Pangenomic Characterization of Campylobacter Plasmids for Enhanced Molecular Typing, Risk Assessment and Source Attribution
Abstract
1. Introduction
2. Materials and Methods
2.1. Campylobacter Chromosome and Plasmid Sequencing and Assembly
2.2. Plasmid Feature Annotation
2.3. Plasmid Group Characterization
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Abbreviations
AMR | Antimicrobial Resistance |
cgMLST | Core Genome Multilocus Sequence Typing |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
DNA | Deoxyribonucleic Acid |
FDA | United States Food and Drug Administration |
IS | Insertion Sequence |
NARMS | National Antimicrobial Resistance Monitoring System |
NCBI | National Center for Biotechnology Information |
ONT | Oxford Nanopore Technology |
PLSDB | Plasmid Sequence Database |
pT4SSt | Ti-plasmid type T4SS with a functional protein transfer system |
T4SS | Type IV Secretion System |
T6SS | Type VI Secretion System |
WGS | Whole-Genome Sequencing |
References
- Lee, M.D.; Newell, D.G. Campylobacter in poultry: Filling an ecological niche. Avian Dis. 2006, 50, 1–9. [Google Scholar] [CrossRef]
- Piña-González, A.M.; Castelán-Sánchez, H.G.; Hurtado-Ramírez, J.M.; López-Leal, G. Campylobacter prophage diversity reveals pervasive recombination between prophages from different Campylobacter species. Microbiol. Spectr. 2024, 12, e02795-23. [Google Scholar] [CrossRef]
- Horrocks, S.; Anderson, R.; Nisbet, D.; Ricke, S. Incidence and ecology of Campylobacter jejuni and coli in animals. Anaerobe 2009, 15, 18–25. [Google Scholar] [CrossRef]
- Dearlove, B.L.; Cody, A.J.; Pascoe, B.; Méric, G.; Wilson, D.J.; Sheppard, S.K. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. ISME J. 2016, 10, 721–729. [Google Scholar] [CrossRef]
- Tack, D.M.; Marder, E.P.; Griffin, P.M.; Cieslak, P.R.; Dunn, J.; Hurd, S.; Scallan, E.; Lathrop, S.; Muse, A.; Ryan, P.; et al. Preliminary incidence and trends of infections with pathogens transmitted commonly through food—Foodborne Diseases Active Surveillance Network, 10 US sites, 2015–2018. Morb. Mortal. Wkly. Rep. 2019, 68, 369. [Google Scholar] [CrossRef] [PubMed]
- United States Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States. 2019. Available online: https://www.cdc.gov/antimicrobial-resistance/media/pdfs/2019-ar-threats-report-508.pdf (accessed on 1 April 2025).
- Brinch, M.L.; Hald, T.; Wainaina, L.; Merlotti, A.; Remondini, D.; Henri, C.; Njage, P.M.K. Comparison of source attribution methodologies for human campylobacteriosis. Pathogens 2023, 12, 786. [Google Scholar] [CrossRef] [PubMed]
- Cody, A.J.; Bray, J.E.; Jolley, K.A.; McCarthy, N.D.; Maiden, M.C. Core genome multilocus sequence typing scheme for stable, comparative analyses of Campylobacter jejuni and C. coli human disease isolates. J. Clin. Microbiol. 2017, 55, 2086–2097. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Harrison, L.; Mukherjee, S.; Strain, E.; McDermott, P.; Zhang, Q.; Zhao, S. Core genome multilocus sequence typing for food animal source attribution of human Campylobacter jejuni infections. Pathogens 2020, 9, 532. [Google Scholar] [CrossRef]
- Harrison, L.; Mukherjee, S.; Hsu, C.-H.; Young, S.; Strain, E.; Zhang, Q.; Tillman, G.E.; Morales, C.; Haro, J.; Zhao, S. Core genome MLST for source attribution of Campylobacter coli. Front. Microbiol. 2021, 12, 703890. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Payne, M.; Zhang, L.; Lan, R. Uncovering the boundaries of Campylobacter species through large-scale phylogenetic and nucleotide identity analyses. mSystems 2024, 9, e0121823. [Google Scholar] [CrossRef]
- Nguyen, M.; Olson, R.; Shukla, M.; VanOeffelen, M.; Davis, J.J. Predicting antimicrobial resistance using conserved genes. PLoS Comput. Biol. 2020, 16, e1008319. [Google Scholar] [CrossRef]
