [CrossRef]
- Hren, M.; Ravnikar, M.; Brzin, J.; Ermacora, P.; Carraro, L.; Bianco, P.A.; Casati, P.; Borgo, M.; Angelini, E.; Rotter, A.; et al. Induced Expression of Sucrose Synthase and Alcohol Dehydrogenase I Genes in Phytoplasma-Infected Grapevine Plants Grown in the Field. Plant Pathol. 2009, 58, 170–180. [Google Scholar] [CrossRef]
- Rojas, C.M.; Senthil-Kumar, M.; Tzin, V.; Mysore, K.S. Regulation of Primary Plant Metabolism during Plant-Pathogen Interactions and Its Contribution to Plant Defense. Front. Plant Sci. 2014, 5, 17. [Google Scholar] [CrossRef]
- Oliveira, M.J.R.A.; Castro, S.; Paltrinieri, S.; Bertaccini, A.; Sottomayor, M.; Santos, C.S.; Vasconcelos, M.W.; Carvalho, S.M.P. “Flavescence Dorée” Impacts Growth, Productivity and Ultrastructure of Vitis vinifera Plants in Portuguese “Vinhos Verdes” Region. Sci. Hortic. 2020, 261, 108742. [Google Scholar] [CrossRef]
- Miura, C.; Sugawara, K.; Neriya, Y.; Minato, N.; Keima, T.; Himeno, M.; Maejima, K.; Komatsu, K.; Yamaji, Y.; Oshima, K.; et al. Functional Characterization and Gene Expression Profiling of Superoxide Dismutase from Plant Pathogenic Phytoplasma. Gene 2012, 510, 107–112. [Google Scholar] [CrossRef]
- Hoshi, A.; Oshima, K.; Kakizawa, S.; Ishii, Y.; Ozeki, J.; Hashimoto, M.; Komatsu, K.; Kagiwada, S.; Yamaji, Y.; Namba, S. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc. Natl. Acad. Sci. USA 2009, 106, 6416–6421. [Google Scholar] [CrossRef]
- Ripamonti, M.; Pacifico, D.; Roggia, C.; Palmano, S.; Rossi, M.; Bodino, N.; Marzachì, C.; Bosco, D.; Galetto, L. Recovery from Grapevine Flavescence Dorée in Areas of High Infection Pressure. Agronomy 2020, 10, 1479. [Google Scholar] [CrossRef]
- He, J.; Li, R.; Xu, C.; Chen, X.; Yao, J.; Li, Z.; Cheng, Y. Enhancing Fruit Resistance against Fungal Pathogens Using a Pathogen-Associated Molecular Pattern PdEIX. J. Agric. Food Chem. 2025, 73, 135–146. [Google Scholar] [CrossRef]
- Harris, F.M.; Mou, Z. Damage-Associated Molecular Patterns and Systemic Signaling. Phytopathology 2024, 114, 308–327. [Google Scholar] [CrossRef] [PubMed]
- Carreón-Anguiano, K.G.; Vila-Luna, S.E.; Sáenz-Carbonell, L.; Canto-Canché, B. Novel Insights into Phytoplasma Effectors. Horticulturae 2023, 9, 1228. [Google Scholar] [CrossRef]
- Nguyen, Q.M.; Iswanto, A.B.B.; Son, G.H.; Kim, S.H. Recent Advances in Effector-Triggered Immunity in Plants: New Pieces in the Puzzle Create a Different Paradigm. Int. J. Mol. Sci. 2021, 22, 4709. [Google Scholar] [CrossRef] [PubMed]
- Gazzetta Ufficiale dell’Unione Europea. Parlamento Europeo e Il Consiglio Dell’Unione Europea. Regolamento (UE) 2016/2031 del Parlamento Europeo E del Consiglio; Gazzetta Ufficiale dell’Unione Europea: Luxembourg, 2016; Volume 317, pp. 4–101. [Google Scholar]
- Tessitori, M.; La Rosa, R.; Marzachì, C. Flavescence Dorée and Bois Noir Diseases of Grapevine Are Evolving Pathosystems. Plant Health Prog. 2018, 19, 136–138. [Google Scholar] [CrossRef]
- Ripamonti, M.; Pegoraro, M.; Morabito, C.; Gribaudo, I.; Schubert, A.; Bosco, D.; Marzachì, C. Susceptibility to Flavescence Dorée of Different Vitis vinifera Genotypes from North-Western Italy. Plant Pathol. 2020, 70, 511–520. [Google Scholar] [CrossRef]
