Recent Advances in the Control of Endoparasites in Ruminants from a Sustainable Perspective
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Wang, X.; Luo, X.; Wang, R.; Zhai, B.; Wang, P.; Li, J.; Yang, X. Transcriptomics and Proteomics of Haemonchus contortus in Response to Ivermectin Treatment. Animals 2023, 13, 919. [Google Scholar] [CrossRef]
- Directorate-General for Agriculture and Rural Development. Organic Farming in the EU—A Decade of Organic Growth. Market Analyses and Briefs, N. 20. 2023. Available online: https://agriculture.ec.europa.eu/system/files/2023-04/agri-market-brief-20-organic-farming-eu_en.pdf (accessed on 8 August 2023).
- Bricarello, P.A.; Longo, C.; da Rocha, R.A.; Hötzel, M.J. Understanding animal-plant-parasite interactions to improve the management of gastrointestinal nematodes in grazing ruminants. Pathogens 2023, 12, 531. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, G. A review on gastrointestinal nematodes in small ruminants. Adv. Appl. Sci. Res. 2021, 12, 1–4. [Google Scholar]
- Khan, A.; Jamil, M.; Ullah, S.; Ramzan, F.; Khan, H.; Ullah, N.; Ali, M.; Rehman, A.U.; Jabeen, N.; Amber, R. The prevalence of gastrointestinal nematodes in livestock and their health hazards: A review. World Vet. J. 2023, 13, 57–64. [Google Scholar] [CrossRef]
- Hamid, L.; Alsayari, A.; Tak, H.; Mir, S.A.; Almoyad, M.A.A.; Wahab, S.; Bader, G.N. An insight into the global problem of gastrointestinal helminth infections amongst livestock: Does nanotechnology provide an alternative? Agriculture 2023, 13, 1359. [Google Scholar] [CrossRef]
- Naeem, M.; Iqbal, Z.; Roohi, N. Ovine haemonchosis: A review. Trop. Anim. Health Prod. 2021, 53, 19. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Tamayo, A.A.; López-Arellano, M.E.; González-Garduño, R.; Torres-Hernández, G.; De la Mora-Valle, A.; Becerril-Perez, C.; Hernández-Mendo, O.; Ramírez-Bribiesca, E.; Huchin-Cab, M. Haemonchus contortus infection induces a variable immune response in resistant and susceptible Pelibuey sheep. Vet. Immunol. Immunopathol. 2021, 234, 110218. [Google Scholar] [CrossRef]
- Adduci, I.; Sajovitz, F.; Hinney, B.; Lichtmannsperger, K.; Joachim, A.; Wittek, T.; Yan, S. Haemonchosis in sheep and goats, control strategies and development of vaccines against Haemonchus contortus. Animals 2022, 12, 2339. [Google Scholar] [CrossRef]
- Roeber, F.; Jex, A.R.; Gasser, R.B. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance—An Australian perspective. Parasites Vectors 2013, 6, 153. [Google Scholar] [CrossRef]
- Rodríguez-Vivas, R.I.; Grisi, L.; Pérez de León, A.A.; Silva-Villela, H.; Torres-Acosta, J.F.J.; Fragoso-Sánchez, H.; Romero-Salas, D.; Rosario-Cruz, R.; Saldierna, F.; García-Carrasco, D. Potential economic impact assessment for cattle parasites in Mexico. Review. Rev. Mex. Cienc. Pecu. 2017, 8, 61–74. [Google Scholar] [CrossRef]
- Charlier, J.; Rinaldi, L.; Musella, V.; Ploeger, H.W.; Chartier, C.; Vineer, H.R.; Chartier, C.; Hinney, B.; von Samson-Himmelstjerna, G.; Bacescu, B.; et al. Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Prev. Vet. Med. 2020, 182, 105103. [Google Scholar] [CrossRef]