- Guo, B.; Lin, J.; Reynolds, D.L.; Zhang, Q. Contribution of the multidrug efflux transporter CmeABC to antibiotic resistance in different Campylobacter species. Foodborne Pathog. Dis. 2010, 7, 77–83. [Google Scholar] [CrossRef]
- Kale, A.; Phansopa, C.; Suwannachart, C.; Craven, C.J.; Rafferty, J.B.; Kelly, D.J. The virulence factor PEB4 (Cj0596) and the periplasmic protein Cj1289 are two structurally related SurA-like chaperones in the human pathogen Campylobacter jejuni. J. Biol. Chem. 2011, 286, 21254–21265. [Google Scholar] [CrossRef]
- Schiaffino, F.; Parker, C.T.; Olortegui, M.P.; Pascoe, B.; Villanueva, K.M.; Bardales, P.F.G.; Mourkas, E.; Huynh, S.; Yori, P.P.; Cachique, L.R.; et al. Genomic resistant determinants of multidrug-resistant Campylobacter spp. isolates in Peru. J. Glob. Antimicrob. Resist. 2024, 36, 309–318. [Google Scholar] [CrossRef]
- Duan, J.; Zhao, Q.; Wang, Y.; Chi, Z.; Li, W.; Wang, X.; Liu, S.; Bi, S.; Søgaard-Andersen, L. The dCache Domain of the Chemoreceptor Tlp1 in Campylobacter jejuni Binds and Triggers Chemotaxis toward Formate. mBio 2023, 14, e0356422. [Google Scholar] [CrossRef]
- Parkinson, J.S.; Hazelbauer, G.L.; Falke, J.J. Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol. 2015, 23, 257–266. [Google Scholar] [CrossRef]
- Carbonero, A.; Maldonado-Iniesta, A.; Trujillo, Y.; Perea, J.; Riofrío, M.; Garcia-Bocanegra, I.; Borge, C. Identification of genes associated with environmental persistence in Campylobacter jejuni and Campylobacter coli isolates from processing in a broiler abattoir. Vet. Res. Commun. 2022, 46, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Qu, B.; Hu, G.; Ning, K. Pan-Genome Analysis of Campylobacter: Insights on the Genomic Diversity and Virulence Profile. Microbiol. Spectr. 2022, 10, e0102922. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Wu, Z.; Xu, C.; Sahin, O.; Yaeger, M.; Plummer, P.J.; Zhang, Q.; Palmer, G.H. The Rho-Independent Transcription Terminator for the porA Gene Enhances Expression of the Major Outer Membrane Protein and Campylobacter jejuni Virulence in Abortion Induction. Infect. Immun. 2019, 87, e00687-19. [Google Scholar] [CrossRef]
- Guerry, P.; Poly, F.; Riddle, M.; Maue, A.C.; Chen, Y.-H.; Monteiro, M.A. Campylobacter polysaccharide capsules: Virulence and vaccines. Front. Cell. Infect. Microbiol. 2012, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Ghielmetti, G.; Seth-Smith, H.M.B.; Roloff, T.; Cernela, N.; Biggel, M.; Stephan, R.; Egli, A. Whole-genome-based characterization of Campylobacter jejuni from human patients with gastroenteritis collected over an 18 year period reveals increasing prevalence of antimicrobial resistance. Microb. Genom. 2023, 9, 000941. [Google Scholar] [CrossRef]
- Ocejo, M.; Oporto, B.; Lavín, J.L.; Hurtado, A. Whole genome-based characterisation of antimicrobial resistance and genetic diversity in Campylobacter jejuni and Campylobacter coli from ruminants. Sci. Rep. 2021, 11, 8998. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, C.A.; Young, S.; Li, C.; Hsu, C.-H.; Martin, G.; Zhao, S. Use of whole-genome sequencing for Campylobacter surveillance from NARMS retail poultry in the United States in 2015. Food Microbiol. 2018, 73, 122–128. [Google Scholar] [CrossRef]
- He, Y.; Dykes, G.E.; Kanrar, S.; Liu, Y.; Gunther, N.W.; Counihan, K.L.; Lee, J.; Capobianco, J.A. Comparative Genomic Analysis of Campylobacter Plasmids Identified in Food Isolates. Microorganisms 2025, 13, 206. [Google Scholar] [CrossRef] [PubMed]
- Gabbert, A.D.; Mydosh, J.L.; Talukdar, P.K.; Gloss, L.M.; McDermott, J.E.; Cooper, K.K.; Clair, G.C.; Konkel, M.E. The Missing Pieces: The Role of Secretion Systems in Campylobacter jejuni Virulence. Biomolecules 2023, 13, 135. [Google Scholar] [CrossRef]