- Boselli, M. Spatial Distribution and Severity of Grapevine Yellows on Albarola and Vermentino Grapevine (Vitis vinifera L.) Cultivars in Eastern Liguria (Northern Italy). Adv. Hort. Sci. 1999, 13, 41–45. [Google Scholar]
- Morabito, C.; Pagliarani, C.; Lovisolo, C.; Ripamonti, M.; Bosco, D.; Marzachì, C.; Roitsch, T.; Schubert, A.; Lunn, J. The sucrose signalling route controls Flavescence dorée phytoplasma load in grapevine leaves. J. Exp. Bot. 2024, 76, 3071–3087. [Google Scholar] [CrossRef]
- Roggia, C.; Caciagli, P.; Galetto, L.; Pacifico, D.; Veratti, F.; Bosco, D.; Marzachì, C. Flavescence Dorée Phytoplasma Titre in Field-Infected Barbera and Nebbiolo Grapevines. Plant Pathol. 2014, 63, 31–41. [Google Scholar] [CrossRef]
- Davosir, D.; Šola, I.; Šeruga Musić, M. Physiological Responses of Grapevine (Vitis vinifera Var. ‘Pinot Gris’) Affected by Different Flavescence Dorée Genotypes: Dynamics through the Development of Phytoplasma Infection. J. Plant Dis. Prot. 2024, 131, 1411–1425. [Google Scholar] [CrossRef]
- Mir, Z.A.; Ali, S.; Manzoor, S.; Sharma, D.; Sharma, D.; Tyagi, A.; Wani, A.W.; Kumar, S.; Ayele, B.T. Plant Defense Hormones: Thermoregulation and Their Role in Plant Adaptive Immunity. J. Plant Growth Regul. 2025, 44, 2689–2706. [Google Scholar] [CrossRef]
- Paolacci, A.R.; Catarcione, G.; Ederli, L.; Zadra, C.; Pasqualini, S.; Badiani, M.; Musetti, R.; Santi, S.; Ciaffi, M. Jasmonate-mediated defence responses, unlike salicylate-mediated responses, are involved in the recovery of grapevine from bois noir disease. BMC Plant Biol. 2017, 17, 39. [Google Scholar] [CrossRef]
- Schneider, A.; Boccacci, P.; Botta, R. Genetic Relationships among Grape Cultivars from North-Western Italy. Acta Hortic. 2003, 603, 229–235. [Google Scholar] [CrossRef]
- Galetto, L.; Miliordos, D.E.; Pegoraro, M.; Sacco, D.; Veratti, F.; Marzachì, C.; Bosco, D. Acquisition of Flavescence Dorée Phytoplasma by Scaphoideus titanus Ball from Different Grapevine Varieties. Int. J. Mol. Sci. 2016, 17, 1563. [Google Scholar] [CrossRef]
- Kuzmanovic, S.; Josic, D.; Starovic, M.; Ivanovic, Z.; Popovic, T.; Trkulja, N.; Bajic-Raymond, S.; Stojanovic, S. Detection of Flavescence Dorée Phytoplasma Strain C on Different Grapevine Cultivars in Serbian Vineyards. Bulg. J. Agric. Sci. 2011, 17, 325–332. [Google Scholar]
- Ripamonti, M.; Galetto, L.; Maron, F.; Marzachì, C.; Bosco, D. Scaphoideus titanus Fitness on Grapevine Varieties with Different Susceptibility to Flavescence Dorée Phytoplasma. J. Appl. Entomol. 2022, 146, 1260–1271. [Google Scholar] [CrossRef]
- Belli, G.; Bianco, A.; Casati, P.; Scattini, G. Serious and widespread outbreaks of Flavescence dorée in vines in Lombardy. L’Informatore Agrar. 2000, 56, 56–59. [Google Scholar]
- Vercesi, A.; Scattini, G. Spread of flavescencedorée of grapes in the Oltrepo Pavese in 1999. Vignevini 2000, 27, 52–55. [Google Scholar]
- Martelli, G.P.; Boudon-Padieu, E. Directory of Infectious Diseases of Grapevines and Viroses and Virus-like Diseases of the Grapevine: Bibliographic Report 1998–2004; Martelli, G.P., Boudon-Padieu, E., Eds.; CIHEAM Centre International de Hautes Etudes Agronomiques Méditerranéennes: Bari, Italy, 2006; p. 279. [Google Scholar]
- Plavec, J.; Budinšćak; Križanac, I.; Škorić, D.; Foissac, X.; ŠerugaMusić, M. Multilocus Sequence Typing Reveals the Presence of Three Distinct Flavescence Dorée Phytoplasma Genetic Clusters in CroatianVineyards. Plant Pathol. 2019, 68, 18–30. [Google Scholar] [CrossRef]
