Activity of the Di-Substituted Urea-Derived Compound I-17 in Leishmania In Vitro Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell lines and Culture Conditions
2.2. Leishmania spp.
2.3. Viability Assays
2.4. Infection Index
2.5. GRIESS Test
2.6. RT-PCR Assays
2.7. Puromycin Incorporation Assay
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, A.; Zampieri, R.A.; Shaw, J.J.; Floeter-Winter, L.M.; Laranjeira-Silva, M.F. One Health Approach to Leishmaniases: Understanding the Disease Dynamics through Diagnostic Tools. Pathogens 2020, 9, 809. [Google Scholar] [CrossRef]
- Pinart, M.; Rueda, J.R.; Romero, G.A.; Pinzón-Flórez, C.E.; Osorio-Arango, K.; Silveira Maia-Elkhoury, A.N.; Reveiz, L.; Elias, V.M.; Tweed, J.A. Interventions for American cutaneous and mucocutaneous leishmaniasis. Cochrane Database Syst. Rev. 2020, 8, CD004834. [Google Scholar] [CrossRef] [PubMed]
- Maia, C.; Conceição, C.; Pereira, A.; Rocha, R.; Ortuño, M.; Muñoz, C.; Jumakanova, Z.; Pérez-Cutillas, P.; Özbel, Y.; Töz, S.; et al. The estimated distribution of autochthonous leishmaniasis by Leishmania infantum in Europe in 2005–2020. PLoS Negl. Trop. Dis. 2023, 17, e0011497. [Google Scholar] [CrossRef] [PubMed]
- Christen, J.R.; Bourreau, E.; Demar, M.; Lightburn, E.; Couppié, P.; Ginouvès, M.; Prévot, G.; Gangneux, J.P.; Savini, H.; de Laval, F.; et al. Use of the intramuscular route to administer pentamidine isethionate in Leishmania guyanensis cutaneous leishmaniasis increases the risk of treatment failure. Travel Med. Infect. Dis. 2018, 24, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, J.; Sundar, S. Current and emerging medications for the treatment of leishmaniasis. Expert Opin. Pharmacother. 2019, 20, 1251–1265. [Google Scholar] [CrossRef] [PubMed]
- eBioMedicine. Leishmania: An urgent need for new treatments. EBioMedicine 2023, 87, 104440. [Google Scholar] [CrossRef]
- Brindha, J.B.; Balamurali, M.M.; Chanda, K. An Overview on the Therapeutics of Neglected Infectious Diseases-Leishmaniasis and Chagas Diseases. Front. Chem. 2021, 9, 622286. [Google Scholar] [CrossRef]
- Sunyoto, T.; Potet, J.; Boelaert, M. Why miltefosine—A life-saving drug for leishmaniasis—Is unavailable to people who need it the most. BMJ Glob. Health 2018, 3, e000709. [Google Scholar] [CrossRef]
- Dorlo, T.P.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother. 2012, 67, 2576–2597. [Google Scholar] [CrossRef]
- Aktas, B.H.; Qiao, Y.; Ozdelen, E.; Schubert, R.; Sevinc, S.; Harbinski, F.; Grubissich, L.; Singer, S.; Halperin, J.A. Small-Molecule targeting of translation initiation for cancer therapy. Oncotarget 2013, 4, 1606–1617. [Google Scholar] [CrossRef]
- Komar, A.A.; Merrick, W.C. A Retrospective on eIF2A—And Not the Alpha Subunit of eIF2. Int. J. Mol. Sci. 2020, 21, 2054. [Google Scholar] [CrossRef] [PubMed]
- Chesnokova, E.; Bal, N.; Kolosov, P. Kinases of eIF2a Switch Translation of mRNA Subset during Neuronal Plasticity. Int. J. Mol. Sci. 2017, 18, 2213. [Google Scholar] [CrossRef] [PubMed]
- Burwick, N.; Aktas, B.H. The eIF2-alpha kinase HRI: A potential target beyond the red blood cell. Expert Opin. Ther. Targets 2017, 21, 1171–1177. [Google Scholar] [CrossRef]
- Dias-Teixeira, K.L.; Calegari-Silva, T.C.; Medina, J.M.; Vivarini, Á.C.; Cavalcanti, Á.; Teteo, N.; Santana, A.K.M.; Real, F.; Gomes, C.M.; Pereira, R.M.S.; et al. Emerging Role for the PERK/eIF2α/ATF4 in Human Cutaneous Leishmaniasis. Sci. Rep. 2017, 7, 17074. [Google Scholar] [CrossRef] [PubMed]
