Bayesian Assessment of True Prevalence of Paratuberculosis Infection in Dairy Herds and Their Parity Subgroups
Abstract
1. Introduction
2. Materials and Methods
2.1. Hungarian Data
2.2. Data for Other Regions
2.3. Statistical Analysis
2.3.1. Inferring the Infection Status of Herds
2.3.2. Estimating the PTBC Infection Prevalence in a Single Herd
2.3.3. Model Runs
2.3.4. Prior Information
3. Results
3.1. Downloadable Application
3.2. Model Results on Real World Data
3.3. Results of the Model on Synthetic Data
3.4. Estimating the PTBC Infection Prevalence in a Single Herd Without the Bayesian Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | apparent prevalence |
CrI | credible interval |
CWHP | conditional within-herd prevalence |
HTP | herd true prevalence |
MAP | Mycobacterium avium subspecies paratuberculosis |
MCMC | Markov Chain Monte Carlo |
PTBC | bovine paratuberculosis |
Se | sensitivity |
Sp | specificity |
TP | true prevalence |
Appendix A
Region (Source of Prior Information) | Variable | Distribution from the Literature | Information |
---|---|---|---|
Denmark | HTP | beta (425.11, 144.64) | 0.747 (0.781) a |
(posterior) | CWHP | beta (3.584, 45.398) | 0.055 (0.16) b |
Southern Italy | HTP | beta (5.03, 7.04) | 0.4 (0.2) b |
(prior) | CWHP | ) | |
) | beta (3.14, 31.7) | 0.09 (0.18) c | |
) | gamma (11.16, 11.31) | ||
Northern Italy (Lombardy, Veneto) | HTP | beta (13.32, 6.28) | 0.70 (>0.50) b |
(prior) | CWHP | ) | |
) | beta (1.53, 15.69) | 0.035 (<0.22) d | |
) | gamma (8.81, 1.42) | 0.2 (<0.30) e | |
Chile | HTP | beta (14.2, 0.7) | 0.97 (0.99) e |
(prior) | CWHP | ) | |
) | beta (22.2, 176.9) | 0.11 (0.15) e | |
) | gamma (9.1, 4.6) | 0.25 (0.30) e |
Appendix B. Derivation of Priors for Conditional Within-Herd Prevalence of Subgroups Used in the Model
Appendix B.1
- Herd true prevalence: .
- Mean conditional within-herd prevalence for primiparous cows: .
- Mean conditional within-herd prevalence for multiparous cows: .
- Variance of the herd random effect:
- Variance of the additive parity effect for primiparous cows: .
- Variance of the additive parity effect for multiparous cows: .
- Population proportion of primiparous cows: p.
- Ratio of and : R.
Appendix B.2
- Conditional within-herd prevalence for primiparous cows:
- Conditional within-herd prevalence for multiparous cows:
Appendix C. Technical Description of the Single Herd Model
References
- Rasmussen, P.; Barkema, H.W.; Mason, S.; Beaulieu, E.; Hall, D.C. Economic Losses Due to Johne’s Disease (Paratuberculosis) in Dairy Cattle. J. Dairy Sci. 2021, 104, 3123–3143. [Google Scholar] [CrossRef]
- Ott, S.L.; Wells, S.J.; Wagner, B.A. Herd-Level Economic Losses Associated with Johne’s Disease on US Dairy Operations. Prev. Vet. Med. 1999, 40, 179–192. [Google Scholar] [CrossRef]
- Fecteau, M.-E. Paratuberculosis in Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 209–222. [Google Scholar] [CrossRef]
- Ózsvári, L.; Harnos, A.; Lang, Z.; Monostori, A.; Strain, S.; Fodor, I. The Impact of Paratuberculosis on Milk Production, Fertility, and Culling in Large Commercial Hungarian Dairy Herds. Front. Vet. Sci. 2020, 7, 778. [Google Scholar] [CrossRef]