- Chagas, A.C.D.S.; Tupy, O.; Santos, I.B.D.; Esteves, S.N. Economic impact of gastrointestinal nematodes in Morada Nova sheep in Brazil. Rev. Bras. Parasitol. Vet. 2022, 31, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Strydom, T.; Lavan, R.P.; Torres, S.; Heaney, K. The economic impact of parasitism from nematodes, trematodes and ticks on beef cattle production. Animals 2023, 13, 1599. [Google Scholar] [CrossRef] [PubMed]
- Besier, R.B.; Kahn, L.P.; Sargison, N.D.; Van Wyk, J.A. The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants. Adv. Parasitol. 2016, 93, 95–143. [Google Scholar] [CrossRef]
- Reyes-Guerrero, D.E.; Olmedo-Juárez, A.; Mendoza-de Gives, P. Control and prevention of nematodiasis in small ruminants: Background, challenges and outlook in Mexico. Rev. Mex. Cienc. Pecu. 2021, 12 (Suppl. S3), 186–204. [Google Scholar] [CrossRef]
- Faust, C.E. The use of anthelmintics. JAMA 1937, 108, 386–392. [Google Scholar] [CrossRef]
- Goodenough, A.E.; Webb, J.C.; Yardley, J. Environmentally-realistic concentrations of anthelmintic drugs affect survival and motility in the cosmopolitan earthworm Lumbricus terrestris (Linnaeus, 1758). Appl. Soil Ecol. 2019, 137, 87–95. [Google Scholar] [CrossRef]
- Villar, D.; Schaeffer, D.J. Ivermectin use on pastured livestock in Colombia: Parasite resistance and impacts on the dung community. Rev. Colomb. Cienc. Pecu. 2022, 36, 3–12. [Google Scholar] [CrossRef]
- Arellano, L.; Noriega, J.A.; Ortega-Martínez, I.J.; Rivera, J.D.; Correa, C.M.; Gómez-Cifuentes, A.; Ramírez-Hernández, A.; Barragán, F. Dung beetles (Coleoptera: Scarabaeidae) in grazing lands of the Neotropics: A review of patterns and research trends of taxonomic and functional diversity, and functions. Front. Ecol. Evol. 2023, 11, 1084009. [Google Scholar] [CrossRef]
- Johari, H.; Pandya, N.; Sharma, P.; Parikh, P. Ecological role of Onthophagus taurus (Schreber) in soil nutrient mobilization. Indian J. Entomol. 2023, 85, 46–51. [Google Scholar] [CrossRef]
- Vanitha, S.; Padma, A.S. Mycobiota-role in soil health and as biocontrol agent. Sustain. Util. Fungi Agric. Ind. 2022, 4, 15–34. [Google Scholar] [CrossRef]
- Rana, M.S.; Lee, S.Y.; Kang, H.J.; Hur, S.J. Reducing veterinary drug residues in animal products: A review. Food Sci. Anim. Resour. 2019, 39, 687–703. [Google Scholar] [CrossRef] [PubMed]
- Falowo, A.B.; Akimoladun, O.F. Veterinary drug residues in meat and meat products: Occurrence, detection and implications. Vet. Med. Pharm. 2019, 3, 194. [Google Scholar] [CrossRef]
- Prichard, R. Anthelmintic resistance. Vet. Parasitol. 1994, 54, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Fissiha, W.; Kinde, M.Z. Anthelmintic resistance and its mechanism: A review. Infect. Drug Resist. 2021, 14, 5403–5410. [Google Scholar] [CrossRef] [PubMed]
- Drudge, J.H.; Szanto, J.; Wyant, Z.N.; Elam, G. Field studies on parasite control of sheep, comparison of Thiabendazole, Ruelene and Phenotiazine. Am. J. Vet. Res. 1964, 25, 1512–1518. [Google Scholar]
- Campos-Ruelas, R.; Herrera-Rodríguez, D.; Quiroz-Romero, H.; Olazarán-Jenkins, S. Resistencia de Haemonchus contortus a Bencimidazoles en ovinos de México. Téc. Pec. Méx. 1990, 28, 30–34. [Google Scholar]
- Andersson, J.; Forssberg, H.; Zierath, J.R. Avermectin and Artemisinin—Revolutionary Therapies against Parasitic Diseases. Nobelförsamlingen. The Nobel Assembly at Karolinska Intitutet. 11 Pages, 2015. Available online: https://www.nobelprize.org/nobel_prizes/medicine/laureates/2015/advanced-medicineprize2015.pdf (accessed on 6 August 2023).
