Virucidal Efficacy of Laundering
Abstract
:1. Introduction
2. Viral Persistence and Susceptibility to Biocidal Agents
3. Factors Influencing the Antiviral Efficacy of Laundering
3.1. Temperature
3.2. Chemistry
3.3. Time
3.4. Mechanical Action
4. Studies on the Antiviral Efficacy of Laundering
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, G. Intuition on virology, epidemiology, pathogenesis, and control of COVID-19. Nov. Res. Microbiol. J. 2020, 4, 955–967. [Google Scholar] [CrossRef]
- Heinzel, M.; Kyas, A.; Weide, M.; Breves, R.; Bockmühl, D.P. Evaluation of the virucidal performance of domestic laundry procedures. Int. J. Hyg. Environ. Health 2010, 213, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Tharayil, A.; Rajakumari, R.; Mozetic, M.; Primc, G.; Thomas, S. Contact transmission of SARS-CoV-2 on fomite surfaces: Surface survival and risk reduction. Interface Focus 2021, 12, 20210042. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.; da Silva, P.G.; Reis, L.; Nascimento, M.S.J.; Koritnik, T.; Paragi, M.; Mesquita, J.R. Surface contamination with SARS-CoV-2: A systematic review. Sci. Total Environ. 2021, 798, 149231. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, S.F.; Exner, M.; Fara, G.M.; Scott, E.A. Perspectives prevention of the spread of infection-the need for a family-centred approach to hygiene promotion. Eurosurveillance 2008, 13, 18889. [Google Scholar]
- Bloomfield, S.F.; Exner, M.; Signorelli, C.; Nath, K.J.; Scott, E.A. The Infection Risks Associated with Clothing and Household Linens in Home and Everyday Life Settings, and the Role of Laundry. International Scientific Forum on Home Hygiene. 2011. Available online: http://www.ifh-homehygiene.org/best-practice-review/infection-risks-associated-clothing-and-household-linens-home-and-everyday-life (accessed on 25 August 2022).
- Klein, M.D.A. Antiviral action of Germicides. Soap Chem. Spec. 1963, 39, 70–72, 95–97. [Google Scholar]
- Casanova, L.M.; Jeon, S.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces. Appl. Environ. Microbiol. 2010, 76, 2712–2717. [Google Scholar] [CrossRef]
- Dowell, S.F.; Simmerman, J.M.; Erdman, D.D.; Wu, J.-S.J.; Chaovavanich, A.; Javadi, M.; Yang, J.-Y.; Anderson, L.J.; Tong, S.; Ho, M.S. Severe Acute Respiratory Syndrome Coronavirus on Hospital Surfaces. Clin. Infect. Dis. 2004, 39, 652–657. [Google Scholar] [CrossRef]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef]
- Lemm, D.; Merettig, N.; Lucassen, R.; Bockmühl, D.P. Inactivation of Human Norovirus by Common Domestic Laundry Procedures. Tenside Surfactants Deterg. 2014, 51, 304–306. [Google Scholar] [CrossRef]
- Bean, B.; Moore, B.M.; Sterner, B.; Peterson, L.R.; Gerding, D.N.; Balfour, H.H. Survival of Influenza Viruses on Environmental Surfaces. J. Infect. Dis. 1982, 146, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Castaño, N.; Cordts, S.; Jalil, M.K.; Zhang, K.; Koppaka, S.; Bick, A.; Paul, R.; Tang, S.K.Y. Fomite transmission and disinfection strategies for SARS-CoV-2 and related viruses. arXiv 2020, arXiv:2005.11443. [Google Scholar]
- Gerba, C.P. Applied and Theoretical Aspects of Virus Adsorption to Surfaces. Adv. Appl. Microbiol. 1984, 30, 133–168. [Google Scholar] [CrossRef] [PubMed]
- Casanova, L.; Alfano-Sobsey, E.; Rutala, W.A.; Weber, D.J.; Sobsey, M. Virus Transfer from Personal Protective Equipment to Healthcare Employees’ Skin and Clothing. Emerg. Infect. Dis. 2008, 14, 1291–1293. [Google Scholar] [CrossRef]
- Rabenau, H.F.; Cinatl, A.J.; Morgenstern, A.B.; Bauer, A.G.; Preiser, W.; Doerr, A.H.W. Stability and inactivation of SARS coronavirus. Med. Microbiol. Immunol. 2005, 194, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, S.F.; Carling, P.C.; Exner, M. A unified framework for developing effective hygiene procedures for hands, environmental surfaces and laundry in healthcare, domestic, food handling and other settings. GMS Hyg. Infect. Control 2017, 12, Doc08. [Google Scholar] [CrossRef] [PubMed]