- Fodor, I.; Matyovszky, B.; Biczó, A.; Ózsvári, L. The Losses Due to Paratuberculosis and Its Control in a Hungarian Large-Scale Holstein-Friesian Dairy Farm. Magy. Allatorvosok Lapja 2014, 136, 213–222. [Google Scholar]
- Nielsen, S.S.; Enevoldsen, C.; Gröhn, Y.T. The Mycobacterium Avium Subsp. Paratuberculosis ELISA Response by Parity and Stage of Lactation. Prev. Vet. Med. 2002, 54, 1–10. [Google Scholar] [CrossRef]
- Nielsen, S.S.; Toft, N. A Review of Prevalences of Paratuberculosis in Farmed Animals in Europe. Prev. Vet. Med. 2009, 88, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sposato, A.; Fanelli, A.; Cordisco, M.; Trotta, A.; Galgano, M.; Corrente, M.; Buonavoglia, D. Bayesian Estimation of Prevalence of Johne’s Disease in Dairy Herds in Southern Italy. Prev. Vet. Med. 2022, 199, 105552. [Google Scholar] [CrossRef] [PubMed]
- Ózsvári, L.; Lang, Z.; Monostori, A.; Kostoulas, P.; Fodor, I. Bayesian Estimation of the True Prevalence of Paratuberculosis in Hungarian Dairy Cattle Herds. Prev. Vet. Med. 2020, 183, 105124. [Google Scholar] [CrossRef]
- Verdugo, C.; Valdes, M.F.; Salgado, M. Within-Herd Prevalence and Clinical Incidence Distributions of Mycobacterium Avium Subspecies Paratuberculosis Infection on Dairy Herds in Chile. Prev. Vet. Med. 2018, 154, 113–118. [Google Scholar] [CrossRef] [PubMed]
- McAloon, C.G.; Doherty, M.L.; Whyte, P.; O’Grady, L.; More, S.J.; Messam, L.L.M.; Good, M.; Mullowney, P.; Strain, S.; Green, M.J. Bayesian Estimation of Prevalence of Paratuberculosis in Dairy Herds Enrolled in a Voluntary Johne’s Disease Control Programme in Ireland. Prev. Vet. Med. 2016, 128, 95–100. [Google Scholar] [CrossRef]
- Pozzato, N.; Capello, K.; Comin, A.; Toft, N.; Nielsen, S.S.; Vicenzoni, G.; Arrigoni, N. Prevalence of Paratuberculosis Infection in Dairy Cattle in Northern Italy. Prev. Vet. Med. 2011, 102, 83–86. [Google Scholar] [CrossRef]
- Hanson, T.E.; Johnson, W.O.; Gardner, I.A. Hierarchical Models for Estimating Herd Prevalence and Test Accuracy in the Absence of a Gold Standard. J. Agric. Biol. Environ. Stat. 2003, 8, 223. [Google Scholar] [CrossRef]
- Branscum, A.J.; Gardner, I.A.; Johnson, W.O. Bayesian Modeling of Animal- and Herd-Level Prevalences. Prev. Vet. Med. 2004, 66, 101–112. [Google Scholar] [CrossRef]
- Meletis, E.; Conrady, B.; Hopp, P.; Lurier, T.; Frössling, J.; Rosendal, T.; Faverjon, C.; Carmo, L.P.; Hodnik, J.J.; Ózsvári, L.; et al. Review State-of-the-Art of Output-Based Methodological Approaches for Substantiating Freedom from Infection. Front. Vet. Sci. 2024, 11, 1337661. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.R.; Baldock, F.C. A New Probability Formula for Surveys to Substantiate Freedom from Disease. Prev. Vet. Med. 1998, 34, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Heisey, D.M.; Jennelle, C.S.; Russell, R.E.; Walsh, D.P. Using Auxiliary Information to Improve Wildlife Disease Surveillance When Infected Animals Are Not Detected: A Bayesian Approach. PLoS ONE 2014, 9, e89843. [Google Scholar] [CrossRef] [PubMed]
