From Culture-Negative to DNA-Positive: The Molecular Revolution in Infective Endocarditis Diagnosis
Abstract
:1. Introduction
2. Pathogen-Specific Polymerase Chain Reaction
3. Multiplex Real-Time Polymerase Chain Reaction
4. Broad-Range Polymerase Chain Reaction and Sequencing
5. Shotgun Metagenomic Sequencing
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fowler, V.G.; Durack, D.T.; Selton-Suty, C.; Athan, E.; Bayer, A.S.; Chamis, A.L.; Dahl, A.; DiBernardo, L.; Durante-Mangoni, E.; Duval, X.; et al. The 2023 Duke-International Society for Cardiovascular Infectious Diseases Criteria for Infective Endocarditis: Updating the Modified Duke Criteria. Clin. Infect. Dis. 2023, 77, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, D.R.; Corey, G.R.; Hoen, B.; Miro, J.M.; Fowler, V.G., Jr.; Bayer, A.S.; Karchmer, A.W.; Olaison, L.; Pappas, P.A.; Moreillon, P.; et al. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: The International Collaboration on Endocarditis-Prospective Cohort Study. Arch. Intern. Med. 2009, 169, 463–473. [Google Scholar] [CrossRef] [PubMed]
- McHugh, J.; Saleh, O.A. Updates in Culture-Negative Endocarditis. Pathogens 2023, 12, 1027. [Google Scholar] [CrossRef] [PubMed]
- Jaton, K.; Peter, O.; Raoult, D.; Tissot, J.D.; Greub, G. Development of a high throughput PCR to detect Coxiella burnetii and its application in a diagnostic laboratory over a 7-year period. New Microbes New Infect. 2013, 1, 6–12. [Google Scholar] [CrossRef]
- van der Hoek, W.; Versteeg, B.; Meekelenkamp, J.C.; Renders, N.H.; Leenders, A.C.; Weers-Pothoff, I.; Hermans, M.H.; Zaaijer, H.L.; Wever, P.C.; Schneeberger, P.M. Follow-up of 686 patients with acute Q fever and detection of chronic infection. Clin. Infect. Dis. 2011, 52, 1431–1436. [Google Scholar] [CrossRef]
- Million, M.; Thuny, F.; Richet, H.; Raoult, D. Long-term outcome of Q fever endocarditis: A 26-year personal survey. Lancet Infect. Dis. 2010, 10, 527–535. [Google Scholar] [CrossRef]
- Fenollar, F.; Fournier, P.E.; Raoult, D. Molecular detection of Coxiella burnetii in the sera of patients with Q fever endocarditis or vascular infection. J. Clin. Microbiol. 2004, 42, 4919–4924. [Google Scholar] [CrossRef]
- Edouard, S.; Nabet, C.; Lepidi, H.; Fournier, P.E.; Raoult, D. Bartonella, a common cause of endocarditis: A report on 106 cases and review. J. Clin. Microbiol. 2015, 53, 824–829. [Google Scholar] [CrossRef]
- McGee, M.; Brienesse, S.; Chong, B.; Levendel, A.; Lai, K. Tropheryma whipplei Endocarditis: Case Presentation and Review of the Literature. Open Forum Infect. Dis. 2019, 6, ofy330. [Google Scholar] [CrossRef]
- Fenollar, F.; Celard, M.; Lagier, J.C.; Lepidi, H.; Fournier, P.E.; Raoult, D. Tropheryma whipplei endocarditis. Emerg. Infect. Dis. 2013, 19, 1721–1730. [Google Scholar] [CrossRef]
- Fernandez, A.L.; Varela, E.; Martinez, L.; Martinez, A.; Sierra, J.; Gonzalez-Juanatey, J.R.; Regueiro, B. Evaluation of a multiplex real-time PCR assay for detecting pathogens in cardiac valve tissue in patients with endocarditis. Rev. Esp. Cardiol. 2010, 63, 1205–1208. [Google Scholar] [CrossRef] [PubMed]
- Bast, A.; Dohmen, P.M.; Podbielski, A.; Warnke, P. Rapid Microbiological Diagnostics from Explanted Heart Valves by a Multiplex PCR Assay. J. Clin. Microbiol. 2019, 57, e01575-18. [Google Scholar] [CrossRef]
- Leli, C.; Moretti, A.; Pasticci, M.B.; Cenci, E.; Bistoni, F.; Mencacci, A. A commercially available multiplex real-time PCR for detection of pathogens in cardiac valves from patients with infective endocarditis. Diagn. Microbiol. Infect. Dis. 2014, 79, 98–101. [Google Scholar] [CrossRef]