- Eveillard, S.; Jollard, C.; Labroussaa, F.; Khalil, D.; Perrin, M.; Desqué, D.; Salar, P.; Razan, F.; Hévin, C.; Bordenave, L.; et al. Contrasting Susceptibilities to Flavescence Dorée in Vitis vinifera, Rootstocks and Wild Vitis Species. Front. Plant Sci. 2016, 7, 1762. [Google Scholar] [CrossRef] [PubMed]
- Galetto, L.; Miliordos, D.; Roggia, C.; Rashidi, M.; Sacco, D.; Marzachì, C.; Bosco, D. Acquisition Capability of the Grapevine Flavescence Dorée by the Leafhopper Vector Scaphoideus titanus Ball CorrelateswithPhytoplasma Titre in the Source Plant. J. Pest Sci. 2014, 87, 671–679. [Google Scholar] [CrossRef]
- Morone, C.; Boveri, M.; Giosuè, S.; Gotta, P.; Rossi, V.; Scapin, I.; Marzachi, C. Epidemiology of Flavescence Dorée in Vineyards in Northwestern Italy. Phytopathology 2007, 97, 1422–1427. [Google Scholar] [CrossRef]
- Parlamento Europeo e Il Consiglio Dell’Unione Europea. Gazzetta Ufficiale Dell’unione Europea. In L.A.C. Regolamento di Esecuzione (UE) 2022/1630 Della Commissione; Gazzetta Ufficiale Dell’unione Europea: Luxembourg, 2022; pp. 27–44. [Google Scholar]
- Chuche, J.; Thiéry, D. Biology and Ecology of the Flavescence Dorée Vector Scaphoideus titanus: A Review. Agron. Sustain. Dev. 2014, 34, 381–403. [Google Scholar] [CrossRef]
- Romanazzi, G.; Murolo, S.; Feliziani, E. Effects of an Innovative Strategy to Contain Grapevine Bois Noir: Field Treatment with Resistance Inducers. Am. Phytopathol. Soc. 2013, 103, 785–791. [Google Scholar] [CrossRef]
- Bulgari, D.; Casati, P.; Quaglino, F.; Bianco, P.A. Endophytic Bacterial Community of Grapevine Leaves Influenced by Sampling Date and Phytoplasma Infection Process. BMC Microbiol. 2014, 14, 198. [Google Scholar] [CrossRef] [PubMed]
- Bressan, A.; Spiazzi, S.; Girolami, V.; Boudon-Padieu, E. Acquisition Efficiency of Flavescence Dorée Phytoplasma by Scaphoideus titanus Ball from Infected Tolerant or Susceptible Grapevine Cultivars or Experimental Host Plants. Vitis 2005, 44, 143–146. [Google Scholar]
- Boulent, J.; St-Charles, P.L.; Foucher, S.; Théau, J. Automatic Detection of Flavescence Dorée Symptoms Across White Grapevine Varieties Using Deep Learning. Front. Artif. Intell. 2020, 3, 564878. [Google Scholar] [CrossRef]
- Ripamonti, M.; Maron, F.; Cornara, D.; Marzachì, C.; Fereres, A.; Bosco, D. Scaphoideus titanus Ball Feeding Behaviour on Three Grapevine Cultivars with Different Susceptibilities to Flavescence Dorée. J. Insect Physiol. 2021, 137, 104366. [Google Scholar] [CrossRef]
- Steffek, R.; Reisenzein, H.; Zeisner, N. Analysis of the Pest Risk from Grapevine Flavescence Dorée Phytoplasma to Austrian Viticulture. EPPO Bull. 2007, 37, 191–203. [Google Scholar] [CrossRef]
- Reisenzein, H.; Steffek, R. First Outbreaks of Grapevine “Flavescence Dorée” in Austrian Viticulture. Bull. Insectology 2011, 64, 223–224. [Google Scholar]
- de Sousa, E.; Casati, P.; Cardoso, F.; Baltazar, C.; Durante, G.; Quaglino, F.; Bianco, P.A. Flavescence dorée phytoplasma affecting grapevine (Vitis vinifera) newly reported in Portugal. Plant Pathol. 2010, 59, 398. [Google Scholar] [CrossRef][Green Version]
