Individually or as a Team—The Immunological Milieu in the Lung Caused by Migrating Single-Sex or Mixed-Sex Larvae of Schistosoma mansoni
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Schistosoma mansoni Infection of Mice
2.3. Quantitative Real-Time PCR Analysis
2.4. Flow Cytometric Analysis
2.5. Multiplex Analysis
2.6. Statistics
3. Results
3.1. Male or Female Lung Stage Larvae of Schistosoma mansoni Induce Stronger Expression of Inflammation-Associated Genes than Larvae of Both Sexes
3.2. During Lung Migration, Single-Sex Larvae of Schistosoma mansoni Cause a Different Immune Milieu Compared with the Bisexual Control
3.3. During Lung Migration of Single-Sex Schistosoma mansoni Larvae, Cytokine Concentrations in the Bronchoalveolar Lavage Are Higher than in Bisexual Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2016 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1260–1344. [Google Scholar] [CrossRef]
- Bica, I.; Hamer, D.H.; Stadecker, M.J. Hepatic schistosomiasis. Infect. Dis. Clin. N. Am. 2000, 14, 583–604. [Google Scholar] [CrossRef]
- Stadecker, M.J.; Asahi, H.; Finger, E.; Hernandez, H.J.; Rutitzky, L.I.; Sun, J. The immunobiology of Th1 polarization in high-pathology schistosomiasis. Immunol. Rev. 2004, 201, 168–179. [Google Scholar] [CrossRef]
- Burke, M.L.; Jones, M.K.; Gobert, G.N.; Li, Y.S.; Ellis, M.K.; McManus, D.P. Immunopathogenesis of human schistosomiasis. Parasite Immunol. 2009, 31, 163–176. [Google Scholar] [CrossRef]
- WHO. Schistosomiasis and soil-transmitted helminthiases: Number of people treated in 2018. In Weekly Epidemiological Record; World Health Organization: Geneva, Switzerland, 2019; Volume 50. [Google Scholar]
- Ramalli, L.; Mulero, S.; Noël, H.; Chiappini, J.-D.; Vincent, J.; Barré-Cardi, H.; Malfait, P.; Normand, G.; Busato, F.; Gendrin, V.; et al. Persistence of schistosomal transmission linked to the Cavu river in southern Corsica since 2013. Eurosurveillance 2018, 23, 18-00017. [Google Scholar] [CrossRef] [PubMed]
- Salas-Coronas, J.; Bargues, M.D.; Lozano-Serrano, A.B.; Artigas, P.; Martínez-Ortí, A.; Mas-Coma, S.; Merino-Salas, S.; Vivas-Pérez, J.I.A. Evidence of autochthonous transmission of urinary schistosomiasis in Almeria (southeast Spain): An outbreak analysis. Travel. Med. Infect. Dis. 2021, 44, 102165. [Google Scholar] [CrossRef] [PubMed]
- Kalinda, C.; Chimbari, M.; Mukaratirwa, S. Implications of Changing Temperatures on the Growth, Fecundity and Survival of Intermediate Host Snails of Schistosomiasis: A Systematic Review. Int. J. Environ. Res. Public. Health 2017, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.P.; Bergquist, R.; Cai, P.; Ranasinghe, S.; Tebeje, B.M.; You, H. Schistosomiasis—From immunopathology to vaccines. Semin. Immunopathol. 2020, 42, 355–371. [Google Scholar] [CrossRef]
- Riveau, G.; Schacht, A.-M.; Dompnier, J.-P.; Deplanque, D.; Seck, M.; Waucquier, N.; Senghor, S.; Delcroix-Genete, D.; Hermann, E.; Idris-Khodja, N.; et al. Safety and efficacy of the rSh28GST urinary schistosomiasis vaccine: A phase 3 randomized, controlled trial in Senegalese children. PLoS Neglected Trop. Dis. 2018, 12, e0006968. [Google Scholar] [CrossRef]
- Bethony, J.M.; Cole, R.N.; Guo, X.; Kamhawi, S.; Lightowlers, M.W.; Loukas, A.; Petri, W.; Reed, S.; Valenzuela, J.G.; Hotez, P.J. Vaccines to combat the neglected tropical diseases. Immunol. Rev. 2010, 239, 237–270. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, J.E.; Wilson, R.A. Pulmonary cellular reactions to Schistosoma mansoni schistosomula in normal and vaccinated mice. Adv. Exp. Med. Biol. 1987, 216, 701–707. [Google Scholar]
- Houlder, E.L.; Costain, A.H.; Cook, P.C.; MacDonald, A.S. Schistosomes in the Lung: Immunobiology and Opportunity. Front. Immunol. 2021, 12, 635513. [Google Scholar] [CrossRef] [PubMed]