- Madouasse, A.; Mercat, M.; van Roon, A.; Graham, D.; Guelbenzu, M.; Santman Berends, I.; van Schaik, G.; Nielen, M.; Frössling, J.; Ågren, E.; et al. A modelling framework for the prediction of the herd-level probability of infection from longitudinal data. Peer Community J. 2022, 2, e4. [Google Scholar] [CrossRef]
- Hanson, T.E.; Johnson, W.O.; Gardner, I.A.; Georgiadis, M.P. Determining the Infection Status of a Herd. J. Agric. Biol. Environ. Stat. 2003, 8, 469–485. [Google Scholar] [CrossRef]
- Kass, R.E.; Raftery, A.E. Bayes Factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [Google Scholar] [CrossRef]
- Veres, K.; Lang, Z.; Monostori, A.; Kostoulas, P.; Ózsvári, L. Bayesian Latent Class Modelling of True Prevalence in Animal Subgroups with Application to Bovine Paratuberculosis Infection. Prev. Vet. Med. 2024, 224, 106133. [Google Scholar] [CrossRef]
- Nielsen, S.S.; Toft, N.; Okura, H. Dynamics of Specific Anti-Mycobacterium Avium Subsp. Paratuberculosis Antibody Response through Age. PLoS ONE 2013, 8, e63009. [Google Scholar] [CrossRef] [PubMed]
- Verdugo, C.; Toft, N.; Nielsen, S.S. Within- and between-Herd Prevalence Variation of Mycobacterium Avium Subsp. Paratuberculosis Infection among Control Programme Herds in Denmark (2011–2013). Prev. Vet. Med. 2015, 121, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Sora, V.M.; Panseri, S.; Nobile, M.; Di Cesare, F.; Meroni, G.; Chiesa, L.M.; Zecconi, A. Milk Quality and Safety in a One Health Perspective: Results of a Prevalence Study on Dairy Herds in Lombardy (Italy). Life 2022, 12, 786. [Google Scholar] [CrossRef] [PubMed]
- Vaona, F. Comparison of Potential Effects on the Profitability of the US MPP Application on Dairy Farms in Veneto (Italy) and Wielkopolska (Poland), University Degli di Padova. 2019. Available online: https://ssrn.com/abstract=3309657 (accessed on 1 September 2025).
- Gonzalez, S. Dairy and Products Annual; USDA: Washington, DC, USA, 2024. [Google Scholar]
- Song, P.X. Multivariate Dispersion Models Generated from Gaussian Copula. Scand. J. Stat. 2000, 27, 305–320. [Google Scholar] [CrossRef]
- Meyer, A.; Bond, K.; Van Winden, S.; Green, M.; Guitian, J. A Probabilistic Approach to the Interpretation of Milk Antibody Results for Diagnosis of Johne’s Disease in Dairy Cattle. Prev. Vet. Med. 2018, 150, 30–37. [Google Scholar] [CrossRef]
- Gronau, Q.F.; Singmann, H.; Wagenmakers, E.-J. Bridgesampling: An R Package for Estimating Normalizing Constants. J. Stat. Softw. 2020, 92, 1–29. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 1 September 2025).
- Stan Development Team RStan: The R Interface to Stan. Available online: https://mc-stan.org/ (accessed on 1 September 2025).
- Christensen, R.; Johnson, W.; Branscum, A.; Hanson, T.E. Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians; CRC Press: Boca Raton, FL, USA, 2010; Volume 79. [Google Scholar]
- Stevenson, M.; Sergeant, E.; Heuer, C.; Nunes, T.; Heuer, C.; Marshall, J.; Sanchez, J.; Thornton, R.; Reiczigel, J.; Robison-Cox, J.; et al. epiR: Tools for the Analysis of Epidemiological Data. Available online: https://CRAN.R-project.org/package=epiR (accessed on 1 September 2025).