- Otter, J.A.; Donskey, C.; Yezli, S.; Douthwaite, S.; Goldenberg, S.D.; Weber, D.J. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination. J. Hosp. Infect. 2015, 92, 235–250. [Google Scholar] [CrossRef]
- Chin, H.A.W.; Chu, S.J.T.; Perera, A.M.R.; Hui, Y.K.P.; Yen, H.-L.; Chan, W.M.C.; Peiris, M.; Poon, M.L.L. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef]
- Bloomfield, S.; Exner, M.; Flemming, H.-C.; Goroncy-Bermes, P.; Hartemann, P.; Heeg, P.; Ilschner, C.; Krämer, I.; Merkens, W.; Oltmanns, P.; et al. Lesser-known or hidden reservoirs of infection and implications for adequate prevention strategies: Where to look and what to look for. GMS Hyg. Infect. Control 2015, 10, Doc04. [Google Scholar] [CrossRef]
- Scheller, C.; Krebs, F.; Minkner, R.; Astner, I.; Gil-Moles, M.; Wätzig, H. Physicochemical properties of SARS-CoV-2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control. Electrophoresis 2020, 41, 1137–1151. [Google Scholar] [CrossRef]
- Rheinbaben von, F.; Steinmann, E.; Steinmann, J.K.A. Virusinaktivierung. In Krankenhaus-und Praxishygiene; Publisher: München, Germany, 2022; pp. 56–61. [Google Scholar]
- Wäschedesinfektion—IHO—Desinfektionsmittelliste. Available online: https://www.desinfektionsmittelliste.de/Home/Produktliste/5 (accessed on 8 February 2021).
- Chemical Disinfectants and Antiseptics-Quantitative Suspension Test for the Evaluation of Virucidal Activity in the Medical Area—Test Method and Requirements. BS EN 14476:2013+A2:2019, 31 August 2019.
- Chemical Disinfectants and Antiseptics-Quantitative Non-Porous Surface Test without Mechanical Action for the Evaluation of Virucidal Activity of Chemical Disinfectants used in the Medical Area—Test Method and Requirements. DIN EN 16777, 23 October 2022.
- Mahnel, H. Variations in resistance of viruses from different groups to chemico-physical decontamination methods. Infection 1979, 7, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Schwebke, I.; Eggers, M.; Gebel, J.; Geisel, B.; Glebe, D.; Rapp, I.; Steinmann, J.; Rabenau, F. Prüfung und Deklaration der Wirksamkeit von Desinfektionsmitteln gegen Viren zur Anwendung im human-medizinischen Bereich: Stellungnahme des Arbeitskreises Viruzidie beim Robert Koch-Institut. Bundesgesundheitsblatt Gesundh. Gesundh. 2017, 60, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Eggers, M.; Schwebke, I.; Suchomel, M.; Fotheringham, V.; Gebel, J.; Meyer, B.; Morace, G.; Roedger, H.J.; Roques, C.; Visa, P.; et al. The European tiered approach for virucidal efficacy testing—Rationale for rapidly selecting disinfectants against emerging and re-emerging viral diseases. Eurosurveillance 2021, 26, 2000708. [Google Scholar] [CrossRef] [PubMed]
- Berman, D.; Hoff, J.C. Inactivation of Simian Rotavirus SAil by Chlorine, Chlorine Dioxide, and Monochloramine. Appl. Environ. Microbiol. 1984, 48, 317–323. [Google Scholar] [CrossRef]
- Mielke, M.; Pauli, G.; Schreier, E.; Schwebke, I.; Niedrig, M.; Exner, M.; Gebel, J.; Gerlich, W.; Goroncy-Bermes, P.; Kammler, H.J.; et al. Testing and declaration of effectiveness of disinfectants against viruses: Statement of the Virucide Working Group at the Robert Koch Institute (RKI) and the “Virus Disinfection” Technical Committee of the German Association for Combating Viral Diseases. Bundesgesundheitsblatt Gesundh. Gesundh. 2004, 47, 62–66. [Google Scholar] [CrossRef]
- Sinner, H. Über Das Waschen Mit Haushaltswaschmaschinen; Haus und Heim Verlag: Heidelberg, Germany, 1960. [Google Scholar]
- Bloomfield, S.F.; Exner, M.; Signorelli, C.; Scott, E.A. Effectiveness of laundering Processes Used in Domestic (Home) Settings; International Forum on Home Hygiene 2013. pp. 1–62. Available online: https://www.ifh-homehygiene.org/review/effectiveness-laundering-processes-used-domestic-home-settings-2013 (accessed on 25 August 2022).