- Allworth, M.B.; Goonan, B.; Nelson, J.E.; Kelly, G.; McGrath, S.R.; Woodgate, R.G. Comparison of the efficacy of macrocyclic lactone anthelmintics, either singly or in combination with other anthelmintic (s), in nine beef herds in southern NSW. Aust. Vet. J. 2023, 101, 293–295. [Google Scholar] [CrossRef]
- Jouffroy, S.; Bordes, L.; Grisez, C.; Sutra, J.F.; Cazajous, T.; Lafon, J.; Dumont, N.; Chatel, M.; Vial-Novela, C.; Achard, D.; et al. First report of eprinomectin-resistant isolates of Haemonchus contortus in 5 dairy sheep farms from the Pyrénées Atlantiques département in France. Parasitology 2023, 150, 365–373. [Google Scholar] [CrossRef]
- Herrera-Manzanilla, F.A.; Ojeda-Robertos, N.F.; González-Garduño, R.; Cámara-Sarmiento, R.; Torres-Acosta, F.F.J. Gastrointestinal nematode populations with multiple anthelmintic resistance in sheep farms from the hot humid tropics of Mexico. Vet. Parasitol. Reg. Stud. Rep. 2017, 9, 29–33. [Google Scholar] [CrossRef]
- Höglund, J.; Baltrušis, P.; Enweji, N.; Gustafsson, K. Signs of multiple anthelmintic resistance in sheep gastrointestinal nematodes in Sweden. Vet. Parasitol. Reg. Stud. Rep. 2022, 36, 100789. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Suárez, H.A.; Olazarán-Jenkins, S.; Reyes-Guerrero, D.E.; Maza-Lopez, J.; Olmedo-Juárez, A.; Mendoza-de-Gives, P.; López-Arellano, M.E. P-glycoprotein gene expression analysis of ivermectin resistance in sheep naturally infected with Haemonchus contortus. Mex. J. Biotechnol. 2022, 7, 16–31. [Google Scholar] [CrossRef]
- Doyle, S.R.; Laing, R.; Bartley, D.; Morrison, A.; Holroyd, N.; Maitland, K.; Atonopoulos, A.; Flis, I.; Howell, S.; Mclntyre, J.; et al. Genomic landscape of drug response reveals mediators of anthelmintic resistance. Cell Rep. 2022, 41, 111522. [Google Scholar] [CrossRef] [PubMed]
- Laing, R.; Doyle, S.R.; McIntyre, J.; Maitland, K.; Morrison, A.; Bartley, D.J.; Kaplan, R.; Chaudhry, U.; Sargison, N.; Tait, A.; et al. Transcriptomic analyses implicate neuronal plasticity and chloride homeostasis in ivermectin resistance and response to treatment in a parasitic nematode. PLoS Pathog. 2022, 18, e1010545. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Guerrero, D.E.; Jiménez-Jacinto, V.; Alonso-Morales, R.A.; Alonso-Díaz, M.Á.; Maza-Lopez, J.; Camas-Pereyra, R.; Olmedo-Juárez, A.; Higuera-Piedrahita, R.I.; López-Arellano, M.E. Assembly and analysis of Haemonchus contortus transcriptome as a tool for the knowledge of Ivermectin resistance mechanisms. Pathogens 2023, 12, 499. [Google Scholar] [CrossRef]
- Filipe, J.A.N.; Kyriazakis, I.; McFarland, C.; Morgan, E.R. Novel epidemiological model of gastrointestinal nematode infection to assess grazing cattle resilience by integrating host growth, parasite, grass and environmental dynamics. Int. J. Parasitol. 2023, 53, 133–155. [Google Scholar] [CrossRef]
- Teixeira, M.; Matos, A.F.I.M.; Albuquerque, F.H.M.; Bassetto, C.C.; Smith, W.D.; Monteiro, J.P. Strategic vaccination of hair sheep against Haemonchus contortus. Parasitol. Res. 2019, 118, 2383–2388. [Google Scholar] [CrossRef]