- Harrop, R.; Wilson, R.A. Irradiation of Schistosoma mansoni Cercariae Impairs Neuromuscular Function in Developing Schistosomula. J. Parasitol. 1993, 79, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Wales, A.; Fukumoto, S.-I.; Otieno, M.F.; Kusel, J.R. Effects of irradiation on surface carbohydrates of larvae of Schistosoma mansoni. Parasitology 1993, 106, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Takaki, K.K.; Rinaldi, G.; Berriman, M.; Pagán, A.J.; Ramakrishnan, L. Schistosoma mansoni Eggs Modulate the Timing of Granuloma Formation to Promote Transmission. Cell Host Microbe 2021, 29, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Da’dara, A.A.; Skelly, P.J. Schistosome immunomodulators. PLoS Pathog. 2021, 17, e1010064. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.-G.; Brindley, P.J.; Wang, S.-Y.; Chen, Z. Schistosoma genomics: New perspectives on schistosome biology and host-parasite interaction. Annu. Rev. Genom. Hum. Genet. 2009, 10, 211–240. [Google Scholar] [CrossRef]
- Angeles, J.M.M.; Mercado, V.J.P.; Rivera, P.T. Behind enemy lines: Immunomodulatory armamentarium of the schistosome parasite. Front. Immunol. 2020, 11, 1018. [Google Scholar] [CrossRef]
- Boissier, J.; Chlichlia, K.; Digon, Y.; Ruppel, A.; Moné, H. Preliminary study on sex-related inflammatory reactions in mice infected with Schistosoma mansoni. Parasitol. Res. 2003, 91, 144–150. [Google Scholar] [CrossRef]
- Vogel, H.; Minning, W. The Acquired resistance of macacus rhesus to Schistosoma japonicum. Z. Fur Tropenmedizin Und Parasitol. 1953, 4, 418–505. [Google Scholar]
- Hsü, S. Sex of schistosome cercariae as a factor in the immunization of rhesus monkeys. Exp. Parasitol. 1969, 25, 202–209. [Google Scholar] [CrossRef]
- Sombetzki, M.; Reinholdt, C.; Winkelmann, F.; Rabes, A.; Koslowski, N.; Reisinger, E.C. A one-year unisexual Schistosoma mansoni infection causes pathologic organ alterations and persistent non-polarized T cell-mediated inflammation in mice. Front. Immunol. 2022, 13, 1010932. [Google Scholar] [CrossRef] [PubMed]
- Winkelmann, F.; Rabes, A.; Reinholdt, C.; Koslowski, N.; Koczan, D.; Reisinger, E.C.; Sombetzki, M. Sex-specific modulation of the host transcriptome in the spleen of Schistosoma mansoni-infected mice. Front. Cell. Infect. Microbiol. 2022, 12, 893632. [Google Scholar] [CrossRef] [PubMed]
- Koslowski, N.; Sombetzki, M.; Loebermann, M.; Engelmann, R.; Grabow, N.; Österreicher, C.H.; Trauner, M.; Mueller-Hilke, B.; Reisinger, E.C. Single-sex infection with female Schistosoma mansoni cercariae mitigates hepatic fibrosis after secondary infection. PLoS Neglected Trop. Dis. 2017, 11, e0005595. [Google Scholar] [CrossRef] [PubMed]
- Sombetzki, M.; Koslowski, N.; Rabes, A.; Seneberg, S.; Winkelmann, F.; Fritzsche, C.; Loebermann, M.; Reisinger, E.C. Host defense versus immunosuppression: Unisexual infection with male or female Schistosoma mansoni differentially impacts the immune response against invading cercariae. Front. Immunol. 2018, 9, 861. [Google Scholar] [CrossRef] [PubMed]
- Liberatos, J.D.; Short, R.B. Identification of sex of schistosome larval stages. J. Parasitol. 1983, 69, 1084–1089. [Google Scholar] [CrossRef]
- Mountford, A.; Harrop, R. Vaccination against schistosomiasis: The case for lung-stage antigens. Parasitol. Today 1998, 14, 109–114. [Google Scholar] [CrossRef]
- Dean, D.A.; Mangold, B.L. Evidence that both normal and immune elimination of Schistosoma mansoni take place at the lung stage of migration prior to parasite death. Am. J. Trop. Med. Hyg. 1992, 47, 238–248. [Google Scholar] [CrossRef]
- Wilson, R.A.; Coulson, P.S. Lung-phase immunity to schistosomes: A new perspective on an old problem? Parasitol. Today 1989, 5, 274–278. [Google Scholar] [CrossRef]