- Bellante, S.; Engel, A.; Hatice, T.; Neumann, A.; Okyay, G.; Vossebein, L. Hygienische Aufbereitung von Textilien in Privathaushalten-eine Studie aus der Praxis pdf. Hyg. Med. 2011, 36, 300–305. [Google Scholar]
- Honisch, M.; Stamminger, R.; Bockmühl, D. Impact of wash cycle time, temperature and detergent formulation on the hygiene effectiveness of domestic laundering. J. Appl. Microbiol. 2014, 117, 1787–1797. [Google Scholar] [CrossRef]
- Ossowski, B.; Duchmann, U. Der Einfluß des haushalts- üblichen Waschprozesses auf mykotisch kontaminierte Textilien. Der Hautarzt 1997, 48, 397–401. [Google Scholar] [CrossRef]
- Wiksell, J.C.; Pickett, M.S.; Hartman, P.A. Survival of microorganisms in laundered polyester-cotton sheeting. Appl. Microbiol. 1973, 25, 431–435. [Google Scholar] [CrossRef]
- Walter, W.G.; Schillinger, J.E. Bacterial survival in laundered fabrics. Appl. Microbiol. 1975, 29, 368–373. [Google Scholar] [CrossRef]
- Lichtenberg, W.; Girmond, F.; Niedner, R.; Schulze, I. Hygieneaspekte beim Niedrigtemperaturwaschen. SÖFW-J. 2006, 132, 28–34. [Google Scholar]
- Fijan, S.; Koren, S.; Cencic, A.; Šostar-Turk, S. Antimicrobial disinfection effect of a laundering proceedure for hospital textiles against various indicator bacteria and fungi using different substrates for simulating human excrements. Diagn. Microbiol. Infect. Dis. 2007, 57, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Hammer, T.R.; Mucha, H.; Hoefer, D. Infection Risk by Dermatophytes During Storage and After Domestic Laundry and Their Temperature-Dependent Inactivation. Mycopathologia 2010, 171, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Linke, S.; Gemein, S.; Koch, S.; Gebel, J.; Exner, M. Orientating investigation of the inactivation of Staphylococcus aureus in the laundry process. Hyg. Med. 2011, 36, 8–12. [Google Scholar]
- Lucassen, R.; Merettig, N.; Bockmühl, D.P. Antimicrobial Efficacy of Hygiene Rinsers under Consumer-Related Conditions. Tenside Surfactants Deterg. 2013, 50, 259–262. [Google Scholar] [CrossRef]
- Honisch, M.; Brands, B.; Stamminger, R.; Bockmühl, D.P. Impact of the Organic Soil Matrix on the Antimicrobial Effect of Laundering. In Proceedings of the the 62nd SEPAWA Congress and European Detergents Conference in Fulda, Fulda, Germany, 14–16 October 2015. [Google Scholar]
- Honisch, M.; Brands, B.; Weide, M.; Speckmann, H.-D.; Stamminger, R.; Bockmühl, D.P. Antimicrobial Efficacy of Laundry Detergents with Regard to Time and Temperature in Domestic Washing Machines. Tenside Surfactants Deterg. 2016, 53, 547–552. [Google Scholar] [CrossRef]
- Schages, L.; Lucassen, R.; Wichern, F.; Kalscheuer, R.; Bockmühl, D. The Household Resistome: Frequency of β-Lactamases, Class 1 Integrons, and Antibiotic-Resistant Bacteria in the Domestic Environment and Their Reduction during Automated Dishwashing and Laundering. Appl. Environ. Microbiol. 2020, 86, 1–17. [Google Scholar] [CrossRef]
- Sidwell, R.W.; Dixon, G.J.; Mcneil, E. Quantitative studies on fabrics as disseminators of viruses. 3. Persistence of vaccinia virus on fabrics impregnated with a virucidal agent. Appl. Microbiol. 1967, 15, 921–927. [Google Scholar] [CrossRef]
- Gerba, C.P. Application of quantitative risk assessment for formulating hygiene policy in the domestic setting. J. Infect. 2001, 43, 92–98. [Google Scholar] [CrossRef]
- Gerba, C.P.; Kennedy, D. Enteric Virus Survival during Household Laundering and Impact of Disinfection with Sodium Hypochlorite. Appl. Environ. Microbiol. 2007, 73, 4425–4428. [Google Scholar] [CrossRef]
- Gerhardts, A.; Wilderer, C.; Mucha, H.; Höfer, D. Prüfung der Wirksamkeit Desinfizierender Waschverfahren Gegen Viren Mittels Einsatz Phagenhaltiger Bioindikatoren mit dem Surrogatvirus MS2 Teil 1: Niedertemperaturverfahren. Hyg. Med. 2009, 34, 272–281. [Google Scholar]
- Gerhardts, A.; Bockmühl, D.; Kyas, A.; Hofmann, A.; Weide, M.; Rapp, I.; Höfer, D. Testing of the Adhesion of Herpes Simplex Virus on Textile Substrates and Its Inactivation by Household Laundry Processes. J. Biosci. Med. 2016, 04, 111–125. [Google Scholar] [CrossRef]
