Implications of Intravenous and Inhaled Amikacin Breakpoint Reporting for Mycobacterium avium Complex Pulmonary Isolates
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MAC | Mycobacterium avium complex |
MAC PD | Mycobacterium avium complex pulmonary disease |
IV | intravenous |
ALIS | amikacin liposome inhalation suspension |
CLSI | Clinical and Laboratory Standards Institute |
NTM | Nontuberculous mycobacteria |
AST | Antimicrobial susceptibility testing |
MIC | Minimum inhibitory concentration |
COPD | Chronic obstructive pulmonary disease |
References
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J., Jr.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin. Infect. Dis. 2020, 71, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Prevots, D.R.; Marshall, J.E.; Wagner, D.; Morimoto, K. Global Epidemiology of Nontuberculous Mycobacterial Pulmonary Disease: A Review. Clin. Chest Med. 2023, 44, 675–721. [Google Scholar] [CrossRef] [PubMed]
- Dartois, V.; Dick, T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat. Rev. Drug Discov. 2024, 23, 381–403. [Google Scholar] [CrossRef] [PubMed]
- Brown-Elliott, B.A.; Iakhiaeva, E.; Griffith, D.E.; Woods, G.L.; Stout, J.E.; Wolfe, C.R.; Turenne, C.Y.; Wallace, R.J., Jr. In vitro activity of amikacin against isolates of Mycobacterium avium complex with proposed MIC breakpoints and finding of a 16S rRNA gene mutation in treated isolates. J. Clin. Microbiol. 2013, 51, 3389–3394. [Google Scholar] [CrossRef] [PubMed]
- CLSI M24S; Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp., and other Aerobic Actinomycetes—Second Edition. CLSI: Malvern, PA, USA, 2023.
- Calado Nogueira de Moura, V.; Nguyen, M.H.; Hunkins, J.J.; Daley, C.L.; Khare, R. In vitro susceptibility patterns for slowly growing non-tuberculous mycobacteria in the USA from 2018 to 2022. J. Antimicrob. Chemother. 2023, 78, 2849–2858. [Google Scholar] [CrossRef] [PubMed]
- Weers, J.; Metzheiser, B.; Taylor, G.; Warren, S.; Meers, P.; Perkins, W.R. A gamma scintigraphy study to investigate lung deposition and clearance of inhaled amikacin-loaded liposomes in healthy male volunteers. J. Aerosol Med. Pulm. Drug Deliv. 2009, 22, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Leifer, F.; Rose, S.; Chun, D.Y.; Thaisz, J.; Herr, T.; Nashed, M.; Joseph, J.; Perkins, W.R.; DiPetrillo, K. Amikacin Liposome Inhalation Suspension (ALIS) Penetrates Non-tuberculous Mycobacterial Biofilms and Enhances Amikacin Uptake Into Macrophages. Front. Microbiol. 2018, 9, 915. [Google Scholar] [CrossRef] [PubMed]
- Olivier, K.N.; Griffith, D.E.; Eagle, G.; McGinnis, J.P., 2nd; Micioni, L.; Liu, K.; Daley, C.L.; Winthrop, K.L.; Ruoss, S.; Addrizzo-Harris, D.J.; et al. Randomized Trial of Liposomal Amikacin for Inhalation in Nontuberculous Mycobacterial Lung Disease. Am. J. Respir. Crit. Care Med. 2017, 195, 814–823. [Google Scholar] [CrossRef]
- Griffith, D.E.; Eagle, G.; Thomson, R.; Aksamit, T.R.; Hasegawa, N.; Morimoto, K.; Addrizzo-Harris, D.J.; O’Donnell, A.E.; Marras, T.K.; Flume, P.A. Amikacin Liposome Inhalation Suspension for Treatment-Refractory Lung Disease Caused by Mycobacterium avium Complex (CONVERT). A Prospective, Open-Label, Randomized Study. Am. J. Respir. Crit. Care Med. 2018, 198, 1559–1569. [Google Scholar] [CrossRef]