- Teixeira, A.; Martins, V.; Frusciante, S.; Cruz, T.; Noronha, H.; Diretto, G.; Gerós, H. Flavescence Dorée-Derived Leaf Yellowing in Grapevine (Vitis vinifera L.) Is Associated to a General Repression of Isoprenoid Biosynthetic Pathways. Front. Plant Sci. 2020, 11, 896. [Google Scholar] [CrossRef] [PubMed]
- Prezelj, N.; Nikolić, P.; Gruden, K.; Ravnikar, M.; Dermastia, M. Spatiotemporal Distribution of Flavescence Dorée Phytoplasma in Grapevine. Plant Pathol. 2013, 62, 760–766. [Google Scholar] [CrossRef]
- Prezelj, N.; Covington, E.; Roitsch, T.; Gruden, K.; Fragner, L.; Weckwerth, W.; Chersicola, M.; Vodopivec, M.; Dermastia, M. Metabolic Consequences of Infection of Grapevine (Vitis vinifera L.) cv. “ModraFrankinja” with Flavescence Dorée Phytoplasma. Front. Plant Sci. 2016, 7, 711. [Google Scholar] [CrossRef] [PubMed]
- Musić, M.Š.; Škoriæ, D.; Haluška, I.; Križanac, I.; Plavec, J.; Mikec, I. First Report of Flavescence Dorée-Related Phytoplasma Affecting Grapevines in Croatia. Plant Dis. 2011, 95, 353. [Google Scholar] [CrossRef] [PubMed]
- Kuzmanović, S.; Jošić, D.; Ivanović, Ž.; Popović, T.; Stojanović, S.; Aleksić, G.; Starović, M. A Study of Suitability of Grapevine Cultivar Plovdina as a Possible Indicator Plant for Flavescence Dorée Disease. Afr. J. Agric. Res. 2011, 6, 3036–3042. [Google Scholar]
- Radulović, M.; Hrnčić, S.; Đurić, G.; Delić, D. Results of the surveillance for “flavescence dorée” phytoplasma and Scaphoideus titanus in the Republic of Srpska (Bosnia and Herzegovina). In Proceedings of the 19th Congress of ICVGS, Santiago, Chile, 9–12 April 2018; pp. 96–97. [Google Scholar]
- Szamatari, E.; Merkely, B.; Végh, A. Infection of ‘Candidatus Phytoplasma Vitis’ in a Hungarian Vineyard East of the Danube. Georg. Agric. 2024, 28, 71–77. [Google Scholar]
- Kuzmanovic, S.; Martinizi, M.; Ermacora, P.; Ferrini, F.; Starovic, M.; Tosic, M.; Carraro, L.; Osler, R. Incidence and molecular characterization of flavescence dorée and stolbur phytoplasmas in grapevine cultivars from different viticultural areas of Serbia. Vitis 2008, 47, 105–111. [Google Scholar]
- Ember, I.; Bodor, P.; Zsófi, Z.; Pálfi, Z.; Ladányi, M.; Pásti, G.; Deák, T.; Nyitrainé, D.S.; Bálo, B.; Szekeres, A.; et al. Bois Noir Affects the Yield and Wine Quality of Vitis vinifera L. cv. ‘Chardonnay’. Eur. J. Plant Pathol. 2018, 152, 185–197. [Google Scholar] [CrossRef]
- Kosovac, A.; Radonjić, S.; Hrnčić, S.; Krstić, O.; Toševski, I.; Jović, J. Molecular Tracing of the Transmission Routes of Bois Noir in Mediterranean Vineyards of Montenegro and Experimental Evidence for the Epidemiological Role of Vitex Agnus-Castus (Lamiaceae) and Associated Hyalesthes obsoletus (Cixiidae). Plant Pathol. 2016, 65, 285–298. [Google Scholar] [CrossRef]
- Radonjić, S.; Krstić, O.; Cvrković, T.; Hrnčić, S.; Marinković, S.; Mitrović, M.; Toševski, I.; Jović, J. The First Report on the Occurrence of Flavescence Dorée Phytoplasma Affecting Grapevine in Vineyards of Montenegro and an Overview of Epidemic Genotypes in Natural Plant Reservoirs. J. Plant Pathol. 2023, 105, 419–427. [Google Scholar] [CrossRef]
- Zombardo, A.; Meneghetti, S.; Morreale, G.; Calò, A.; Costacurta, A.; Storchi, P. Study of Inter-and Intra-Varietal Genetic Variability in Grapevine Cultivars. Plants 2022, 11, 397. [Google Scholar] [CrossRef]
- OIV. Distribution of the World’s Grapevine Varieties; International Organisation of Vine and Wine Intergovernmental Organisation: Dijon, France, 2017. [Google Scholar]