- Molina, J.M.; Hernández, Y.I.; Ferrer, O.; Conde-Felipe, M.M.; Rodríguez, F.; Ruiz, A. Immunization with thiol-binding proteins from Haemonchus contortus adult worms partially protects goats against infection during prepatency. Exp. Parasitol. 2023, 248, 108512. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; Wang, T.; Liu, X.; Peng, W.; Srivastav, R.K.; Xing-Quan, Z.; Gupta, N.; Gasser, R.B.; Hu, M. H11-induced immunoprotection is predominantly linked to N-glycan moieties during Haemonchus contortus infection. Front. Immunol. 2022, 13, 1034820. [Google Scholar] [CrossRef]
- Tian, X.; Lu, M.; Bu, Y.; Zhang, Y.; Aimulajiang, K.; Liang, M.; Li, C.; Yan, R.; Xu, L.; Song, X.; et al. Immunization with Recombinant Haemonchus contortus Y75B8A. 8 Partially Protects Local Crossbred Female Goats from Haemonchus contortus Infection. Front. Vet. Sci. 2022, 9, 765700. [Google Scholar] [CrossRef]
- Yadav, B.; Singh, U.B.; Malviya, D.; Vishwakarma, S.K.; Ilyas, T.; Shafi, Z.; Shahid, M.; Singh, H.V. Nematophagous Fungi: Biology, Ecology and Potential Application. In Detection, Diagnosis and Management of Soil-Borne Phytopathogens; Singh, U.B., Kumar, R., Singh, H.B., Eds.; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Avelar-Monteiro, T.S.; Souza-Gouveia, A.; Marcio-Balbino, H.; Morgan, T.; Grassi-de Freitas, L. Chapter 34-Duddintognia; Beneficial Microbies in Agro-Ecology; Elsevier: Gujarat, India, 2020; pp. 683–694. [Google Scholar] [CrossRef]
- Casillas-Aguilar, J.A.; Mendoza-de-Gives, P.; López-Arellano, M.E.; Liébano-Hernández, E. Evaluation of multinutritional biopellets containing Duddingtonia flagrans chlamydospores for the control of ovine Haemonchus contortus. Ann. N.Y. Acad. Sci. 2008, 1318, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Fitz-Aranda, J.A.; Mendoza-de-Gives, P.; Torres-Acosta, J.F.J.; Liébano-Hernández, E.; López-Arellano, M.E.; Sandoval-Castro, C.A.; Quiroz-Romero, H. Duddingtonia flagrans chlamydospores in nutritional pellets: Effect of storage time and conditions on the trapping ability against Haemonchus contortus larvae. J. Helminthol. 2015, 89, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Chavarría-Joya, L.; Alonso-Díaz, M.A.; Olmedo-Juárez, A.; von Son-de Fernex, E.; Mendoza-de-Gives, P. Assessing the individual and combined use of Caesalpinia coriaria (Plantae: Fabaceae) and Duddingtonia flagrans (Fungi: Orbiliaceae) as sustainable alternatives of control of sheep parasitic nematodes. Biocontrol. Sci. Technol. 2022, 32, 1260–1274. [Google Scholar] [CrossRef]
- Mendoza-de Gives, P.; López-Arellano, M.E.; Aguilar-Marcelino, L.; Olazarán-Jenkins, S.; Reyes-Guerrero, D.; Ramírez-Várgas, G.; Vega-Murillo, V.E. The nematophagous fungus Duddingtonia flagrans reduces the gastrointestinal parasitic nematode larvae population in faeces of orally treated calves maintained under tropical conditions—Dose/response assessment. Vet. Parasitol. 2018, 263, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-de Gives, P.; Zapata-Nieto, C.; Liébano-Hernández, E.; López-Arellano, M.E.; Herrera-Rodríguez, D.; González-Garduño, R. Biological Control of Gastrointestinal Parasitic Nematodes Using Duddingtonia flagrans in Sheep under Natural Conditions in Mexico. Ann. N.Y. Acad. Sci. 2006, 1081, 355–359. [Google Scholar] [CrossRef]
- Ortíz-Pérez, D.O.; Sánchez-Muñóz, B.; Toral, N.J.; Orantes-Zebadúa, M.A.; Cruz-López, J.L.; Reyes-García, M.E.; Mendoza-de Gives, P. Using Duddingtonia flagrans in calves under an organic milk farm production system in the Mexican tropics. Exp. Parasitol. 2017, 175, 74–78. [Google Scholar] [CrossRef]