- Selton-Suty, C.; Celard, M.; Le Moing, V.; Doco-Lecompte, T.; Chirouze, C.; Iung, B.; Strady, C.; Revest, M.; Vandenesch, F.; Bouvet, A.; et al. Preeminence of Staphylococcus aureus in infective endocarditis: A 1-year population-based survey. Clin. Infect. Dis. 2012, 54, 1230–1239. [Google Scholar] [CrossRef]
- Rajani, R.; Klein, J.L. Infective endocarditis: A contemporary update. Clin. Med. 2020, 20, 31–35. [Google Scholar] [CrossRef]
- Fournier, P.E.; Thuny, F.; Richet, H.; Lepidi, H.; Casalta, J.P.; Arzouni, J.P.; Maurin, M.; Celard, M.; Mainardi, J.L.; Caus, T.; et al. Comprehensive diagnostic strategy for blood culture-negative endocarditis: A prospective study of 819 new cases. Clin. Infect. Dis. 2010, 51, 131–140. [Google Scholar] [CrossRef]
- Flurin, L.; Fisher, C.R.; Wolf, M.J.; Pritt, B.S.; DeSimone, D.C.; Patel, R. Comparison of Blood-Based Shotgun and Targeted Metagenomic Sequencing for Microbiological Diagnosis of Infective Endocarditis. Open Forum Infect. Dis. 2023, 10, ofad546. [Google Scholar] [CrossRef]
- Fida, M.; Wolf, M.J.; Hamdi, A.; Vijayvargiya, P.; Esquer Garrigos, Z.; Khalil, S.; Greenwood-Quaintance, K.E.; Thoendel, M.J.; Patel, R. Detection of Pathogenic Bacteria From Septic Patients Using 16S Ribosomal RNA Gene-Targeted Metagenomic Sequencing. Clin. Infect. Dis. 2021, 73, 1165–1172. [Google Scholar] [CrossRef]
- Hong, H.L.; Flurin, L.; Greenwood-Quaintance, K.E.; Wolf, M.J.; Pritt, B.S.; Norgan, A.P.; Patel, R. 16S rRNA Gene PCR/Sequencing of Heart Valves for Diagnosis of Infective Endocarditis in Routine Clinical Practice. J. Clin. Microbiol. 2023, 61, e0034123. [Google Scholar] [CrossRef] [PubMed]
- El-Ashry, A.H.; Saad, K.; Obiedallah, A.A.; Elhoufey, A.; Dailah, H.G.; Hussein, M.S.A. Molecular and Serological Diagnostic Approach to Define the Microbiological Origin of Blood Culture-Negative Infective Endocarditis. Pathogens 2022, 11, 1220. [Google Scholar] [CrossRef]
- Armstrong, C.; Kuhn, T.C.; Dufner, M.; Ehlermann, P.; Zimmermann, S.; Lichtenstern, C.; Soethoff, J.; Katus, H.A.; Leuschner, F.; Heininger, A. The diagnostic benefit of 16S rDNA PCR examination of infective endocarditis heart valves: A cohort study of 146 surgical cases confirmed by histopathology. Clin. Res. Cardiol. 2021, 110, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Marsch, G.; Orszag, P.; Mashaqi, B.; Kuehn, C.; Haverich, A. Antibiotic therapy following polymerase chain reaction diagnosis of infective endocarditis: A single centre experience. Interact. Cardiovasc. Thorac. Surg. 2015, 20, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.A.; Yam, T.; Jalili, S.; Williams, O.M.; Alshafi, K.; Gouliouris, T.; Munthali, P.; NiRiain, U.; Hartley, J.C. Service evaluation to establish the sensitivity, specificity and additional value of broad-range 16S rDNA PCR for the diagnosis of infective endocarditis from resected endocardial material in patients from eight UK and Ireland hospitals. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 2061–2066. [Google Scholar] [CrossRef]
- Boussier, R.; Rogez, S.; Francois, B.; Denes, E.; Ploy, M.C.; Garnier, F. Two-step bacterial broad-range polymerase chain reaction analysis of heart valve tissue improves bacteriological diagnosis of infective endocarditis. Diagn. Microbiol. Infect. Dis. 2013, 75, 240–244. [Google Scholar] [CrossRef]
- Miyazato, A.; Ohkusu, K.; Tabata, M.; Uwabe, K.; Kawamura, T.; Tachi, Y.; Ezaki, T.; Niinami, H.; Mitsutake, K. Comparative molecular and microbiological diagnosis of 19 infective endocarditis cases in which causative microbes were identified by PCR-based DNA sequencing from the excised heart valves. J. Infect. Chemother. 2012, 18, 318–323. [Google Scholar] [CrossRef]