- Cavagna, F.; Guerrieri, E.; Danzi, D.; Palmano, S.; Marzachi, C.; Mori, N.; Polverari, A. Exploring diversity of grapevine responses to Flavescence dorée infection. In Proceedings of the Open International Conference on Grapevine Physiology and Biotechnology (Open-GPB2024), Logroño, Spain, 7–11 July 2024. [Google Scholar]
- Jeger, M.; Bragard, C.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Gilioli, G.; Jaques Miret, J.A.; Macleod, A.; Navarro, M.N.; et al. Risk to Plant Health of Flavescence Dorée for the EU Territory. EFSA J. 2016, 14, 4603. [Google Scholar] [CrossRef]
- Mueller-Loose, S.; Rey Del, R. State of the International Wine Markets in 2023. The wine market at a crossroads: Temporary or structural challenges. In Wine Economics and Policy; Marinelli, N., Pomarici, E., Contini, C., Eds.; Firenze University Press: Firenze, Italy, 2021; Volume 10, pp. 3–14. [Google Scholar]
- Steffek, R.; Reisenzein, H.; Strauss, G.; Leichtfried, T.; Hofrichter, J.; Kopacka, I.; Schwarz, M.; Pusterhofer, J.; Biedermann, R.; Renner, W.; et al. VitisCLIM, a Project Modelling Epidemiology and Economic Impact of Grapevine “Flavescence dorée” Phytoplasma in Austrian Viticulture under a Climate Change Scenario. Bull. Insectology 2011, 64, 191–192. [Google Scholar]
- Butiuc-Keul, A.; Coste, A. Biotechnologies and Strategies for Grapevine Improvement. Horticulturae 2023, 9, 62. [Google Scholar] [CrossRef]
- Ferro, M.V.; Catania, P. Technologies and Innovative Methods for Precision Viticulture: A Comprehensive Review. Horticulturae 2023, 9, 399. [Google Scholar] [CrossRef]
- Cotrozzi, L.; Couture, J.J. Hyperspectral Assessment of Plant Responses to Multi-Stress Environments: Prospects for Managing Protected Agrosystems. Plants People Planet 2020, 2, 244–258. [Google Scholar] [CrossRef]
- Bendel, N.; Backhaus, A.; Kicherer, A.; Köckerling, J.; Maixner, M.; Jarausch, B.; Biancu, S.; Klück, H.C.; Seiffert, U.; Voegele, R.T.; et al. Detection of Two Different Grapevine Yellows in Vitis vinifera Using Hyperspectral Imaging. Remote Sens. 2020, 12, 4151. [Google Scholar] [CrossRef]
- Tardif, M.; Amri, A.; Keresztes, B.; Deshayes, A.; Martin, D.; Greven, M.; Da Costa, J.P. Two-Stage Automatic Diagnosis of Flavescence dorée Based on Proximal Imaging and Artificial Intelligence: A Multi-Year and Multi-Variety Experimental Study. Oeno One 2022, 56, 371–384. [Google Scholar] [CrossRef]
- Barjaktarović, M.; Santoni, M.; Faralli, M.; Bertamini, M.; and Bruzzone, L. A multispectral acquisition system for potential detection of Flavescence dorée. In Proceedings of the 2022 30th Telecommunications Forum (TELFOR), Belgrade, Serbia, 15–16 November 2022; pp. 1–4. [Google Scholar]
- Daglio, G.; Cesaro, P.; Todeschini, V.; Lingua, G.; Lazzari, M.; Berta, G.; Massa, N. Potential Field Detection of Flavescence dorée and Esca Diseases Using a Ground Sensing Optical System. Biosyst. Eng. 2022, 215, 203–214. [Google Scholar] [CrossRef]
- Mas Garcia, S.; Ryckewaert, M.; Abdelghafour, F.; Metz, M.; Moura, D.; Feilhes, C.; Prezman, F.; Bendoula, R. Combination of Multivariate Curve Resolution with Factorial Discriminant Analysis for the Detection of Grapevine Diseases Using Hyperspectral Imaging. A Case Study: Flavescence Dorée. Analyst 2021, 146, 7730–7739. [Google Scholar] [CrossRef]