- Stonyte, V.; Mastrangelopoulou, M.; Timmer, R.; Lindbergsengen, L.; Vietri, M.; Campsteijn, C.; Grallert, B. The GCN2/eIF2αK stress kinase regulates PP1 to ensure mitotic fidelity. EMBO Rep. 2023, 24, e56100. [Google Scholar] [CrossRef]
- Gal-Ben-Ari, S.; Barrera, I.; Ehrlich, M.; Rosenblum, K. PKR: A Kinase to Remember. Front. Mol. Neurosci. 2019, 11, 480. [Google Scholar] [CrossRef]
- Chen, T.; Ozel, D.; Qiao, Y.; Harbinski, F.; Chen, L.; Denoyelle, S.; He, X.; Zvereva, N.; Supko, J.G.; Chorev, M.; et al. Chemical genetics identify eIF2α kinase heme-regulated inhibitor as an anticancer target. Nat. Chem. Biol. 2011, 7, 610–616. [Google Scholar] [CrossRef]
- Yefidoff-Freedman, R.; Fan, J.; Yan, L.; Zhang, Q.; Rana, S.; Contreras, J.I.; Teixeira, K.L.D.; dos Santos, R.G.R.; Hammock, B.; Halperin, J.A.; et al. Development of 1-((1,4-trans)-4-aryloxycyclohexyl)-3-arylurea Activators of the Heme Regulated Inhibitor as Selective Activators of eIF2α Phosphorylation Arm of the Integrated Endoplasmic Reticulum Stress Response. J. Med. Chem. 2017, 60, 5392–5406. [Google Scholar] [CrossRef]
- Cloutier, S.; Laverdière, M.; Chou, M.N.; Boilard, N.; Chow, C.; Papadopoulous, B. Translational control through eIF2alpha phosphorylation during the Leishmania differentiation process. PLoS ONE 2012, 7, e35085. [Google Scholar] [CrossRef]
- Machado, F.C.; Franco, C.H.; Dos Santos Neto, J.V.; Dias-Teixeira, K.L.; Moraes, C.B.; Lopes, U.G.; Aktas, B.H.; Schenkman, S. Identification of di-substituted ureas that prevent growth of trypanosomes through inhibition of translation initiation. Sci. Rep. 2018, 8, 4857. [Google Scholar] [CrossRef]
- Bahnan, W.; Boucher, J.; Gayle, P.; Shrestha, N.; Rosen, M.; Aktas, B.; Adkins, B.; Ager, A.; Khan, W.N.; Schesser, K. The eIF2α kinase Heme Regulated Inhibitor (HRI) protects the host from infection by regulating intracellular pathogen trafficking. Infect. Immun. 2018, 86, e00707-17. [Google Scholar] [CrossRef]
- Chen, T.; Takrouri, K.; Hee-Hwang, S.; Rana, S.; Halperin, H.; Natarajan, A.; Morisseau, M.; Hammock, B.; Chorev, M.; Aktas, B.H. Explorations of Substituted Urea Functionality for Discovery of New Activators of the Heme Regulated Inhibitor Kinase. J. Med. Chem. 2013, 56, 9457–9470. [Google Scholar] [CrossRef] [PubMed]
- Denoyelle, S.; Chen, T.; Yang, H.; Chen, L.; Zhang, Z.; Halperin, J.A.; Aktas, B.H.; Chorev, M. Synthesis and SAR Study of Novel 3,3-Diphenyl-1,3-dihydroindol-2-one Derivatives as Potent eIF2·GTP·Met-tRNAiMet Ternary Complex Inhibitors. Eur. J. Med. Chem. 2013, 69, 537–553. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Du, R.; Reis Monteiro Dos Santos, G.R.; Yefidoff-Freedman, R.; Bohm, A.; Halperin, J.; Chorev, M.; Aktas, B.H. New activators of eIF2α Kinase Heme-Regulated Inhibitor (HRI) with improved biophysical properties. Eur. J. Med. Chem. 2020, 187, 111973. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Silva, F.; Inacio, J.D.; Canto-Cavalheiro, M.M.; Almeida-Amaral, E.E. Reactive oxygen species production by quercetin causes the death of Leishmania amazonensis intracellular amastigotes. J. Nat. Prod. 2013, 76, 1505–1508. [Google Scholar] [CrossRef]
- Soares, D.C.; Calegari-Silva, T.C.; Lopes, U.G.; Teixeira, V.L.; de Palmer Paixão, I.C.; Cirne-Santos, C.; Bou-Habib, D.C.; Saraiva, E.M. Dolabelladienetriol, a compound from Dictyota pfaffii algae, inhibits the infection by Leishmania amazonensis. PLoS Negl. Trop. Dis. 2012, 6, e1787. [Google Scholar] [CrossRef]
- van Henten, S.; Tesfaye, A.B.; Abdela, S.G.; Tilahun, F.; Fikre, H.; Buyze, J.; Kassa, M.; Cnops, L.; Pareyn, M.; Mohammed, R.; et al. Miltefosine for the treatment of cutaneous leishmaniasis—A pilot study from Ethiopia. PLoS Negl. Trop. Dis. 2021, 15, e0009460. [Google Scholar] [CrossRef]