- Voldstedlund, M.; Norum Pedersen, L.; Baandrup, U.; Klaaborg, K.E.; Fuursted, K. Broad-range PCR and sequencing in routine diagnosis of infective endocarditis. J. Pathol. Microbiol. Immunol. 2008, 116, 190–198. [Google Scholar] [CrossRef]
- Breitkopf, C.; Hammel, D.; Scheld, H.H.; Peters, G.; Becker, K. Impact of a molecular approach to improve the microbiological diagnosis of infective heart valve endocarditis. Circulation 2005, 111, 1415–1421. [Google Scholar] [CrossRef]
- Halavaara, M.; Martelius, T.; Jarvinen, A.; Antikainen, J.; Kuusela, P.; Salminen, U.S.; Anttila, V.J. Impact of pre-operative antimicrobial treatment on microbiological findings from endocardial specimens in infective endocarditis. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 497–503. [Google Scholar] [CrossRef]
- Zeng, X.; Wu, J.; Li, X.; Xiong, W.; Tang, L.; Li, X.; Zhuang, J.; Yu, R.; Chen, J.; Jian, X.; et al. Application of Metagenomic Next-Generation Sequencing in the Etiological Diagnosis of Infective Endocarditis During the Perioperative Period of Cardiac Surgery: A Prospective Cohort Study. Front. Cardiovasc. Med. 2022, 9, 811492. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, H.; Fang, W.; Shi, D.; Liang, C.; Sun, Y.; Gao, G.; Wang, H.; Zhang, Q.; Wang, L.; et al. Detection of pathogens from resected heart valves of patients with infective endocarditis by next-generation sequencing. Int. J. Infect. Dis. 2019, 83, 148–153. [Google Scholar] [CrossRef]
- Cai, S.; Yang, Y.; Pan, J.; Miao, Q.; Jin, W.; Ma, Y.; Zhou, C.; Gao, X.; Wang, C.; Hu, B. The clinical value of valve metagenomic next-generation sequencing when applied to the etiological diagnosis of infective endocarditis. Ann. Transl. Med. 2021, 9, 1490. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Miller, S.A. Clinical metagenomics. Nat. Rev. Genet. 2019, 20, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Eichenberger, E.M.; Degner, N.; Scott, E.R.; Ruffin, F.; Franzone, J.; Sharma-Kuinkel, B.; Shah, P.; Hong, D.; Dalai, S.C.; Blair, L.; et al. Microbial Cell-Free DNA Identifies the Causative Pathogen in Infective Endocarditis and Remains Detectable Longer Than Conventional Blood Culture in Patients with Prior Antibiotic Therapy. Clin. Infect. Dis. 2023, 76, e1492–e1500. [Google Scholar] [CrossRef]
- Li, S.L.; Zhao, X.; Tao, J.Z.; Yue, Z.Z.; Zhao, X.Y. Application of metagenomic next-generation sequencing in patients with infective endocarditis. Front. Cell. Infect. Microbiol. 2023, 13, 1107170. [Google Scholar] [CrossRef]
- To, R.K.; Ramchandar, N.; Gupta, A.; Pong, A.; Cannavino, C.; Foley, J.; Farnaes, L.; Coufal, N.G. Use of Plasma Metagenomic Next-generation Sequencing for Pathogen Identification in Pediatric Endocarditis. Pediatr. Infect. Dis. J. 2021, 40, 486–488. [Google Scholar] [CrossRef]
- Shah, P.; Ruffin, F.; Seng, H.; Hollemon, D.; Winn, L.; Drennan, C.; Chan, K.L.; Quach, H.; Blaukwamp, T.; Meshulam-Simon, G.; et al. 156. Direct Detection and Quantification of Bacterial Cell-free DNA in Patients with Infective Endocarditis (IE) Using the Karius Plasma Next Generation Sequencing (NGS) Test. Open Forum Infect. Dis. 2018, 5, S12. [Google Scholar] [CrossRef]
- Ranganath, N.; Bisono Garcia, B.; Vaillant, J.; Katragadda, S.; Kerkelis, M.; Abu Saleh, O.; Fida, M. From Chart Biopsy to Liquid Biopsy: Evaluating the Diagnostic Yield and Clinical Impact of Plasma Microbial Cell-Free DNA Next-Generation Sequencing in the Management of Fever of Unknown Origin. Open Forum Infect. Dis. 2025, 12, ofaf038. [Google Scholar] [CrossRef]