- Mendoza-de Gives, P.; Ribeiro-Braga, F.; Victor de Araújo, J. Nematophagous fungi, an extraordinary tool for controlling ruminant parasitic nematodes and other biotechnological applications. Biocontrol Sci. Technol. 2022, 32, 777–793. [Google Scholar] [CrossRef]
- Fernández, S.; Zegbi, S.; Sagües, F.; Iglesias, L.; Guerrero, I.; Saumell, C. Trapping Behaviour of Duddingtonia flagrans against gastrointestinal nematodes of cattle under year-round grazing conditions. Pathogens 2023, 12, 401. [Google Scholar] [CrossRef]
- de Matos, A.F.I.M.; Greesler, L.T.; Giacometi, M.; Barasuol, B.M.; de Vasconcelos, F.R.C.; Stainki, D.R.; Monteiro, S.G. Nematocidal effect of oyster culinary-medicinal mushroom Pleurotus ostreatus (Agaricomycetes) against Haemonchus contortus. Int. J. Med. Mushrooms 2020, 22, 1089–1098. [Google Scholar] [CrossRef]
- Edith, R.; Meignanalakshmi, S.; Vijayarani, K.; Balagangatharathilagar, M. In vitro evaluation of antiparasitic activity of oyster mushroom (Pleurotus ostreatus) protein hydrolysates against Haemonchus contortus larvae. Pharm. Innov. J. 2023, 12, 5882–5885. [Google Scholar]
- Degenkolb, T.; Vilcinskas, A. Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: Metabolites from nematophagous ascomycetes. Appl. Microbiol. Biotechnol. 2016, 100, 3799–3812. [Google Scholar] [CrossRef] [PubMed]
- Degenkolb, T.; Vilcinskas, A. Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: Metabolites from nematophagous basidiomycetes and non-nematophagous fungi. Appl. Microbiol. Biotechnol. 2016, 100, 3813–3824. [Google Scholar] [CrossRef] [PubMed]
- Ocampo-Gutiérrez, A.Y.; Hernández-Velázquez, V.M.; Aguilar-Marcelino, L.; Cardoso-Taketa, A.; Zamilpa, A.; López-Arellano, M.E.; González-Cortázar, M.; Jesús Hernández-Romano, J.; Reyes-Estebanez, M.; Mendoza-de Gives, P. Morphological and molecular characterization, predatory behaviour and effect of organic extracts of four nematophagous fungi from Mexico. Fungal Ecol. 2021, 49, 101004. [Google Scholar] [CrossRef]
- Pérez-Anzúrez, G.; Olmedo-Juárez, A.; von-Son de Fernex, E.; Alonso-Díaz, M.Á.; Delgado-Núñez, E.J.; López-Arellano, M.E.; González-Cortázar, M.; Zamilpa, A.; Ocampo-Gutierrez, A.Y.; Paz-Silva, A.; et al. Arthrobotrys musiformis (Orbiliales) kills Haemonchus contortus infective larvae (Trichostronylidae) through its predatory activity and its fungal culture filtrates. Pathogens 2022, 11, 1068. [Google Scholar] [CrossRef]
- von-Son-de-Fernex, E.; Alonso-Díaz, M.A.; Mendoza-de-Gives, P.; Valles-de-la-Mora, B.; Zamilpa, A.; González-Cortazar, M. Ovicidal activity of extracts from four plant species against the cattle nematode Cooperia Punctata. Vet. Méx. OA 2016, 3, 10–25. [Google Scholar] [CrossRef]
- Ocampo-Gutiérrez, A.Y.; Hernández-Velázquez, V.M.; Zamilpa, A.; López-Arellano, M.E.; Olmedo-Juárez, A.; Higuera-Piedrahita, R.I.; Delgado-Núñez, E.J.; González-Cortázar, M.; Mendoza-de Gives, P. Oxalis tetraphylla (Class: Magnoliopsidae) possess flavonoid phytoconstituents with nematocidal activity against Haemonchus contortus. Pathogens 2022, 11, 1024. [Google Scholar] [CrossRef]
- Aïssa, A.; Manolaraki, F.; Salem, H.B.; Hoste, H.; Kraiem, K. Effect of five mediterranean shrubs extracts on larval exsheathment of Haemonchus contortus. Agric. Sci. Dig. 2023, 43, 118–123. [Google Scholar] [CrossRef]
