Molecular Epidemiology of Group B Streptococci in Lithuania Identifies Multi-Drug Resistant Clones and Sporadic ST1 Serotypes Ia and Ib
Abstract
:1. Introduction
2. Results
2.1. Overview and Genomic Characterisation of Lithuanian GBS Isolates
2.2. Antimicrobial Resistance Profiles and Antimicrobial Resistance Associated Mobile Genetic Elements
2.3. Distribution of Major Surface Proteins
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates, Microbiological and Demographic Data
4.2. DNA Extraction and Whole Genome Sequencing
4.3. Genomic Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barcaite, E.; Bartusevicius, A.; Tameliene, R.; Kliucinskas, M.; Maleckiene, L.; Nadisauskiene, R. Prevalence of Maternal Group B Streptococcal Colonisation in European Countries. Acta Obstet. Gynecol. Scand. 2008, 87, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.J.; Seale, A.C.; O’Driscoll, M.; O’Sullivan, C.; Bianchi-Jassir, F.; Gonzalez-Guarin, J.; Lawn, J.E.; Baker, C.J.; Bartlett, L.; Cutland, C.; et al. Maternal Colonization with Group B Streptococcus and Serotype Distribution Worldwide: Systematic Review and Meta-Analyses. Clin. Infect. Dis. 2017, 65, S100–S111. [Google Scholar] [CrossRef] [PubMed]
- Le Doare, K.; Heath, P.T. An Overview of Global GBS Epidemiology. Vaccine 2013, 31, D7–D12. [Google Scholar] [CrossRef]
- Puopolo, K.M.; Lynfield, R.; Cummings, J.J. Management of Infants at Risk for Group B Streptococcal Disease. Pediatrics 2019, 144, e20191881. [Google Scholar] [CrossRef] [PubMed]
- Hayes, K.; O’Halloran, F.; Cotter, L. A Review of Antibiotic Resistance in Group B Streptococcus: The Story so Far. Crit. Rev. Microbiol. 2020, 46, 253–269. [Google Scholar] [CrossRef]
- Metcalf, B.J.; Chochua, S.; Gertz, R.E.; Hawkins, P.A.; Ricaldi, J.; Li, Z.; Walker, H.; Tran, T.; Rivers, J.; Mathis, S.; et al. Short-Read Whole Genome Sequencing for Determination of Antimicrobial Resistance Mechanisms and Capsular Serotypes of Current Invasive Streptococcus Agalactiae Recovered in the USA. Clin. Microbiol. Infect. 2017, 23, 574.e7–574.e14. [Google Scholar] [CrossRef] [PubMed]
- McGee, L.; Chochua, S.; Li, Z.; Mathis, S.; Rivers, J.; Metcalf, B.; Ryan, A.; Alden, N.; Farley, M.M.; Harrison, L.H.; et al. Multistate, Population-Based Distributions of Candidate Vaccine Targets, Clonal Complexes, and Resistance Features of Invasive Group B Streptococci within the United States, 2015-2017. Clin. Infect. Dis. 2021, 72, 1004–1013. [Google Scholar] [CrossRef]
- Chu, Y.W.; Tse, C.; Tsang, G.K.L.; So, D.K.S.; Fung, J.T.L.; Lo, J.Y.C. Invasive Group B Streptococcus Isolates Showing Reduced Susceptibility to Penicillin in Hong Kong. J. Antimicrob. Chemother. 2007, 60, 1407–1409. [Google Scholar] [CrossRef]
- Kimura, K.; Suzuki, S.; Wachino, J.I.; Kurokawa, H.; Yamane, K.; Shibata, N.; Nagano, N.; Kato, H.; Shibayama, K.; Arakawa, Y. First Molecular Characterization of Group B Streptococci with Reduced Penicillin Susceptibility. Antimicrob. Agents Chemother. 2008, 52, 2890–2897. [Google Scholar] [CrossRef]
- Nagano, N.; Nagano, Y.; Kimura, K.; Tamai, K.; Yanagisawa, H.; Arakawa, Y. Genetic Heterogeneity in Pbp Genes among Clinically Isolated Group B Streptococci with Reduced Penicillin Susceptibility. Antimicrob. Agents Chemother. 2008, 52, 4258–4267. [Google Scholar] [CrossRef] [Green Version]