- Fredell, D. Biological properties and applications of cationic surfactants. In Cationic Surfactants; Cross, J., Singer, E.J., Eds.; Marcel Dekker: New York, NY, USA, 1994. [Google Scholar]
- Gerba, C.P. Quaternary ammonium biocides: Efficacy in application. Appl. Environ. Microbiol. 2015, 81, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Bockmühl, D.P. Laundry hygiene—How to get more than clean. J. Appl. Microbiol. 2017, 122, 1124–1133. [Google Scholar] [CrossRef]
- Blaser, M.J.; Smith, P.F.; Cody, H.J.; Wang, W.-L.L.; LaForce, F.M. Killing of Fabric-Associated Bacteria in Hospital Laundry by Low-Temperature Washing. J. Infect. Dis. 1984, 149, 48–57. [Google Scholar] [CrossRef]
- Smith, J.; Neil, K.; Davidson, C.; Davidson, R. Effect of Water Temperature on Bacterial Killing in Laundry. Infect. Control 1987, 8, 204–209. [Google Scholar] [CrossRef]
- Callewaert, C.; Van Nevel, S.; Kerckhof, F.-M.; Granitsiotis, M.S.; Boon, N. Bacterial Exchange in Household Washing Machines. Front. Microbiol. 2015, 6, 1381. [Google Scholar] [CrossRef] [Green Version]
- Nix, I.D.; Frontzek, A.; Bockmühl, D.P. Characterization of Microbial Communities in Household Washing Machines. Tenside Surfactants Deterg. 2015, 52, 432–440. [Google Scholar] [CrossRef]
- Yeargin, T.; Buckley, D.; Fraser, A.; Jiang, X. The survival and inactivation of enteric viruses on soft surfaces: A systematic review of the literature. Am. J. Infect. Control 2016, 44, 1365–1373. [Google Scholar] [CrossRef]
- Geller, C.; Varbanov, M.; Duval, R.E. Human Coronaviruses: Insights into Environmental Resistance and Its Influence on the Development of New Antiseptic Strategies. Viruses 2012, 4, 3044–3068. [Google Scholar] [CrossRef]
- Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006, 6, 130. [Google Scholar] [CrossRef] [PubMed]
- Chemical Disinfectants and Antiseptics—Chemical-Thermal Textile Disinfection—Test Method and Requirements (Phase 2, Step 2), German Version. BS EN 16616:2015, 31 August 2015.
- Russell, K.L.; Broderick, M.P.; Franklin, S.E.; Blyn, L.B.; Freed, N.E.; Moradi, E.; Ecker, D.J.; Kammerer, P.E.; Osuna, M.A.; Kajon, A.E.; et al. Transmission Dynamics and Prospective Environmental Sampling of Adenovirus in a Military Recruit Setting. J. Infect. Dis. 2006, 194, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Sobsey, M.D. Inactivation of Health-Related Microorganisms in Water by Disinfection Processes. Water Sci. Technol. 1989, 21, 179–195. [Google Scholar] [CrossRef]
- Gerba, C.P.; Nwachuku, N.; Riley, K.R. Disinfection resistance of waterborne pathogens on the United States Environmental Protection Agency’s Contaminant Candidate List (CCL). J. Water Supply Res. Technol. 2003, 52, 81–94. [Google Scholar] [CrossRef]
- Mahnel, H. Resistenzunterschiede zwischen Viren verschiedener Gruppen gegenüber einigen chemisch-physikalischen Dekontaminationsverfahren. Infection 1979, 7, 240–246. [Google Scholar] [CrossRef]
- Abad, F.X.; Villena, C.; Guix, S.; Caballero, S.; Pintó, R.M.; Bosch, A. Potential Role of Fomites in the Vehicular Transmission of Human Astroviruses. Appl. Environ. Microbiol. 2001, 67, 3904–3907. [Google Scholar] [CrossRef]
- von Rheinbaben, F.; Bansemir, K.P.; Heinzel, M. Virucidal effectiveness of some commercial products for chemothermal disinfection methods for temperature resistant viruses and bacteriophages—Evaluation of a test model. Zent. Hyg. Umw. 1992, 192, 419–431. [Google Scholar]
- von Rheinbaben, F.; Wolff, M.H. Handbuch Der Viruswirksamen Desinfektionen; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Sassi, H.P.; Reynolds, K.; Pepper, I.L.; Gerba, C.P. Evaluation of hospital-grade disinfectants on viral deposition on surfaces after toilet flushing. Am. J. Infect. Control 2018, 46, 507–511. [Google Scholar] [CrossRef] [Green Version]
- Allwood, P.B.; Malik, Y.; Hedberg, C.W.; Goyal, S.M. Effect of Temperature and Sanitizers on the Survival of Feline Calicivirus, Escherichia coli, and F-Specific Coliphage MS2 on Leafy Salad Vegetables. J. Food Prot. 2004, 67, 1451–1456. [Google Scholar] [CrossRef]