- Borges, M.F.; Spohn, P.K.; Coulson, A.S. Arrhythmia/ischemia management during minimally invasive cardiac operation. Ann. Thorac. Surg. 1997, 64, 843–844. [Google Scholar] [CrossRef]
- Street, M.; Coulson, P.S.; Sadler, C.; Warnock, L.J.; McLaughlin, D.; Bluethmann, H.; Wilson, R.A. TNF is essential for the cell-mediated protective immunity induced by the radiation-attenuated schistosome vaccine. J. Immunol. 1999, 163, 4489–4494. [Google Scholar] [CrossRef]
- Smythies, L.E.; Pemberton, R.M.; Coulson, P.S.; Mountford, A.P.; Wilson, R.A. T cell-derived cytokines associated with pulmonary immune mechanisms in mice vaccinated with irradiated cercariae of Schistosoma mansoni. J. Immunol. 1992, 148, 1512–1518. [Google Scholar] [CrossRef]
- James, S.L.; Natovitz, P.C.; Farrar, W.L.; Leonard, E.J. Macrophages as effector cells of protective immunity in murine schistosomiasis: Macrophage activation in mice vaccinated with radiation-attenuated cercariae. Infect. Immun. 1984, 44, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Redpath, S.A.; van der Werf, N.; MacDonald, A.S.; Maizels, R.M.; Taylor, M.D. Schistosoma mansoni Larvae Do Not Expand or Activate Foxp3+ Regulatory T Cells during Their Migratory Phase. Infect. Immun. 2015, 83, 3881–3889. [Google Scholar] [CrossRef] [PubMed]
- Fraga, L.A.d.O.; Torrero, M.N.; Tocheva, A.S.; Mitre, E.; Davies, S.J. Induction of Type 2 Responses by Schistosome Worms during Prepatent Infection. J. Infect. Dis. 2010, 201, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Houlder, E.L.; Costain, A.H.; Nambuya, I.; Brown, S.L.; Koopman, J.P.R.; Langenberg, M.C.C.; Janse, J.J.; Hoogerwerf, M.A.; Ridley, A.J.L.; Forde-Thomas, J.E.; et al. Pulmonary inflammation promoted by type-2 dendritic cells is a feature of human and murine schistosomiasis. Nat. Commun. 2023, 14, 1863. [Google Scholar] [CrossRef]
- Raval, C.M.; Lee, P.J. Heme oxygenase-1 in lung disease. Curr. Drug Targets 2010, 11, 1532–1540. [Google Scholar] [CrossRef]
- Wagener, F.A.; Scharstuhl, A.; Tyrrell, R.M.; Von den Hoff, J.W.V.D.; Jozkowicz, A.; Dulak, J.; Russel, F.G.; Kuijpers-Jagtman, A.M. The heme-heme oxygenase system in wound healing; implications for scar formation. Curr. Drug Targets 2010, 11, 1571–1585. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.L.; McGarvey, L.; McSorley, H.J.; Bielefeldt-Ohmann, H.; McManus, D.P.; Gobert, G.N. Migrating Schistosoma japonicum schistosomula induce an innate immune response and wound healing in the murine lung. Mol. Immunol. 2011, 49, 191–200. [Google Scholar] [CrossRef]
- Nagaoka, T.; Kaburagi, Y.; Hamaguchi, Y.; Hasegawa, M.; Takehara, K.; Steeber, D.A.; Tedder, T.F.; Sato, S. Delayed Wound Healing in the Absence of Intercellular Adhesion Molecule-1 or L-Selectin Expression. Am. J. Pathol. 2000, 157, 237–247. [Google Scholar] [CrossRef]
- Smith, P.; Walsh, C.M.; Mangan, N.E.; Fallon, R.E.; Sayers, J.R.; McKenzie, A.N.J.; Fallon, P.G. Schistosoma mansoni worms induce anergy of t cells via selective up-regulation of programmed death ligand 1 on macrophages. J. Immunol. 2004, 173, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.A.; Dorfman, D.M.; Ma, F.-R.; Sullivan, E.L.; Munoz, O.; Wood, C.R.; Greenfield, E.A.; Freeman, G.J. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J. Immunol. 2003, 170, 1257–1266. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Dong, H.; Zhu, G.; Sica, G.L.; Flies, D.B.; Tamada, K.; Chen, L. B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function. Blood 2001, 97, 1809–1816. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, A.E.; Vadas, M.A.; Martz, E.; Sher, A. Cytolytic T lymphocytes recognize alloantigens on schistosomula of Schistosoma mansoni, but fail to induce damage. J. Immunol. 1979, 122, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Gillan, V.; Devaney, E. Regulatory T Cells Modulate Th2 responses induced by Brugia pahangi third-stage larvae. Infect. Immun. 2005, 73, 4034–4042. [Google Scholar] [CrossRef] [PubMed]