- Balestieri, F.M.; Queiroz, A.R.; Scavone, C.; Costa, V.M.; Barral-Netto, M.; Abrahamsohn, I.d.A. Leishmania (L.) amazonensis-induced inhibition of nitric oxide synthesis in host macrophages. Microbes Infect. 2002, 4, 23–29. [Google Scholar] [CrossRef]
- Leipheimer, J.; Bloom, A.L.M.; Campomizzi, C.S.; Salei, Y.; Panepinto, J.C. Translational Regulation Promotes Oxidative Stress Resistance in the Human Fungal Pathogen Cryptococcus neoformans. mBio 2019, 10, e02143-19. [Google Scholar] [CrossRef]
- He, F.; Ru, X.; Wen, T. NRF2, a Transcription Factor for Stress Response and Beyond. Int. J. Mol. Sci. 2020, 21, 4777. [Google Scholar] [CrossRef]
- Vivarini, Á.C.; Calegari-Silva, T.C.; Saliba, A.M.; Boaventura, V.S.; França-Costa, J.; Khouri, R.; Dierckx, T.; Dias-Teixeira, K.L.; Fasel, N.; Barral, A.M.P.; et al. Systems Approach Reveals Nuclear Factor Erythroid 2-Related Factor 2/Protein Kinase R Crosstalk in Human Cutaneous Leishmaniasis. Front. Immunol. 2017, 8, 1127. [Google Scholar] [CrossRef] [PubMed]
- Reverte, M.; Eren, R.O.; Jha, B.; Desponds, C.; Snäkä, T.; Prevel, F.; Isorce, N.; Lye, L.F.; Owens, K.L.; Gazos Lopes, U.; et al. The antioxidant response favors Leishmania parasites survival, limits inflammation and reprograms the host cell metabolism. PLoS Pathog. 2021, 17, e1009422. [Google Scholar] [CrossRef] [PubMed]
L. amazonensis | L. major | ||||||
---|---|---|---|---|---|---|---|
Compound | EC50μM | EC90μM | SI | EC50μM | EC90μM | SI | Reference |
I-17 | 3.18 | 28.62 | 7.9 | 3.35 | 30.15 | 7.5 | [22] |
3m | 3.26 | 29.34 | 7.4 | 3.48 | 31.32 | 6.9 | [18] |
I-18 | 4.12 | 37.08 | 4.82 | 43.38 | [22] | ||
3n | 3.91 | 35.19 | 3.914.81 | 40.59 | [18] | ||
3c | 3.89 | 35.01 | 4.59 | 44.1 | [18] | ||
3j | 4.15 | 37.35 | 4.35 | 39.15 | [18] | ||
3k | 4.02 | 36.18 | 4.41 | 39.30 | [18] | ||
3l | 4.14 | 37.26 | 4.39 | 39.48 | [18] | ||
3s | 4.11 | 36.99 | 4.71 | 39.41 | [18] | ||
3t | 3.86 | 34.74 | 3.97 | 35.43 | [18] | ||
NCPdCPU | 80.51 | 264.078 | 83.47 | 751.23 | [17] | ||
Pentamidine | 0.16 | 1.44 | 147.5 | 0.29 | 2.61 | 81.4 | |
Miltefosine | 28.38 | 254.7 | 1.8 | 32.45 | 292.35 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, J.V.; Medina, J.M.; Dias Teixeira, K.L.; Agostinho, D.M.J.; Chorev, M.; Diotallevi, A.; Galluzzi, L.; Aktas, B.H.; Gazos Lopes, U. Activity of the Di-Substituted Urea-Derived Compound I-17 in Leishmania In Vitro Infections. Pathogens 2024, 13, 104. https://doi.org/10.3390/pathogens13020104
dos Santos JV, Medina JM, Dias Teixeira KL, Agostinho DMJ, Chorev M, Diotallevi A, Galluzzi L, Aktas BH, Gazos Lopes U. Activity of the Di-Substituted Urea-Derived Compound I-17 in Leishmania In Vitro Infections. Pathogens. 2024; 13(2):104. https://doi.org/10.3390/pathogens13020104
Chicago/Turabian Styledos Santos, José Vitorino, Jorge Mansur Medina, Karina Luiza Dias Teixeira, Daniel Marcos Julio Agostinho, Michael Chorev, Aurora Diotallevi, Luca Galluzzi, Bertal Huseyin Aktas, and Ulisses Gazos Lopes. 2024. "Activity of the Di-Substituted Urea-Derived Compound I-17 in Leishmania In Vitro Infections" Pathogens 13, no. 2: 104. https://doi.org/10.3390/pathogens13020104
APA Styledos Santos, J. V., Medina, J. M., Dias Teixeira, K. L., Agostinho, D. M. J., Chorev, M., Diotallevi, A., Galluzzi, L., Aktas, B. H., & Gazos Lopes, U. (2024). Activity of the Di-Substituted Urea-Derived Compound I-17 in Leishmania In Vitro Infections. Pathogens, 13(2), 104. https://doi.org/10.3390/pathogens13020104