- Morin, T.; Martin, H.; Soumet, C.; Fresnel, R.; Lamaudière, S.; Le Sauvage, A.; Deleurme, K.; Maris, P. Comparison of the virucidal efficacy of peracetic acid, potassium monopersulphate and sodium hypochlorite on bacteriophages P001 and MS2. J. Appl. Microbiol. 2015, 119, 655–665. [Google Scholar] [CrossRef]
- Gerhardts, A.; Mucha, H.; Höfer, D. Testing linen disinfection procedures in practice with phage-charged-bioindicators. Int. J. Health Care Qual. Assur. 2012, 25, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.J.; Rutala, W.A.; Miller, M.B.; Huslage, K.; Sickbert-Bennett, E. Role of hospital surfaces in the transmission of emerging health care-associated pathogens: Norovirus, Clostridium difficile, and Acinetobacter species. Am. J. Infect. Control 2010, 38, S25–S33. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, J. Surrogate viruses for testing virucidal efficacy of chemical disinfectants. J. Hosp. Infect. 2004, 56, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, C.; Ferenczy, A.; Richart, R. Underwear: Contamination by human papillomaviruses. Am. J. Obstet. Gynecol. 1990, 162, 25–29. [Google Scholar] [CrossRef]
- Roberts, P.L.; El Hana, C.; Saldana, J. Inactivation of parvovirus B19 and model viruses in factor VIII by dry heat treatment at 80 degrees C. Transfusion 2006, 46, 1648–1650. [Google Scholar] [CrossRef]
- Sidwell, R.W.; Dixon, G.J.; Westbrook, L.; Forziati, F.H. Quantitative Studies on Fabrics as Disseminators of Viruses. Appl. Microbiol. 1971, 21, 227–234. [Google Scholar] [CrossRef]
- Sidwell, R.W.; Dixon, G.J.; Mcneil, E. Quantitative studies on fabrics as disseminators of viruses. I. Persistence of vaccinia virus on cotton and wool fabrics. Appl. Microbiol. 1966, 14, 55–59. [Google Scholar] [CrossRef]
- Dick, E.C.; Hossain, S.U.; Mink, K.A.; Meschievitz, C.K.; Schultz, S.B.; Raynor, W.J.; Inhorn, S.L. Interruption of Transmission of Rhinovirus Colds Among Human Volunteers Using Virucidal Paper Handkerchiefs. J. Infect. Dis. 1986, 153, 352–356. [Google Scholar] [CrossRef]
- Sattar, S.A.; Karim, Y.G.; Springthorpe, V.S.; Johnson-Lussenburg, C.M. Survival of human rhinovirus type 14 dried onto nonporous inanimate surfaces: Effect of relative humidity and suspending medium. Can. J. Microbiol. 1987, 33, 802–806. [Google Scholar] [CrossRef]
- Fijan, S.; Poljšak-Prijatelj, M.; Steyer, A.; Koren, S.; Cencič, A.; Šostar-Turk, S. Rotaviral RNA found in wastewaters from hospital laundry. Int. J. Hyg. Environ. Health 2006, 209, 97–102. [Google Scholar] [CrossRef]
- Sattar, S.A.; Lloyd-Evans, N.; Springthorpe, V.S.; Nair, R.C. Institutional outbreaks of rotavirus diarrhoea: Potential role of fomites and environmental surfaces as vehicles for virus transmission. J. Hyg. 1986, 96, 277–289. [Google Scholar] [CrossRef]
- Ramos, A.P.D.; Stefanelli, C.C.; Linhares, R.E.C.; de Brito, B.G.; Santos, N.; Gouvea, V.; Lima, R.D.C.; Nozawa, C. The stability of porcine rotavirus in feces. Vet. Microbiol. 2000, 71, 1–8. [Google Scholar] [CrossRef]
- Imperiale, M.J.; Jiang, M. Polyomavirus Persistence. Annu. Rev. Virol. 2016, 3, 517–532. [Google Scholar] [CrossRef] [PubMed]
- Hulkower, R.; Casanova, L.M.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Inactivation of surrogate coronaviruses on hard surfaces by health care germicides. Am. J. Infect. Control 2011, 39, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.; Shehab, Z.; Osborne, K.; Hendley, J.O. Shedding and survival of herpes simplex virus from “fever blisters”. Pediatrics 1982, 70, 547–549. [Google Scholar] [CrossRef]
- Müller, A.; Tillmann, R.L.; Müller, A.; Simon, A.; Schildgen, O. Stability of human metapneumovirus and human coronavirus NL63 on medical instruments and in the patient environment. J. Hosp. Infect. 2008, 69, 406–408. [Google Scholar] [CrossRef] [PubMed]
- Sizun, J.; Yu, M.; Talbot, P. Survival of human coronaviruses 229E and OC43 in suspension and after drying onsurfaces: A possible source ofhospital-acquired infections. J. Hosp. Infect. 2000, 46, 55–60. [Google Scholar] [CrossRef]