- Seki, T.; Kimura, K.; Reid, M.E.; Miyazaki, A.; Banno, H.; Jin, W.; Wachino, J.I.; Yamada, K.; Arakawa, Y. High Isolation Rate of MDR Group B Streptococci with Reduced Penicillin Susceptibility in Japan. J. Antimicrob. Chemother. 2015, 70, 2725–2728. [Google Scholar] [CrossRef] [PubMed]
- Dahesh, S.; Hensler, M.E.; Van Sorge, N.M.; Gertz, R.E.; Schrag, S.; Nizet, V.; Beall, B.W. Point Mutation in the Group B Streptococcal Pbp2x Gene Conferring Decreased Susceptibility to β-Lactam Antibiotics. Antimicrob. Agents Chemother. 2008, 52, 2915–2918. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Nagano, N.; Arakawa, Y. Classification of Group B Streptococci with Reduced β-Lactam Susceptibility (GBS-RBS) Based on the Amino Acid Substitutions in PBPs. J. Antimicrob. Chemother. 2014, 70, 1601–1603. [Google Scholar] [CrossRef] [PubMed]
- Bianchi-Jassir, F.; Paul, P.; To, K.N.; Carreras-Abad, C.; Seale, A.C.; Jauneikaite, E.; Madhi, S.A.; Russell, N.J.; Hall, J.; Madrid, L.; et al. Systematic Review of Group B Streptococcal Capsular Types, Sequence Types and Surface Proteins as Potential Vaccine Candidates. Vaccine 2020, 38, 6682–6694. [Google Scholar] [CrossRef] [PubMed]
- Madhi, S.A.; Cutland, C.L.; Jose, L.; Koen, A.; Govender, N.; Wittke, F.; Olugbosi, M.; Meulen, A.S.-t.; Baker, S.; Dull, P.M.; et al. Safety and Immunogenicity of an Investigational Maternal Trivalent Group B Streptococcus Vaccine in Healthy Women and Their Infants: A Randomised Phase 1b/2 Trial. Lancet Infect. Dis. 2016, 16, 923–934. [Google Scholar] [CrossRef]
- Buurman, E.T.; Timofeyeva, Y.; Gu, J.; Kim, J.H.; Kodali, S.; Liu, Y.; Mininni, T.; Moghazeh, S.; Pavliakova, D.; Singer, C.; et al. A Novel Hexavalent Capsular Polysaccharide Conjugate Vaccine (GBS6) for the Prevention of Neonatal Group B Streptococcal Infections by Maternal Immunization. J. Infect. Dis. 2019, 220, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Absalon, J.; Segall, N.; Block, S.L.; Center, K.J.; Scully, I.L.; Giardina, P.C.; Peterson, J.; Watson, W.J.; Gruber, W.C.; Jansen, K.U.; et al. Safety and Immunogenicity of a Novel Hexavalent Group B Streptococcus Conjugate Vaccine in Healthy, Non-Pregnant Adults: A Phase 1/2, Randomised, Placebo-Controlled, Observer-Blinded, Dose-Escalation Trial. Lancet Infect. Dis. 2021, 21, 263–274. [Google Scholar] [CrossRef]
- Fischer, P.; Pawlowski, A.; Cao, D.; Bell, D.; Kitson, G.; Darsley, M.; Johansson-Lindbom, B. Safety and Immunogenicity of a Prototype Recombinant Alpha-like Protein Subunit Vaccine (GBS-NN) against Group B Streptococcus in a Randomised Placebo-Controlled Double-Blind Phase 1 Trial in Healthy Adult Women. Vaccine 2021, 39, 4489–4499. [Google Scholar] [CrossRef]
- Pawlowski, A.; Lannergård, J.; Gonzalez-Miro, M.; Cao, D.; Larsson, S.; Persson, J.J.; Kitson, G.; Darsley, M.; Rom, A.L.; Hedegaard, M.; et al. A Group B Streptococcus Alpha-like Protein Subunit Vaccine Induces Functionally Active Antibodies in Humans Targeting Homotypic and Heterotypic Strains. Cell Reports Med. 2022, 3, 100511. [Google Scholar] [CrossRef]