- Imran, H.A.; Zeggada, A.; Ianniello, I.; Melgani, F.; Polverari, A.; Baroni, A.; Danzi, D.; Goller, R. Low-Cost Handheld Spectrometry for Detecting Flavescence dorée in Vineyards. Appl. Sci. 2023, 13, 2388. [Google Scholar] [CrossRef]
- Oerke, E.C.; Herzog, K.; Toepfer, R. Hyperspectral Phenotyping of the Reaction of Grapevine Genotypes to Plasmopara viticola. J. Exp. Bot. 2016, 67, 5529–5543. [Google Scholar] [CrossRef]
- Oerke, E.C.; Juraschek, L.; Steiner, U. Hyperspectral Mapping of the Response of Grapevine Cultivars to Plasmopara viticola Infection at the Tissue Scale. J. Exp. Bot. 2023, 74, 377–395. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S. Fungal Endophytes: Diversity and Functional Roles: Tansley Review. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Santoyo, G.; Moreno-Hagelsieb, G.; del Carmen Orozco-Mosqueda, M.; Glick, B.R. Plant Growth-Promoting Bacterial Endophytes. Microbiol. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef]
- Vergine, M.; Meyer, J.B.; Cardinale, M.; Sabella, E.; Hartmann, M.; Cherubini, P.; De Bellis, L.; Luvisi, A. The Xylella fastidiosa-Resistant Olive Cultivar “Leccino” Has Stable Endophytic Microbiota during the Olive Quick Decline Syndrome (OQDS). Pathogens 2020, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, D.; Squartini, A.; Crucitti, D.; Barizza, E.; Lo Schiavo, F.; Muresu, R.; Carimi, F.; Zottini, M. The Role of the Endophytic Microbiome in the Grapevine Response to Environmental Triggers. Front. Plant Sci. 2019, 10, 1256. [Google Scholar] [CrossRef]
- Martini, M.; Musetti, R.; Grisan, S.; Polizzotto, R.; Borselli, S.; Pavan, F.; Osler, R. DNA-Dependent Detection of the Grapevine Fungal Endophytes Aureobasidium pullulans and Epicoccum nigrum. Plant Dis. 2009, 93, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Bianco, P.A.; Marzachì, C.; Musetti, R.; Naor, V. Perspectives of Endophytes as Biocontrol Agents in the Management of Phytoplasma Diseases. Phytopathog. Mollicutes 2013, 3, 56. [Google Scholar] [CrossRef]
- Bulgari, D.; Casati, P.; Crepaldi, P.; Daffonchio, D.; Quaglino, F.; Brusetti, L.; Bianco, P.A. Restructuring of Endophytic Bacterial Communities in Grapevine Yellows-Diseased and Recovered Vitis vinifera L. Plants. Appl. Environ. Microbiol. 2011, 77, 5018–5022. [Google Scholar] [CrossRef]
- Gamalero, E.; Marzachì, C.; Galetto, L.; Veratti, F.; Massa, N.; Bona, E.; Novello, G.; Glick, B.R.; Ali, S.; Cantamessa, S.; et al. An 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase-Expressing Endophyte Increases Plant Resistance to Flavescence Dorée Phytoplasma Infection. Plant Biosyst. 2017, 151, 331–340. [Google Scholar] [CrossRef]
- Ricciardi, V.; Crespan, M.; Maddalena, G.; Migliaro, D.; Brancadoro, L.; Maghradze, D.; Failla, O.; Toffolatti, S.L.; De Lorenzis, G. Novel Loci Associated with Resistance to Downy and Powdery Mildew in Grapevine. Front. Plant Sci. 2024, 15, 1386225. [Google Scholar] [CrossRef]
- Sprink, T.; Wilhelm, R. Genome Editing in Biotech Regulations Worldwide. In A Roadmap for Plant Genome Editing; Ricroch, A., Eriksson, D., Miladinović, D., Sweet, J., Van Laere, K., Woźniak-Gientka, E., Eds.; Springer: Cham, Switzerland, 2023; pp. 425–436. [Google Scholar]
- Soriano, J.M. Molecular Marker Technology for Crop Improvement. Agronomy 2020, 10, 1462. [Google Scholar] [CrossRef]