- Bernard, L.; Desoubeaux, G.; Bodier-Montagutelli, E.; Pardessus, J.; Brea, D.; Allimonnier, L.; Eymieux, S.; Raynal, P.-I.; Vasseur, V.; Vecellio, L.; et al. Controlled Heat and Humidity-Based Treatment for the Reuse of Personal Protective Equipment: A Pragmatic Proof-of-Concept to Address the Mass Shortage of Surgical Masks and N95/FFP2 Respirators and to Prevent the SARS-CoV2 Transmission. Front. Med. 2020, 7, 584036. [Google Scholar] [CrossRef]
- van Doremalen, N.; Bushmaker, T.; Munster, V.J. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Eurosurveillance 2013, 18, 20590. [Google Scholar] [CrossRef]
- Brady, M.T.; Evans, J.; Cuartas, J. Parainfluenza Environmental Viruses on Surfaces. Am. J. Infect. Control. 1990, 18, 18–23. [Google Scholar] [CrossRef]
- Boone, S.A.; Gerba, C.P. The Prevalence of Human Parainfluenza Virus 1 on Indoor Office Fomites. Food Environ. Virol. 2010, 2, 41–46. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Guo, T.; Zhen, B.; Kong, Q.; Yi, B.; Li, Z.; Song, N.; Jin, M.; Xiao, W.; et al. Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan hospital and the 309th Hospital of the Chinese People’s Liberation Army. Water Sci. Technol. 2005, 52, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Aminov, R.; Krug, P.W.; Meyerholz, D.K.; Dev Kumar, G.; Mishra, A.; Dunn, L.; Townsend, A.; Chukwuma Oguadinma, I.; Bright, K.R.; Gerba, C.P.; et al. Biocides and Novel Antimicrobial Agents for the Mitigation of Coronaviruses. Front. Microbiol. 2019, 1, 1351. [Google Scholar] [CrossRef]
- Kramer, A.; Guggenbichler, P.; Heldt, P.; Jünger, M.; Ladwig, A.; Thierbach, H.; Weber, U.; Daeschlein, G. Hygienic Relevance and Risk Assessment of Antimicrobial-Impregnated Textiles. In Biofunctional Textiles and the Skin; Karger: Basel, Switzerland, 2006; pp. 78–109. [Google Scholar]
- Tung, G.; Macinga, D.; Arbogast, J.; Jaykus, L.-A. Efficacy of Commonly Used Disinfectants for Inactivation of Human Noroviruses and Their Surrogates. J. Food Prot. 2013, 76, 1210–1217. [Google Scholar] [CrossRef]
- Chemical Disinfection of Human Rotavirus-Contaminated Inanimate Surfaces on JSTOR. Available online: https://www.jstor.org/stable/3863221?seq=1 (accessed on 8 February 2021).
- MacIntyre, C.R.; Dung, T.C.; Chughtai, A.A.; Seale, H.; Rahman, B. Contamination and washing of cloth masks and risk of infection among hospital health workers in Vietnam: A post hoc analysis of a randomised controlled trial. BMJ Open 2020, 10, e042045. [Google Scholar] [CrossRef]
- WHO. Water, Sanitation, Hygiene, and Waste Management for SARS-CoV-2, the Virus That Causes COVID-19: Interim Guidance, 29 July 2020; Report No. WHO/2019-nCoV/IPC_WASH/2020.4; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Creamer, E.; Humphreys, H. The contribution of beds to healthcare-associated infection: The importance of adequate decontamination. J. Hosp. Infect. 2008, 69, 8–23. [Google Scholar] [CrossRef]
- Owen, L.; Laird, K. The role of textiles as fomites in the healthcare environment: A review of the infection control risk. PeerJ 2020, 8, e9790. [Google Scholar] [CrossRef]
- Lucassen, R.; Blümke, H.; Born, L.; Fritz, A.; Geurtz, P.; Hofmann, N.; Hoffmann, L.; Steiner, R.; Merettig, N.; Bockmühl, D. The washing machine as a source of microbial contamination of domestic laundry—A case study. Househ. Pers. Care Today 2014, 9, 54–57. [Google Scholar]
- Bockmühl, D.P.; Schages, J.; Rehberg, L. Laundry and textile hygiene in healthcare and beyond. Microb. Cell 2019, 6, 299–306. [Google Scholar] [CrossRef]
- Tano, E.; Melhus, A. Level of decontamination after washing textiles at 60 °C or 70 °C followed by tumble drying. Infect. Ecol. Epidemiol. 2014, 4, 24314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antiviral Agent/Disinfectant | Non-Enveloped Viruses | Enveloped Viruses |
---|---|---|
Halogen | + | + |
Peroxide | + | + |
Aldehyde | + | + |
Alcohol | +/− | + |
Phenolics | − | + |
QAC/Biguanide | − | + |
Amine | − | + |
Acids | − | +/− |
Amphoteric | − | + |
Enveloped Viruses | Non-Enveloped Viruses |
---|---|
Vaccinia Virus/Modified Vaccinia Virus Ankara (MVA) | Adenovirus |