- Kim, M.; Damronglerd, P.; Molina Garcia, S.; Yetmar, Z.A.; Razi, S.; Ranganath, N.; Mahmood, M.; Abu Saleh, O.M. Illuminating the Challenges and Diagnostic Utility of Plasma Microbial Cell-Free DNA Sequencing in Suspected Infective Endocarditis: A Retrospective Observational Cohort Study. Open Forum Infect. Dis. 2025, 12, ofaf099. [Google Scholar] [CrossRef]
- Graf, E.H.; Bryan, A.; Bowers, M.; Grys, T.E. One Size Fits Small: The Narrow Utility for Plasma Metagenomics. J. Appl. Lab. Med. 2025, 10, 171–183. [Google Scholar] [CrossRef]
- Berinson, B.; Both, A.; Berneking, L.; Christner, M.; Lutgehetmann, M.; Aepfelbacher, M.; Rohde, H. Usefulness of BioFire FilmArray BCID2 for Blood Culture Processing in Clinical Practice. J. Clin. Microbiol. 2021, 59, e0054321. [Google Scholar] [CrossRef]
- Loiez, C.; Wallet, F. Is the Unyvero i60 ITI multiplex PCR system a promising test in the diagnosis of infective endocarditis from heart valves? New Microbiol. 2018, 41, 291–295. [Google Scholar] [PubMed]
- Duffett, S.; Missaghi, B.; Daley, P. Culture-negative endocarditis diagnosed using 16S DNA polymerase chain reaction. Can. J. Infect. Dis. Med. Microbiol. 2012, 23, 216–218. [Google Scholar] [CrossRef] [PubMed]
- MacIntyre, A.T.; Hirst, A.; Duttagupta, R.; Hollemon, D.; Hong, D.K.; Blauwkamp, T.A. Budget Impact of Microbial Cell-Free DNA Testing Using the Karius((R)) Test as an Alternative to Invasive Procedures in Immunocompromised Patients with Suspected Invasive Fungal Infections. Appl. Health Econ. Health Policy 2021, 19, 231–241. [Google Scholar] [CrossRef]
Assay | Specimen | Examples | Available for Clinical Use | Advantages | Limitations | Sensitivity and Specificity | References |
---|---|---|---|---|---|---|---|
Pathogen-specific PCR | Blood; tissue | C. burnetii PCR, Bartonella PCR, and T. whipplei PCR | Yes |
|
| Sn: 33–69% (blood); 25–72% (tissue) Sp: ~100% | [4,5,6,7,8,9,10] |
Multiplex RT-PCR | Tissue | BIOFIRE® Blood Culture Identification Panel a; Unyvero Implant and Tissue Infection b | No |
|
| Sn: 60–100% Sp: ~100% | [11,12,13,40,41] |
Broad-range PCR | Blood | 16S rRNA gene PCR/sequencing; 18S or 28S rRNA gene PCR/sequencing | No |
|
| Sn: ~60% Sp: not reported in the literature | [16,17] |
Tissue | Yes |
|
| Sn: 70–90% Sp: >90% | [19,20,21,22,23,24,25,26,27,28,42] | ||
Shotgun metagenomic sequencing (sMGS) | Blood | Plasma mcfDNA sequencing (Karius® test) | Yes |
|
| Sn: 60–70% Sp: ~70% | [33,34,35,36,38] |
Tissue | Tissue sMGS | No |
|
| Sn: 86–100% Sp: 73–100% | [29,30,31,32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Fida, M.; Abu Saleh, O.M.; Ranganath, N. From Culture-Negative to DNA-Positive: The Molecular Revolution in Infective Endocarditis Diagnosis. Pathogens 2025, 14, 518. https://doi.org/10.3390/pathogens14060518
Kim M, Fida M, Abu Saleh OM, Ranganath N. From Culture-Negative to DNA-Positive: The Molecular Revolution in Infective Endocarditis Diagnosis. Pathogens. 2025; 14(6):518. https://doi.org/10.3390/pathogens14060518
Chicago/Turabian StyleKim, Myeongji, Madiha Fida, Omar M. Abu Saleh, and Nischal Ranganath. 2025. "From Culture-Negative to DNA-Positive: The Molecular Revolution in Infective Endocarditis Diagnosis" Pathogens 14, no. 6: 518. https://doi.org/10.3390/pathogens14060518
APA StyleKim, M., Fida, M., Abu Saleh, O. M., & Ranganath, N. (2025). From Culture-Negative to DNA-Positive: The Molecular Revolution in Infective Endocarditis Diagnosis. Pathogens, 14(6), 518. https://doi.org/10.3390/pathogens14060518