- Barcaite, E.; Bartusevicius, A.; Tameliene, R.; Maleckiene, L.; Vitkauskiene, A.; Nadisauskiene, R. Group B Streptococcus and Escherichia Coli Colonization in Pregnant Women and Neonates in Lithuania. Int. J. Gynecol. Obstet. 2012, 117, 69–73. [Google Scholar] [CrossRef]
- Mockevičiūtė, E. Naujagimių Įgimtos B Grupės Beta Hemolizinio Streptokoko Sukeltos Infekcijos Skirtingų Profilaktikos Metodikų Taikymo Analizė. (Analysis of different prophylaxis measures against early neonate GBS infection). Master’s Thesis, Lithuanian Health Sciences University, Kaunas, Lithuania, 2017; 25p. [Google Scholar]
- Abraitis, V.; Arlauskienė, A.; Zakarevičienė, J.; Bagušytė, L.; Valkerienė, G.; Barčaitė, E.; Bartkevičienė, D.; Biržietis, T.; Bumbulienė, Ž.; Drejerienė, E.; et al. Metodika B Grupės β Hemolizinis Streptokokas (BGS) Ir Kita Bakterinė Prenatalinė Infekcija. (Methods for Group B Streptococcus (GBS) and other neonatal bacterial infections). Liet. Ir Šveicarijos Bendradarbiavimo Programa 2014, 58, 1–53. [Google Scholar]
- Kawamura, Y.; Fujiwara, H.; Mishima, N.; Tanaka, Y.; Tanimoto, A.; Ikawa, S.; Itoh, Y.; Ezaki, T. First Streptococcus Agalactiae Isolates Highly Resistant to Quinolones, with Point Mutations in GyrA and ParC. Antimicrob. Agents Chemother. 2003, 47, 3605–3609. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Xie, L.; Han, L.; Guo, X.; Wang, Y.; Sun, J. ICESag37, a Novel Integrative and Conjugative Element Carrying Antimicrobial Resistance Genes and Potential Virulence Factors in Streptococcus Agalactiae. Front. Microbiol. 2017, 8, 1921. [Google Scholar] [CrossRef] [PubMed]
- Lopes, E.; Fernandes, T.; Machado, M.P.; Carriço, J.A.; Melo-Cristino, J.; Ramirez, M.; Martins, E.R.; Oliveira, H.; Vaz, T.; Gião, M.; et al. Increasing Macrolide Resistance among Streptococcus Agalactiae Causing Invasive Disease in Non-Pregnant Adults Was Driven by a Single Capsular-Transformed Lineage, Portugal, 2009 to 2015. Eurosurveillance 2018, 23, pii=1700473. [Google Scholar] [CrossRef] [PubMed]
- Neemuchwala, A.; Teatero, S.; Athey, T.B.T.; McGeer, A.; Fittipaldi, N. Capsular Switching and Other Large-Scale Recombination Events in Invasive Sequence Type 1 Group B Streptococcus. Emerg. Infect. Dis. 2016, 22, 1941–1944. [Google Scholar] [CrossRef]
- Kasahara, K.; Baltus, A.J.; Lee, S.H.; Edelstein, M.A.; Edelstein, P.H. Prevalence of Non-Penicillin-Susceptible Group B Streptococcus in Philadelphia and Specificity of Penicillin Resistance Screening Methods. J. Clin. Microbiol. 2010, 48, 1468–1469. [Google Scholar] [CrossRef]
- Kekic, D.; Gajic, I.; Opavski, N.; Kojic, M.; Vukotic, G.; Smitran, A.; Boskovic, L.; Stojkovic, M.; Ranin, L. Trends in Molecular Characteristics and Antimicrobial Resistance of Group B Streptococci: A Multicenter Study in Serbia, 2015–2020. Sci. Rep. 2021, 11, 540. [Google Scholar] [CrossRef]
- Khan, U.B.; Jauneikaite, E.; Andrews, R.; Chalker, V.J.; Spiller, O.B. Identifying Large-Scale Recombination and Capsular Switching Events in Streptococcus Agalactiae Strains Causing Disease in Adults in the UK between 2014 and 2015. Microb. Genomics 2022, 8, 000783. [Google Scholar] [CrossRef]
- Hsu, J.F.; Tsai, M.H.; Lin, L.C.; Chu, S.M.; Lai, M.Y.; Huang, H.R.; Chiang, M.C.; Yang, P.H.; Lu, J.J. Genomic Characterization of Serotype III/ST-17 Group b Streptococcus Strains with Antimicrobial Resistance Using Whole Genome Sequencing. Biomedicines 2021, 9, 1477. [Google Scholar] [CrossRef]