Bovine Viral Diarrhea Virus (BVDV) | SV40 |
Human-Immunodeficiency-Virus (HIV) * | Murine Norovirus |
Hepatitis-B-Virus (HBV) * | Bovines Parvovirus/Minute Virus of Mice (MVM) |
Hepatitis-C-Virus (HCV) * | Murine Parvovirus (≥30 °C) |
Virus | Material/Surface | Main Findings | Methodology/Remarks | Reference |
---|---|---|---|---|
Non-enveloped | ||||
Adenovirus | Cotton test swatches | Proofed virus transfer to sterile laundry 1 log reduction with detergent (linear alkyl benzene sulfonate, sodium carbonate, alkyl sulfate), 4 log with bleach (5.25% sodium hypochlorite), water temperature 20–23 °C More difficult to remove by washing than HAV and rotavirus, temperature resistant up to 56 °C | Inactivation by hypochlorite, cold wash procedures led to small removal rates (log2–3) Surrogate: Hepatitis contagiosa canis (HCC)-Virus | [48,58,62,63,64,65] |
Astrovirus | Cotton, paper | Persisted at both 4 °C and 20 °C for two months on dry paper in the presence of faecal material, | Cellulose filter paper as model for nonporous and porous materials | [66] |
Hepatitis A/E | Test swatches, cotton fabrics | 2 log reduction with detergent (linear alkyl benzene sulfonate, sodium carbonate, alkyl sulfate), 6 log with bleach (5.25% sodium hypochlorite), water temperature 20–23 °C | Cold wash procedures led to small removal rates (1–2 log) Improved reduction with addition of bleach in the wash and rinse cycle (6 log vs. 2 log) | [48] |
Mammalian Reovirus | Tap water | Persisted up to 50–60 °C | [67] | |
MS2 (Escherichia virus MS2) | Cotton swatches | Low temperature laundering with 0.2% NOBS and 0.2–1.0% perborate led to 5 log reduction QAC and peracetic acid effective in reduction on surfaces Temperature, ozone, UV, peracetic acid, sodium hypochlorite resistant | Suspension test, temperature stable up to 70 °C and pH stable between 6 and 11 Inactivation between 80–100 C Surrogate for Norovirus and for SARS-CoV-2 | [49,68,69,70,71,72] |
Norovirus, | Cotton, gauze and diaper material | Survival in the environment for up to 40 days Infectious dose 1–500 particles Complete inactivation after laundering at 60 °C | Surrogates used: murine NoV, feline Caliciviruss (FCV) | [2,11,34,35,58,73,74] |
Papillomavirus | Underwear | Persisted on dry inanimate surfaces >7 days | Surrogate: Simianvirus 40 | [60,75] |
Parvovirus | Cloth, stainless steel | Temperature resistant up to 80 °C, | Surrogate: bovine Parvovirus | [26,76] |
Poliovirus | Wool, cotton | Was removed from test swatches when laundering at 40 °C with anionic or non-ionic detergent but lead to cross contamination without inactivation Was reduced by about 99% in cold-water washing conditions without detergent and by 99.98% with cationic or anionic detergents Survived at room temperature for 84–140 days (wool), 42–84 days (cotton) Air drying of fabrics for 20 h resulted in a total reduction of virus of >5 log. | Survival on cotton was greater with saline compared to faecal suspension | [2,48,58,66,77,78] |
Rhinovirus A, B, C | Paper handkerchief, nonporous inanimate surfaces | Persisted on dry inanimate surfaces 2 h–7 d. | Paper handkerchief impregnated with iodine or citric acid | [60,79,80] |
Rotavirus | Cotton, test swatches, stainless steel, plastic, cloth | 2 log reduction with detergent (linear alkyl benzene sulfonate, sodium carbonate, alkyl sulfate), 5 log with bleach (5.25% sodium hypochlorite), water temperature 20–23 °C 3–4 log at high relative humidity (RH) Cold wash procedures led removal rates of 1–2 log Survival is better on cloth than on paper Persisted in freshwater for several days Can survive and stay infective for several months in faecal material at 10 °C and on contaminated surfaces Stable to pH extremes | Improved reduction with addition of bleach (5 log vs. 2 log reduction) | [21,48,66,81,82,83] |
Simianvirus 40 | Cloth, stainless steel | persisted up to 50–60 °C | [26,67,84] | |
Enveloped | ||||
Alphacoronavirus 1 | stainless steel | Survived at 4 °C for >28 d Inactivation more rapidly at 40 °C than at 20 °C, slowest inactivation at low RH. >3.5 log when treated with ethanol (71%) >4.9 log reduction when treated with H2O2 | Surrogate for SARS-CoV [8] Previous known as/member viruses: Transmissible gastroenteritis coronavirus (TGEV), feline/canine CoV | [8,59,85] |