- Veres, K.; Lang, Z.; Monostori, A.; Ózsvári, L. Bayesian modelling in practice. Estimation of within-herd paratuberculosis prevalence in dairy cattle herds (Bayes-i modellezés a gyakorlatban—Tejelő tehénállományok állományon belüli paratuberkulózisérintettségének becslése). Magy. Allatorvosok Lapja 2024, 146, 323–337. [Google Scholar] [CrossRef]
- McAloon, C.G.; O’Grady, L.; Botaro, B.; More, S.J.; Doherty, M.; Whyte, P.; Saxmose Nielsen, S.; Citer, L.; Kenny, K.; Graham, D.; et al. Individual and Herd-Level Milk ELISA Test Status for Johne’s Disease in Ireland after Correcting for Non-Disease-Associated Variables. J. Dairy Sci. 2020, 103, 9345–9354. [Google Scholar] [CrossRef]
- Gelman, A.; Vehtari, A.; Dunson, D.B.; Rubin, D.B.; Stern, H.S.; Carlin, J.B. Bayesian Data Analysis, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014; ISBN 978-1-4398-9822-2. [Google Scholar]
Region | Average Herd Size 1 | Herd Size (Synthetic Data) | Source |
---|---|---|---|
Denmark | 195, 205, 208 2 | 200 | [23] |
Southern Italy | 315 | 300 | [8] |
Lombardy | 191 | 200 | [24] |
Veneto | 100 | 100 | [25] |
Chile | 83 | 100 | [26] |
Variable | Prior | Median (95th Percentile) |
---|---|---|
HTP | beta (150.589, 12.250) | 0.927 (0.955) |
beta (65.700, 715.900) | 0.084 (0.101) | |
beta (134.195, 716.181) | 0.158 (0.179) | |
inverse gamma (37.030, 4.620) | 0.126 (0.167) | |
inverse gamma (5.330, 0.070) | 0.014 (0.032) | |
inverse gamma (6.050, 0.090) | 0.016 (0.034) |
Region | Parameter | Priors and Parameters Used in the Analysis | Median (95th Percentile) |
---|---|---|---|
Denmark | HTP | beta (425.110, 144.641) | 0.746 (0.756) |
beta (1.770, 43.210) | 0.033 (0.095) | ||
beta (3.850, 45.090) | 0.073 (0.150) | ||
Southern Italy | HTP | beta (5.030, 7.040) | 0.412 (0.650) |
beta (2.766, 46.335) | 0.050 (0.118) | ||
beta (6.018, 47.403) | 0.108 (0.019) | ||
Northern Italy (Lombardy, Veneto) | HTP | beta (13.320, 6.280) | 0.686 (0.838) |
beta (1.079, 18.347) | 0.041 (0.157) | ||
beta (2.347, 18.788) | 0.099 (0.239) | ||
Chile | HTP | beta (14.200, 0.700) | 0.971 (0.999) |
beta (12.896, 172.151) | 0.068 (0.103) | ||
beta (28.061, 173.629) | 0.138 (0.181) |
HERD_ID | COW_ID | MULTIPAR | AGE | POS |
---|---|---|---|---|
1000 | 1001 | 0 | 2.7186202 | 0 |
1000 | 1002 | 0 | 2.1694455 | 0 |
1000 | 1003 | 0 | 2.3301748 | 0 |
1000 | 1004 | 0 | 2.4988055 | 0 |
Subgroup | Number | Number of Positives | Apparent Prevalence | Estimated True Prevalence (95% CrI) |
---|---|---|---|---|
Primiparous cows | 331 | 0 | 0% | 0.1% (0;0.4) |
Multiparous cows | 390 | 0 | 0% | 0.4% (0;1.4) |
Overall | 721 | 0 | 0% |
Measure | Value | Decision |
---|---|---|
Bayes factor | 0.016 | infection strongly refuted |
Posterior probability | 17.54% | infection refuted |
Subgroup | Number | Number of Positives | Apparent Prevalence | Estimated True Prevalence (95% CrI) |