- McSorley, H.J.; Harcus, Y.M.; Murray, J.; Taylor, M.D.; Maizels, R.M. Expansion of Foxp3+ Regulatory T Cells in mice infected with the filarial parasite Brugia malayi. J. Immunol. 2008, 181, 6456–6466. [Google Scholar] [CrossRef]
- Taylor, M.D.; van der Werf, N.; Harris, A.; Graham, A.L.; Bain, O.; Allen, J.E.; Maizels, R.M. Early recruitment of natural CD4+Foxp3+ Treg cells by infective larvae determines the outcome of filarial infection. Eur. J. Immunol. 2009, 39, 192–206. [Google Scholar] [CrossRef]
- Blankenhaus, B.; Klemm, U.; Eschbach, M.-L.; Sparwasser, T.; Huehn, J.; Kühl, A.A.; Loddenkemper, C.; Jacobs, T.; Breloer, M. Strongyloides ratti Infection induces expansion of Foxp3+ Regulatory T Cells that interfere with immune response and parasite clearance in BALB/c mice. J. Immunol. 2011, 186, 4295–4305. [Google Scholar] [CrossRef]
- Finney, C.A.; Taylor, M.D.; Wilson, M.S.; Maizels, R.M. Expansion and activation of CD4(+)CD25(+) regulatory T cells in Heligmosomoides polygyrus infection. Eur. J. Immunol. 2007, 37, 1874–1886. [Google Scholar] [CrossRef]
- Redpath, S.A.; van der Werf, N.; Cervera, A.M.; MacDonald, A.S.; Gray, D.; Maizels, R.M.; Taylor, M.D. ICOS controls Foxp3(+) regulatory T-cell expansion, maintenance and IL-10 production during helminth infection. Eur. J. Immunol. 2013, 43, 705–715. [Google Scholar] [CrossRef]
- Reinholdt, C.; Winkelmann, F.; Koslowski, N.; Reisinger, E.C.; Sombetzki, M. Unisexual infection with Schistosoma mansoni in mice has the potential to boost the immune response against eggs after challenge infection. Front. Immunol. 2023, 14, 1125912. [Google Scholar] [CrossRef] [PubMed]
- Koopman, J.P.R.; Houlder, E.L.; Janse, J.J.; Casacuberta-Partal, M.; Lamers, O.A.; Sijtsma, J.C.; de Dood, C.; Hilt, S.T.; Ozir-Fazalalikhan, A.; Kuiper, V.P.; et al. Safety and infectivity of female cercariae in Schistosoma-naïve, healthy participants: A controlled human Schistosoma mansoni infection study. EBioMedicine 2023, 97, 104832. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bischofsberger, M.; Reinholdt, C.; Dannenhaus, T.A.; Aleith, J.; Bergmann-Ewert, W.; Müller-Hilke, B.; Löbermann, M.; Reisinger, E.C.; Sombetzki, M. Individually or as a Team—The Immunological Milieu in the Lung Caused by Migrating Single-Sex or Mixed-Sex Larvae of Schistosoma mansoni. Pathogens 2023, 12, 1432. https://doi.org/10.3390/pathogens12121432
Bischofsberger M, Reinholdt C, Dannenhaus TA, Aleith J, Bergmann-Ewert W, Müller-Hilke B, Löbermann M, Reisinger EC, Sombetzki M. Individually or as a Team—The Immunological Milieu in the Lung Caused by Migrating Single-Sex or Mixed-Sex Larvae of Schistosoma mansoni. Pathogens. 2023; 12(12):1432. https://doi.org/10.3390/pathogens12121432
Chicago/Turabian StyleBischofsberger, Miriam, Cindy Reinholdt, Tim Alexander Dannenhaus, Johann Aleith, Wendy Bergmann-Ewert, Brigitte Müller-Hilke, Micha Löbermann, Emil C. Reisinger, and Martina Sombetzki. 2023. "Individually or as a Team—The Immunological Milieu in the Lung Caused by Migrating Single-Sex or Mixed-Sex Larvae of Schistosoma mansoni" Pathogens 12, no. 12: 1432. https://doi.org/10.3390/pathogens12121432
APA StyleBischofsberger, M., Reinholdt, C., Dannenhaus, T. A., Aleith, J., Bergmann-Ewert, W., Müller-Hilke, B., Löbermann, M., Reisinger, E. C., & Sombetzki, M. (2023). Individually or as a Team—The Immunological Milieu in the Lung Caused by Migrating Single-Sex or Mixed-Sex Larvae of Schistosoma mansoni. Pathogens, 12(12), 1432. https://doi.org/10.3390/pathogens12121432