- Fischer, W.; Tegtmeyer, N.; Stingl, K.; Backert, S. Four Chromosomal Type IV Secretion Systems in Helicobacter pylori: Composition, Structure and Function. Front. Microbiol. 2020, 11, 1592. [Google Scholar] [CrossRef] [PubMed]
- Oyarzabal, O.A.; Rad, R.; Backert, S. Conjugative transfer of chromosomally encoded antibiotic resistance from Helicobacter pylori to Campylobacter jejuni. J. Clin. Microbiol. 2007, 45, 402–408. [Google Scholar] [CrossRef]
- Marasini, D.; Karki, A.B.; Bryant, J.M.; Sheaff, R.J.; Fakhr, M.K. Molecular characterization of megaplasmids encoding the type VI secretion system in Campylobacter jejuni isolated from chicken livers and gizzards. Sci. Rep. 2020, 10, 12514. [Google Scholar] [CrossRef]
- Bacon, D.J.; Karki, A.B.; Buchheim, M.A.; Fakhr, M.K. DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81-176. Infect. Immun. 2002, 70, 6242–6250. [Google Scholar] [CrossRef]
- Marasini, D.; Karki, A.B.; Buchheim, M.A.; Fakhr, M.K. Phylogenetic relatedness among plasmids harbored by Campylobacter jejuni and Campylobacter coli isolated from retail meats. Front. Microbiol. 2018, 9, 2167. [Google Scholar] [CrossRef]
- Pearson, B.M.; Rokney, A.; Crossman, L.C.; Miller, W.G.; Wain, J.; van Vliet, A.H.M. Complete Genome Sequence of the Campylobacter coli Clinical Isolate 15-537360. Genome Announc. 2013, 1, e01056-13. [Google Scholar] [CrossRef] [PubMed]
- Harrison, L.; Zhao, S.; Li, C.; McDermott, P.F.; Tyson, G.H.; Strain, E. Lociq provides a loci-seeking approach for enhanced plasmid subtyping and structural characterization. Commun. Biol. 2023, 6, 595. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information (NCBI). 1988. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 1 June 2022).
- Galata, V.; Fehlmann, T.; Backes, C.; Keller, A. PLSDB: A resource of complete bacterial plasmids. Nucleic Acids Res. 2019, 47, D195–D202. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture Food Safety and Inspection Service. FSIS Cecal Sampling Under the National Antimicrobial Resistance Monitoring System Surveillance Program. 2024. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/2020-08/10100.1.pdf (accessed on 1 September 2025).
- Wick, R.R.; Judd, L.M.; Cerdeira, L.T.; Hawkey, J.; Méric, G.; Vezina, B.; Wyres, K.L.; Holt, K.E. Trycycler: Consensus long-read assemblies for bacterial genomes. Genome Biol. 2021, 22, 266. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Vaser, R.; Šikić, M. Time-and memory-efficient genome assembly with Raven. Nat. Comput. Sci. 2021, 1, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016, 32, 2103–2110. [Google Scholar] [CrossRef]
- Wright, C.; Wykes, M. Medaka. 2022. Available online: https://github.com/nanoporetech/medaka (accessed on 1 May 2024).
- Wick, R.R.; Holt, K.E. Polypolish: Short-read polishing of long-read bacterial genome assemblies. PLoS Comput. Biol. 2022, 18, e1009802. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Abby, S.S.; Néron, B.; Ménager, H.; Touchon, M.; Rocha, E.P. MacSyFinder: A program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS ONE 2014, 9, e110726. [Google Scholar] [CrossRef]
- Denise, R.; Abby, S.S.; Rocha, E.P. Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol. 2019, 17, e3000390. [Google Scholar] [CrossRef]
- Abby, S.S.; Cury, J.; Guglielmini, J.; Néron, B.; Touchon, M.; Rocha, E.P.C. Identification of protein secretion systems in bacterial genomes. Sci. Rep. 2016, 6, 23080. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.-H.; McDermott, P.F.; et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef]
- Robertson, J.; Nash, J.H. MOB-suite: Software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genom. 2018, 4, e000206. [Google Scholar] [CrossRef]