- Githiori, J.; Höglund, J.; Waller, P. Ethnoveterinary plant preparations as livestock dewormers: Practices, popular beliefs, pitfalls and prospects for the future. Anim. Health Res. Rev. 2005, 6, 91–103. [Google Scholar] [CrossRef]
- Benlarbi, F.; Mimoune, N.; Chaachouay, N.; Souttou, K.; Saidi, R.; Mokhtar, M.R.; Kaidi, R.; Benaissa, M.H. Ethnobotanical survey of the traditional antiparasitic use of medicinal plants in humans and animals in Laghouat (Southern Algeria). Vet. World 2023, 16, 357–368. [Google Scholar] [CrossRef]
- Cortes-Morales, J.A.; Zamilpa, A.; Salinas-Sánchez, D.O.; González-Cortazar, M.; Tapia-Maruri, D.; Mendoza- de Gives, P.; Rivas-González, J.M.; Olmedo-Juárez, A. In vitro ovicidal effect of p-coumaric acid from Acacia bilimekii aerial parts against Haemonchus contortus. Vet. Parasit. 2023, 320, 109971. [Google Scholar] [CrossRef]
- von Son-de Fernex, E.; Zúñiga-Olivos, E.; Jiménez-García, L.F.; Mendoza-de Gives, P. Anthelmintic-Like Activity and Ultrastructure Changes Produced by Two Polyphenolic Combinations against Cooperia punctata Adult Worms and Infective Larvae. Pathogens 2023, 12, 744. [Google Scholar] [CrossRef] [PubMed]
- Calzetta, L.; Pistocchini, E.; Leo, A.; Roncada, P.; Ritondo, B.L.; Palma, E.; di Cave, D.; Britti, D. Anthelminthic medicinal plants in veterinary ethnopharmacology: A network meta-analysis following the PRISMA-P and PROSPERO recommendations. Heliyon 2020, 6, e03256. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Kilinc, S.G.; Celik, F.; Kesik, H.K.; Simsek, S.; Ahmad, K.S.; Afzal, M.S.; Farrakh, S.; Safdar, W.; Pervaiz, F.; et al. An inventory of anthelmintic plants across the globe. Pathogens 2023, 12, 131. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, P.; Reyes-Palomo, C.; Sanz-Fernández, S.; Rufino-Moya, P.J.; Zafra, R.; Martínez-Moreno, F.J.; Rodríguez-Estévez, V.; Díaz-Gaona, C. Antiparasitic tannin-rich plants from the south of Europe for grazing livestock: A review. Animals 2023, 13, 201. [Google Scholar] [CrossRef] [PubMed]
- Ramdani, D.; Yuniarti, E.; Jayanegara, A.; Chaudhry, A.S. Roles of essential oils, polyphenols, and saponins of medicinal plants as natural additives and anthelmintics in ruminant diets: A systematic review. Animals 2023, 13, 767. [Google Scholar] [CrossRef]
- Váradyová, Z.; Mravčáková, D.; Babják, M.; Bryszak, M.; Grešáková, Ľ.; Čobanová, K.; Kišidayová, S.; Plachá, I.; Königová, A.; Cieslak, A.; et al. Effects of herbal nutraceuticals and/or zinc against Haemonchus contortus in lambs experimentally infected. BMC Vet. Res. 2018, 14, 78. [Google Scholar] [CrossRef]
- López-Leyva, Y.; González-Garduño, R.; Cruz-Tamayo, A.A.; Arece-García, J.; Huerta-Bravo, M.; Ramírez-Valverde, R.; Torres-Hernández, G.; López-Arellano, M.E. Protein supplementation as a nutritional strategy to reduce gastrointestinal nematodiasis in periparturient and lactating Pelibuey ewes in a tropical environment. Pathogens 2022, 11, 941. [Google Scholar] [CrossRef] [PubMed]
- Mendes, J.B.; Cintra, M.C.R.; Nascimento, L.V.; Jesus, R.M.M.; de Maia, D.; Ostrensky, A.; Teixeira, V.N.; Sotomaior, C.S. Efeitos da suplementação de proteínas na resistência e resiliência de cordeiros naturalmente infectados com parasitas gastrointestinais. Semin. Ciências Agrárias 2018, 39, 643–656. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, F.; Hunt, P.; Li, C.; Zhang, L.; Ingham, A.; Li, W. Transcriptome analysis unraveled potential mechanisms of resistance to Haemonchus contortus infection in Merino sheep populations bred for parasite resistance. BMC Vet. Res. 2019, 50, 7. [Google Scholar] [CrossRef]
