Chlortetracycline Concentration Impact on Salmonella Typhimurium Sustainability in the Presence of Porcine Gastrointestinal Tract Bacteria Maintained in Continuous Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Isolation, and Cultivation
2.2. Continuous Flow Cultures
2.3. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bright-Ponte, S.J. Antimicrobial use data collection in animal agriculture. Zoonoses Public Health 2020, 67, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Broom, L.J. The sub-inhibitory theory for antibiotic growth promoters. Poultry Sci. 2017, 96, 3104–3108. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, F.M. The livestock reservoir for antimicrobial resistance: A personal view on changing patterns of risks, effects of interventions and the way forward. Phil. Trans. R. Soc. B 2015, 370, 20140085. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Timothy, P.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Nat. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- Algarni, S.; Ricke, S.C.; Foley, S.L.; Han, J. The dynamics of the antimicrobial resistance mobilome of Salmonella enterica and related enteric bacteria. Front. Microbiol. 2022, 13, 859854. [Google Scholar] [CrossRef]
- Foley, S.L.; Lynne, A.M. Food animal-associated Salmonella challenges: Pathogenicity and antimicrobial resistance. J. Anim. Sci. 2008, 86, E173–E187. [Google Scholar] [CrossRef]
- Monger, X.C.; Gilbert, A.-A.; Saucier, L.; Vincent, A.T. Antibiotic resistance: From pig to meat. Antibiotics 2021, 10, 1209. [Google Scholar] [CrossRef]
- Williams, M.S.; Ebel, E.D. Temporal changes in the proportion of Salmonella outbreaks associated with 12 food commodity groups in the United States. Epidemiol. Infect. 2022, 150, e126. [Google Scholar] [CrossRef]
- Gomes-Neves, E.; Antunes, P.; Manageiro, V.; Gärtner, F.; Canic, M.; da Costa, J.M.C.; Peixe, L. Clinically relevant multidrug resistant Salmonella enterica in swine and meat handlers at the abattoir. Vet. Microbiol. 2014, 168, 229–233. [Google Scholar] [CrossRef]
- Barton, M.D. Impact of antibiotic use in the swine industry. Curr. Opin. Microbiol. 2014, 19, 9–15. [Google Scholar] [CrossRef]
- Hao, H.; Sander, P.; Iqbal, Z.; Wang, Y.; Cheng, G.; Yuan, Z. The risk of some veterinary antimicrobial agents on public health associated with antimicrobial resistance and their molecular basis. Front. Microbiol. 2016, 7, 1626. [Google Scholar] [CrossRef]
- Bassetti, M.; Merelli, M.; Temperoni, C.; Astilean, A. New antibiotics for bad bugs: Where are we? Ann. Clin. Microbiol. Antimicrob. 2013, 12, 22. [Google Scholar] [CrossRef]
- Apley, M.D.; Bush, E.J.; Morrison, R.B.; Singer, R.B.; Snelson, R.S. Use estimates of in-feed antimicrobials in swine production in the United States. Foodborne Path. Dis. 2012, 9, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Buffie, C.G.; Pamer, E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 2013, 13, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Hume, M.E.; Nisbet, D.J.; Buckley, S.A.; Ziprin, R.L.; Anderson, R.C.; Stanker, L.H. Inhibition of in vitro Salmonella typhimurium colonization in porcine cecal bacteria continuous-flow competitive exclusion cultures. J. Food Prot. 2001, 64, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Nisbet, D.J.; Anderson, R.C.; Corrier, D.E.; Harvey, R.B.; Stanker, L.H. Modeling of survivability of Salmonella typhimurium in the chicken ceca using an anaerobic continuous-culture of chicken cecal bacteria. Microb. Ecol. Health Dis. 2000, 12, 42–47. [Google Scholar] [CrossRef]
- Anderson, R.C.; Poole, T.L.; Crippen, T.C.; Harvey, R.B.; Ricke, S.C. Effect of chemostat turnover rate and select antibiotics on Salmonella Typhimurium in the presence of porcine gastrointestinal tract bacteria. Can. J. Anim. Sci. 2023. [Google Scholar] [CrossRef]
- Carlson, M.S.; Fangman, T.J. Swine antibiotic and feed additives: Food safety considerations. In Swine Feeding MU Guide; MU Extension; University of Missouri-Columbia: Columbia, MO, USA, 2000; p. G2353. [Google Scholar]