Bovine Viral Diarrhea Virus | Cotton | Washing led to removal rates of >4 log at 20 °C for detergent (0.4%) and for ethanol (50%) >4.5 log Transfer of viruses to the washing liquor or not contaminated textiles | Suspension test in hard water, low and high protein loads, different temperatures, testing times of 5–60 min BVDV as surrogate for Hepatitis C virus (HCV) | [2,24,74] |
HSV-1 (herpes simplex virus 1), (HSV-2) | Plastic, cotton fabrics | Persisted on cloth for less than 2 h Resisted laundering process at 40 °C Adhering particles 48 hours after domestic laundry | Surrogate: Suid herpesvirus 1 (SuHV-1) stable up to 50 °C | [50,65,75,86] |
Human Coronavirus (HCoV) 229E; OC43; NL63 | Polystyrene, paper, disposable gowns, cotton gowns | Remained infectious on inanimate surfaces at room temperature for up to 9 days. Ethanol (62–71%): 2–4 log Sodium hypochlorite (0.1–0.5%): >3 log Glutardialdehyde (2%): >3 log Benzalkonium chloride (0.04%), Sodium hypochlorite (0.06%) and Ortho-phtalaldehyde (0.55%) were less effective | 1 min exposure time Viable virus not detected after drying; viral RNA detectable for up to 7 days [87] | [10,16,60,88] |
Influenza virus (A + B) | Cotton, handkerchief, paper, stainless steel | 3–5.5 log moist-air heating Infectious dose:1–10 virus particles Survival for 8–12 h on fabrics, but up to 24–48 h on hard surfaces Measurable quantities of virus were transferred from tissues to hands at 15 min. Survived longer on plastic and stainless steel (24–48 h) vs. paper and tissue (6–8 h) | Moist heating treatment also allowed inactivation compared to dry air heating | [12,89] |
Middle East respiratory syndrome-related coronavirus (MERS-CoV) | Steel, plastic | Viable virus detected after 48 h at 20 °C/40% RH. Less survival at 30 °C/80% RH (8 h) and 30 °C/30% RH (24 h). Half-life ranged from 0.5 to 1 h. | Together with CoV-2 great capacity to survive on dry surfaces compared to other human coronaviruses (229E, OC43, and NL63). | [18,90] |
Parainfluenza virus (PIV) | No absorptive/absorptive surface | Survived up to 4 h Could be isolated from table tops, chair arms and desks in office buildings in 5 US cities | [91,92] | |
Respiratory syncytial virus (RSV) | Cloth | Contaminated surfaces remained infectious for up to 6 h (countertops) Was recovered from cloth gowns and paper tissue (30–45 min) and from skin for up to 20 min | [6] | |
SARS-CoV-1 | Plastic, stainless steel | Positive tested surfaces in domestic application (swab) Remained infectious for 14 days at 4 °C, and for 2 days at 20 °C Compared to CoV-2 shorter half-life on cardboard | pH sensitive | [8,9,93,94,95] |
SARS-CoV-2 | Surgical masks/FFP2 respirators, cloth; Cotton swatches, stainless steel (MHV, M-CoV) | Recovered from surface of surgical masks after 7 days Inactivated by moist-air heating (75% RH) at 70 °C for 1 h Extremely stable over a wide pH range (pH 3–10) | Mask material: Nanofibers made with polypropylene Surrogate viruses for CoV-2: Mouse Hepatitis Virus, (MHV); murine coronavirus (M-CoV)—3.9 log reduction with 70% ethanol, Inactivation more rapidly at 40 °C than at 20 °C, slowest inactivation at low RH | [19,89] |
Vaccinia virus | Wool, cotton | >4 log with laundry detergent 0.4%, 20 °C/5 min, in standards suspension tests | [2,26,67,78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merettig, N.; Bockmühl, D.P. Virucidal Efficacy of Laundering. Pathogens 2022, 11, 993. https://doi.org/10.3390/pathogens11090993
Merettig N, Bockmühl DP. Virucidal Efficacy of Laundering. Pathogens. 2022; 11(9):993. https://doi.org/10.3390/pathogens11090993
Chicago/Turabian StyleMerettig, Nadine, and Dirk P. Bockmühl. 2022. "Virucidal Efficacy of Laundering" Pathogens 11, no. 9: 993. https://doi.org/10.3390/pathogens11090993
APA StyleMerettig, N., & Bockmühl, D. P. (2022). Virucidal Efficacy of Laundering. Pathogens, 11(9), 993. https://doi.org/10.3390/pathogens11090993