- Poli, M.A.; Donzelli, M.V.; Caffaro, M.E.; Raschia, M.A.; Mazzucco, J.P.; Rossi, U.A. Genetic resistance to gastrointestinal parasites in sheep. CABI Rev. 2023, 1. [Google Scholar] [CrossRef]
- Şahin, Ö.; Aytekin, İ.; Boztepe, S.; Keskin, I.; Karabacak, A.; Altay, Y.; Bayraktar, M. Relationships between FAMACHA© scores and parasite incidence in sheep and goats. Trop. Anim. Health Prod. 2021, 53, 331. [Google Scholar] [CrossRef] [PubMed]
- Flota-Bañuelos, C.; RosalesMartínez, V.; Fraire-Cordero, S.; Candelaria-Martínez, B.; ChiquiniMedina, R.; Marfil-Ceballos, L. Characterization of sheep production systems and their relation with gastrointestinal parasites in four municipalities of Campeche, Mexico. Agro. Productividad. 2023, 16, 19–30. [Google Scholar] [CrossRef]
- Halvarsson, P.; Gustafsson, K.; Höglund, J. Farmers' perception on the control of gastrointestinal parasites in organic and conventional sheep production in Sweden. Vet. Parasitol. Reg. Stud. Reports. 2022, 30, 100713. [Google Scholar] [CrossRef]
- O’Brien, D.; Matthews, K.; Wildeus, S.; Whitley, N.C.; Schoenian, S. The efficacy of copper oxide wire particles alone or in combination with Moxidection to Reduce Parasite loads in meat goat kids. J. Anim. Sci. 2023, 101 (Suppl. S1), 107–108. [Google Scholar] [CrossRef]
- Schafer, A.S.; Silva, C.B.; França, R.T.; Oliveira, J.S.; Dornelles, G.L.; Mello, C.B.E.; Magni, L.P.; Santos, R.F.; Flores, E.M.M.; de Matos Igor Magalhães de Matos, A.F.I.M.; et al. Copper Oxide Wire Particles alone or Associated with Closantel: Increase in the Immune and Antioxidant Response in Lambs Experimentally Infected with Haemonchus contortus. PREPRINT (Version 1). Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj3n7KCgYmBAxVNe_UHHWl2CqsQFnoECA0QAQ&url=https%3A%2F%2Fwww.researchsquare.com%2Farticle%2Frs-2634692%2Flatest.pdf&usg=AOvVaw2-UR0GCSnggrnivYuTjTy5&opi=89978449 (accessed on 7 March 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-de Gives, P.; López-Arellano, M.E.; Olmedo-Juárez, A.; Higuera-Pierdrahita, R.I.; von Son-de Fernex, E. Recent Advances in the Control of Endoparasites in Ruminants from a Sustainable Perspective. Pathogens 2023, 12, 1121. https://doi.org/10.3390/pathogens12091121
Mendoza-de Gives P, López-Arellano ME, Olmedo-Juárez A, Higuera-Pierdrahita RI, von Son-de Fernex E. Recent Advances in the Control of Endoparasites in Ruminants from a Sustainable Perspective. Pathogens. 2023; 12(9):1121. https://doi.org/10.3390/pathogens12091121
Chicago/Turabian StyleMendoza-de Gives, Pedro, María Eugenia López-Arellano, Agustín Olmedo-Juárez, Rosa Isabel Higuera-Pierdrahita, and Elke von Son-de Fernex. 2023. "Recent Advances in the Control of Endoparasites in Ruminants from a Sustainable Perspective" Pathogens 12, no. 9: 1121. https://doi.org/10.3390/pathogens12091121
APA StyleMendoza-de Gives, P., López-Arellano, M. E., Olmedo-Juárez, A., Higuera-Pierdrahita, R. I., & von Son-de Fernex, E. (2023). Recent Advances in the Control of Endoparasites in Ruminants from a Sustainable Perspective. Pathogens, 12(9), 1121. https://doi.org/10.3390/pathogens12091121