- Corrier, D.E.; Nisbet, D.J.; Scanlan, C.M.; Hollister, A.G.; DeLoach, J.R. Control of Salmonella typhimurium colonization in broiler chicks with a continuous-flow characterized mixed culture of cecal bacteria. Poult. Sci. 1995, 74, 916–924. [Google Scholar] [CrossRef]
- Harvey, R.; Droleskey, R.; Hume, M.; Anderson, R.C.; Genovese, K.J.; Andrews, K.; Nisbet, D.J. In vitro inhibition of Salmonella enterica serovars Choleraesuis and Typhimurium, Escherichia coli F-18, and Escherichia coli O157:H7 by a porcine continuous-flow competitive exclusion culture. Curr. Microbiol. 2002, 45, 226–229. [Google Scholar] [CrossRef]
- Poole, T.L.; Hume, M.E.; Genovese, K.J.; Anderson, T.J.; Sheffield, C.L.; Bischoff, K.M.; Nisbet, D.J. Persistence of a vancomycin-resistant Enterococcus faecium in an anaerobic continuous-flow culture of porcine microflora in the presence of subtherapeutic concentrations of vancomycin. Microb. Drug Resist. 2001, 7, 343–348. [Google Scholar] [CrossRef]
- Barnes, E.M.; Impey, C.S.; Stevens, B.J.H. Factors affecting the incidence of and anti-salmonella activity of the anaerobic cecal flora of the young chick. Epidemiol. Infect. 1979, 82, 263–283. [Google Scholar] [CrossRef]
- Witte, W. Ecological impact of antibiotic use in animals on different complex microflora: Environment. Int. J. Antimicrob. Agents 2000, 14, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Netherwood, T.; Bowden, R.; Harrison, P.; O’Donnell, A.G.; Parker, D.S.; Gilbert, H.J. Gene transfer in the gastrointestinal tract. Appl. Environ. Microbiol. 1999, 65, 5139–5141. [Google Scholar] [CrossRef] [PubMed]
- Wesley, I.V.; Baetz, A.L.; Laufer, J. The cannulate pig: A model for monitoring the dynamics of foodborne pathogens in vivo. Swine Research Report-Food Safety; Iowa State University: Ames, IA, USA, 1999; ASL-R1708. [Google Scholar]
- Ramlachan, N.; Anderson, R.C.; Andrews, K.; Harvey, R.B.; Nisbet, D.J. A comparative study on the effects of tylosin on select bacteria during continuous flow culture of mixed populations of gut microflora derived from a feral and a domestic pig. Foodborne Path. Dis. 2008, 5, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Feed Additive Compendium; The Miller Publishing Company: Minnetonka, MN, USA, 1998.
Chlortetracycline-Susceptible Salmonella Typhimurium | Chlortetracycline-Resistant Salmonella Typhimurium | ||||
---|---|---|---|---|---|
Without Added Chlortetracycline | With 55 mg/L of Chlortetracycline | Without Added Chlortetracycline | With 110 mg/L of Chlortetracycline | SEM | |
Observed clearance rate (log10 CFU/mL per day) 1 | 0.821 a | 0.805 a | 0.409 b | 0.451 b | 0.069 |
Chlortetracycline-resistant S. Typhimurium recovered after 9 days continuous culture (log10 CFU/mL) 2 | None recovered | None recovered | 4.32 | 3.04 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dittoe, D.K.; Anderson, R.C.; Poole, T.L.; Crippen, T.L.; Harvey, R.B.; Ricke, S.C. Chlortetracycline Concentration Impact on Salmonella Typhimurium Sustainability in the Presence of Porcine Gastrointestinal Tract Bacteria Maintained in Continuous Culture. Pathogens 2023, 12, 1454. https://doi.org/10.3390/pathogens12121454
Dittoe DK, Anderson RC, Poole TL, Crippen TL, Harvey RB, Ricke SC. Chlortetracycline Concentration Impact on Salmonella Typhimurium Sustainability in the Presence of Porcine Gastrointestinal Tract Bacteria Maintained in Continuous Culture. Pathogens. 2023; 12(12):1454. https://doi.org/10.3390/pathogens12121454
Chicago/Turabian StyleDittoe, Dana K., Robin C. Anderson, Toni L. Poole, Tawni L. Crippen, Roger B. Harvey, and Steven C. Ricke. 2023. "Chlortetracycline Concentration Impact on Salmonella Typhimurium Sustainability in the Presence of Porcine Gastrointestinal Tract Bacteria Maintained in Continuous Culture" Pathogens 12, no. 12: 1454. https://doi.org/10.3390/pathogens12121454
APA StyleDittoe, D. K., Anderson, R. C., Poole, T. L., Crippen, T. L., Harvey, R. B., & Ricke, S. C. (2023). Chlortetracycline Concentration Impact on Salmonella Typhimurium Sustainability in the Presence of Porcine Gastrointestinal Tract Bacteria Maintained in Continuous Culture. Pathogens, 12(12), 1454. https://doi.org/10.3390/pathogens12121454