- Mazzarelli, A.; Nisii, C.; Cannas, A.; Vulcano, A.; Bartolini, B.; Turchi, F.; Butera, O.; Rossi, A.; De Giuli, C.; Massimino, C.; et al. The Drug Susceptibility of Non-Tuberculous Mycobacteria (NTM) in a Referral Hospital in Rome from 2018 to 2023. Microorganisms 2024, 12, 1615. [Google Scholar] [CrossRef]
- Andrews, E.R.; Marchand-Austin, A.; Ma, J.; Cronin, K.; Sharma, M.; Brode, S.K.; Marras, T.K.; Jamieson, F.B. Underutilization of nontuberculous mycobacterial drug susceptibility testing in Ontario, Canada, 2010–2015. J. Assoc. Med. Microbiol. Infect. Dis. Can. 2020, 5, 77–86. [Google Scholar] [CrossRef]
- He, G.; Wu, L.; Zheng, Q.; Jiang, X. Antimicrobial susceptibility and minimum inhibitory concentration distribution of common clinically relevant non-tuberculous mycobacterial isolates from the respiratory tract. Ann. Med. 2022, 54, 2500–2510. [Google Scholar] [CrossRef]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef] [PubMed]
- Lestin-Bernstein, F.; Harberg, R.; Schumacher, I.; Briedigkeit, L.; Heese, O.; Biedermann, K. Staphylococcus aureus—Selective reporting of antibiogram results and its impact on antibiotic use: Interventional study with a reference group on the effect of switching from non-selective to selective antibiotic reporting. Antimicrob. Resist. Infect. Control 2021, 10, 157. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, P.G.; Bhavnani, S.M.; Andes, D.R.; Bradley, J.S.; Flamm, R.K.; Pogue, J.M.; Jones, R.N. Old In Vitro Antimicrobial Breakpoints Are Misleading Stewardship Efforts, Delaying Adoption of Innovative Therapies, and Harming Patients. Open Forum Infect. Dis. 2020, 7, ofaa084. [Google Scholar] [CrossRef] [PubMed]
- Zimenkov, D. Variability of Mycobacterium avium Complex Isolates Drug Susceptibility Testing by Broth Microdilution. Antibiotics 2022, 11, 1756. [Google Scholar] [CrossRef] [PubMed]
- Nikolayevskyy, V.; Maurer, F.P.; Holicka, Y.; Taylor, L.; Liddy, H.; Kranzer, K. Novel external quality assurance scheme for drug susceptibility testing of non-tuberculous mycobacteria: A multicentre pilot study. J. Antimicrob. Chemother. 2019, 74, 1288–1294. [Google Scholar] [CrossRef] [PubMed]
Characteristic | MIC50/MIC90 | %S |
---|---|---|
Amikacin IV Breakpoint | 8/16 mg/L | 94% |
Amikacin Inhaled Breakpoint | 8/16 mg/L | 99.5% |
Clarithromycin | 0.5/2 mg/L | 97% |
Moxifloxacin | 0.5/2 mg/L | 82% |
Linezolid | 8/32 mg/L | 66% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gill, C.M.; Chamberland, R.; Abate, G. Implications of Intravenous and Inhaled Amikacin Breakpoint Reporting for Mycobacterium avium Complex Pulmonary Isolates. Pathogens 2025, 14, 583. https://doi.org/10.3390/pathogens14060583
Gill CM, Chamberland R, Abate G. Implications of Intravenous and Inhaled Amikacin Breakpoint Reporting for Mycobacterium avium Complex Pulmonary Isolates. Pathogens. 2025; 14(6):583. https://doi.org/10.3390/pathogens14060583
Chicago/Turabian StyleGill, Christian M., Robin Chamberland, and Getahun Abate. 2025. "Implications of Intravenous and Inhaled Amikacin Breakpoint Reporting for Mycobacterium avium Complex Pulmonary Isolates" Pathogens 14, no. 6: 583. https://doi.org/10.3390/pathogens14060583
APA StyleGill, C. M., Chamberland, R., & Abate, G. (2025). Implications of Intravenous and Inhaled Amikacin Breakpoint Reporting for Mycobacterium avium Complex Pulmonary Isolates. Pathogens, 14(6), 583. https://doi.org/10.3390/pathogens14060583