- Ren, C.; Lin, Y.; Liang, Z. CRISPR/Cas Genome Editing in Grapevine: Recent Advances, Challenges and Future Prospects. Fruit Res. 2022, 2, 7. [Google Scholar] [CrossRef]
- Wang, X.; Tu, M.; Wang, D.; Liu, J.; Li, Y.; Li, Z.; Wang, Y.; Wang, X. CRISPR/Cas9-Mediated Efficient Targeted Mutagenesis in Grape in the First Generation. Plant Biotechnol. J. 2018, 16, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Vezzulli, S.; Dolzani, C.; Nicolini, D.; Bettinelli, P.; Migliaro, D.; Gratl, V.; Stedile, T.; Zatelli, A.; Dallaserra, M.; Clementi, S.; et al. Marker-Assisted Breeding for Downy Mildew, Powderey Mildew and Phylloxera Resistance at FEM. BIO Web Conf. 2019, 13, 01002. [Google Scholar] [CrossRef]
- Wan, D.Y.; Guo, Y.; Cheng, Y.; Hu, Y.; Xiao, S.; Wang, Y.; Wen, Y.Q. CRISPR/Cas9-Mediated Mutagenesis of VvMLO3 Results in Enhanced Resistance to Powdery Mildew in Grapevine (Vitis vinifera). Hortic. Res. 2020, 7, 116. [Google Scholar] [CrossRef]
- Akkurt, M.; Şenses, I.; Aktürk, B.; Tozlu, I.; Özer, N.; Uzun, H.I. Marker Assisted Selection (MAS) for Downy Mildew Resistance in Grapevines Using Rpv3.1 Associated Markers. Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12708. [Google Scholar] [CrossRef]
- Fedorina, J.; Tikhonova, N.; Ukhatova, Y.; Ivanov, R.; Khlestkina, E. Grapevine Gene Systems for Resistance to Gray Mold Botrytis cinerea and Powdery Mildew Erysiphe necator. Agronomy 2022, 12, 499. [Google Scholar] [CrossRef]
- Bettinelli, P.; Nicolini, D.; Costantini, L.; Stefanini, M.; Hausmann, L.; Vezzulli, S. Towards Marker-Assisted Breeding for Black Rot Bunch Resistance: Identification of a Major QTL in the Grapevine Cultivar ‘Merzling’. Int. J. Mol. Sci. 2023, 24, 3568. [Google Scholar] [CrossRef]
- Giacomelli, L.; Zeilmaker, T.; Giovannini, O.; Salvagnin, U.; Masuero, D.; Franceschi, P.; Vrhovsek, U.; Scintilla, S.; Rouppe van der Voort, J.; Moser, C. Simultaneous Editing of Two DMR6 Genes in Grapevine Results in Reduced Susceptibility to Downy Mildew. Front. Plant Sci. 2023, 14, 1242240. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.U.; Liu, X.; Wang, X.; Fan, B. Grapevine Gray Mold Disease: Infection, Defense and Management. Hortic. Res. 2024, 11, 182. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bene, A.; Vergine, M.; Pedrelli, A.; De Bellis, L.; Luvisi, A. Flavescence Dorée and Grapevine Susceptibility: From Host–Pathogen Interaction to Cultivar Categorization. Pathogens 2025, 14, 939. https://doi.org/10.3390/pathogens14090939
Bene A, Vergine M, Pedrelli A, De Bellis L, Luvisi A. Flavescence Dorée and Grapevine Susceptibility: From Host–Pathogen Interaction to Cultivar Categorization. Pathogens. 2025; 14(9):939. https://doi.org/10.3390/pathogens14090939
Chicago/Turabian StyleBene, Alessandro, Marzia Vergine, Athos Pedrelli, Luigi De Bellis, and Andrea Luvisi. 2025. "Flavescence Dorée and Grapevine Susceptibility: From Host–Pathogen Interaction to Cultivar Categorization" Pathogens 14, no. 9: 939. https://doi.org/10.3390/pathogens14090939
APA StyleBene, A., Vergine, M., Pedrelli, A., De Bellis, L., & Luvisi, A. (2025). Flavescence Dorée and Grapevine Susceptibility: From Host–Pathogen Interaction to Cultivar Categorization. Pathogens, 14(9), 939. https://doi.org/10.3390/pathogens14090939