- Robertson, J.; Bessonov, K.; Schonfeld, J.; Nash, J.H. Universal whole-sequence-based plasmid typing and its utility to prediction of host range and epidemiological surveillance. Microb. Genom. 2020, 6, mgen000435. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, H.A.; Bayliss, S.C.; Sheppard, S.K.; Feil, E.J. Piggy: A rapid, large-scale pan-genome analysis tool for intergenic regions in bacteria. Gigascience 2018, 7, giy015. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Thorndike, R.L. Who belongs in the family? Psychometrika 1953, 18, 267–276. [Google Scholar] [CrossRef]
- Scrucca, L.; Fraley, C.; Murphy, T.B.; Raftery, A.E. Model-Based Clustering, Classification, and Density Estimation Using Mclust in R; Chapman and Hall/CRC: London, UK, 2023. [Google Scholar] [CrossRef]
- Grant, B.J.; Rodrigues, A.P.; ElSawy, K.M.; McCammon, J.A.; Caves, L.S. Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics 2006, 22, 2695–2696. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef] [PubMed]
- UniProt: The universal protein knowledgebase in 2025. Nucleic Acids Res. 2025, 53, D609–D617. [CrossRef]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef]
- Alikhan, N.-F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. PlasmidFinder and pMLST: In silico detection and typing of plasmids. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef]
- Garcia-Fernandez, A.; Janowicz, A.; Marotta, F.; Napoleoni, M.; Arena, S.; Primavilla, S.; Pitti, M.; Romantini, R.; Tomei, F.; Garofolo, G.; et al. Antibiotic resistance, plasmids, and virulence-associated markers in human strains of Campylobacter jejuni and Campylobacter coli isolated in Italy. Front. Microbiol. 2024, 14, 1293666. [Google Scholar] [CrossRef]
- Pena-Fernández, N.; Janowicz, A.; Marotta, F.; Napoleoni, M.; Arena, S.; Primavilla, S.; Pitti, M.; Romantini, R.; Tomei, F.; Garofolo, G.; et al. Campylobacter fetus Plasmid Diversity: Comparative Analysis of Fully Sequenced Plasmids and Proposed Classification Scheme. Genome Biol. Evol. 2024, 16, evae203. [Google Scholar] [CrossRef] [PubMed]
Plasmid Group ID | Combined Dataset (n) | pTet Mean % ID | pVir Mean % ID | pCC42 Mean % ID | pT6SS Mean % ID |
---|---|---|---|---|---|
pTet | 165 | 90.9 | 0.5 | 2.4 | 37.4 |
pVir | 31 | 2.0 | 89.0 | 0.0 | 0.8 |
pCC42 | 67 | 0.9 | 0.2 | 90.0 | 0.4 |
pT6SS | 52 | 36.1 | 0.3 | 4.5 | 65.2 |
26 minor groups | 109 | 2.6 | 0.1 | 4.9 | 1.2 |
Typing Locus | Subgroup Variant 1 | Subgroup Variant 2 | % Identity Between Variants 1 and 2 |
---|---|---|---|
TrbE | pCC42.2 | pCC42.1, pCC42.4 | 91.72 |
TrbH | pCC42.4 | pCC42.2, pCC42.3 | 79.31 |
TrbD | pCC42.5 | pCC42.2 | 82.09 |
TraL | pCC42.4 | pCC42.2, pCC42.5 | 87.67 |
Signal Peptidase I | pCC42.4 | pCC42.2 | 87.1 |
Uniprot: S3X8X6 | pCC42.2, pCC42.3 | pCC42.1, pCC42.4, pCC42.5 | 91.3 |
Uniprot: S3YFQ1 | pCC42.2 | pCC42.1, pCC42.4 | 92.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrison, L.; Mukherjee, S.; Li, C.; Young, S.; Zhang, Q.; Zhao, S. Pangenomic Characterization of Campylobacter Plasmids for Enhanced Molecular Typing, Risk Assessment and Source Attribution. Pathogens 2025, 14, 936. https://doi.org/10.3390/pathogens14090936
Harrison L, Mukherjee S, Li C, Young S, Zhang Q, Zhao S. Pangenomic Characterization of Campylobacter Plasmids for Enhanced Molecular Typing, Risk Assessment and Source Attribution. Pathogens. 2025; 14(9):936. https://doi.org/10.3390/pathogens14090936
Chicago/Turabian StyleHarrison, Lucas, Sampa Mukherjee, Cong Li, Shenia Young, Qijing Zhang, and Shaohua Zhao. 2025. "Pangenomic Characterization of Campylobacter Plasmids for Enhanced Molecular Typing, Risk Assessment and Source Attribution" Pathogens 14, no. 9: 936. https://doi.org/10.3390/pathogens14090936
APA StyleHarrison, L., Mukherjee, S., Li, C., Young, S., Zhang, Q., & Zhao, S. (2025). Pangenomic Characterization of Campylobacter Plasmids for Enhanced Molecular Typing, Risk Assessment and Source Attribution. Pathogens, 14(9), 936. https://doi.org/10.3390/pathogens14090936