---|---|---|---|---|
Primiparous cows | 61 | 0 | 0% | 0.4% (0;2.4) |
Multiparous cows | 89 | 0 | 0% | 1.4% (0.1;5.6) |
Overall | 150 | 0 | 0% |
Measure | Value | Decision |
---|---|---|
Bayes factor | 0.071 | infection refuted |
Posterior probability | 47.42% | infection weakly refuted |
Subgroup | Number | Number of Positives | Apparent Prevalence | Estimated True Prevalence (95% CrI) |
---|---|---|---|---|
Primiparous cows | 205 | 12 | 5.9% | 9.3% (4;15.9) |
Multiparous cows | 262 | 31 | 11.8% | 17.7% (12.1;24.2) |
Overall | 467 | 43 | 9.2% |
Measure | Value | Decision |
---|---|---|
Bayes factor | 6.17 × 1020 | infection strongly supported |
Posterior probability | 100% | infection strongly supported |
Primiparous Cows | Multiparous Cows | |||||
---|---|---|---|---|---|---|
Country | Coverage of 95% CrI | Mean CWHP1 | Mean Half-Length of CrI | Coverage of 95% CrI | Mean CWHP2 | Mean Half-Length of CrI |
Hungary | 100% | 9% | 5.1% | 94% | 17.8% | 5.2% |
Denmark | 100% | 5.5% | 6.3% | 100% | 10.2% | 6.5% |
Southern Italy | 100% | 2.6% | 3.8% | 100% | 7.1% | 4.8% |
Lombardy | 100% | 5.8% | 6.9% | 85% | 2.4% | 3.6% |
Veneto | 100% | 3.8% | 6.2% | 71% | 3.9% | 5.1% |
Chile | 95% | 9.2% | 7.9% | 100% | 16.2% | 9.5% |
Bayes Factor 1 | Infection | Number of Truly Infected Herds | Number of Truly Not Infected Herds |
---|---|---|---|
0–0.05 | strongly refuted | 0 | 2 |
0.05–0.33 | refuted | 12 | 13 |
0.33–1 | weakly refuted | 18 | 8 |
1–3 | weakly supported | 15 | 1 |
3–20 | supported | 5 | 0 |
>20 | strongly supported | 46 | 0 |
Posterior Probability 1 | Infection | Number of Truly Infected Herds | Number of Truly Not Infected Herds |
---|---|---|---|
0–0.05 | strongly refuted | 0 | 0 |
0.05–0.25 | refuted | 1 | 4 |
0.25–0.5 | weakly refuted | 16 | 12 |
0.5–0.75 | weakly supported | 14 | 6 |
0.75–0.95 | supported | 12 | 2 |
0.95–1 | strongly supported | 53 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veres, K.; Lang, Z.; Ózsvári, L. Bayesian Assessment of True Prevalence of Paratuberculosis Infection in Dairy Herds and Their Parity Subgroups. Pathogens 2025, 14, 900. https://doi.org/10.3390/pathogens14090900
Veres K, Lang Z, Ózsvári L. Bayesian Assessment of True Prevalence of Paratuberculosis Infection in Dairy Herds and Their Parity Subgroups. Pathogens. 2025; 14(9):900. https://doi.org/10.3390/pathogens14090900
Chicago/Turabian StyleVeres, Katalin, Zsolt Lang, and László Ózsvári. 2025. "Bayesian Assessment of True Prevalence of Paratuberculosis Infection in Dairy Herds and Their Parity Subgroups" Pathogens 14, no. 9: 900. https://doi.org/10.3390/pathogens14090900
APA StyleVeres, K., Lang, Z., & Ózsvári, L. (2025). Bayesian Assessment of True Prevalence of Paratuberculosis Infection in Dairy Herds and Their Parity Subgroups. Pathogens, 14(9), 900. https://doi.org/10.3390/pathogens14090900