- Croucher, N.J.; Chewapreecha, C.; Hanage, W.P.; Harris, S.R.; McGee, L.; Van Der Linden, M.; Song, J.H.; Ko, K.S.; De Lencastre, H.; Turner, C.; et al. Evidence for Soft Selective Sweeps in the Evolution of Pneumococcal Multidrug Resistance and Vaccine Escape. Genome Biol. Evol. 2014, 6, 1589–1602. [Google Scholar] [CrossRef]
- Hudzicki, J.; Kirby, B. Disk Diffusion Susceptibility Test Protocol. Am. Soc. Microbiol. 2016, 1–23. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, D.E.; Lu, J.; Langmead, B. Improved Metagenomic Analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive Visualization of de Novo Genome Assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Imperi, M.; Pataracchia, M.; Alfarone, G.; Baldassarri, L.; Orefici, G.; Creti, R. A Multiplex PCR Assay for the Direct Identification of the Capsular Type (Ia to IX) of Streptococcus Agalactiae. J. Microbiol. Methods 2010, 80, 212–214. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.M. ARG-Annot, a New Bioinformatic Tool to Discover Antibiotic Resistance Genes in Bacterial Genomes. Antimicrob. Agents Chemother. 2014, 58, 212–220. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, Scalable Generation of High-Quality Protein Multiple Sequence Alignments Using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Carver, T.; Harris, S.R.; Berriman, M.; Parkhill, J.; McQuillan, J.A. Artemis: An Integrated Platform for Visualization and Analysis of High-Throughput Sequence-Based Experimental Data. Bioinformatics 2012, 28, 464–469. [Google Scholar] [CrossRef]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A Genome Comparison Visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef] [PubMed]
- Croucher, N.J.; Page, A.J.; Connor, T.R.; Delaney, A.J.; Keane, J.A.; Bentley, S.D.; Parkhill, J.; Harris, S.R. Rapid Phylogenetic Analysis of Large Samples of Recombinant Bacterial Whole Genome Sequences Using Gubbins. Nucleic Acids Res. 2015, 43, e15. [Google Scholar] [CrossRef]
- Page, A.J.; Taylor, B.; Delaney, A.J.; Soares, J.; Seemann, T.; Keane, J.A.; Harris, S.R. SNP-Sites: Rapid Efficient Extraction of SNPs from Multi-FASTA Alignments. Microb. genomics 2016, 2, e000056. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R.; Teeling, E. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (ITOL) v4: Recent Updates and New Developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Hadfield, J.; Croucher, N.J.; Goater, R.J.; Abudahab, K.; Aanensen, D.M.; Harris, S.R. Phandango: An Interactive Viewer for Bacterial Population Genomics. Bioinformatics 2018, 34, 292–293. [Google Scholar] [CrossRef]
- Alikhan, N.F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple Prokaryote Genome Comparisons. BMC Genomics 2011, 12, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
GBS Serotype (n) | alpha-C | alp1 | alp2/3 | rib | srr1 | srr2 | PI-1 | PI-2A | PI-2B | hvgA |
---|---|---|---|---|---|---|---|---|---|---|
Ia (n = 18) | 2 | 4 | 7 | 5 | 18 | 0 | 10 | 17 | 1 | 0 |
Ib (n = 1) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
III (n = 14) | 0 | 0 | 0 | 13 | 4 | 9 | 12 | 5 | 9 | 9 |
V (n = 9) | 4 | 0 | 4 | 1 | 8 | 0 | 5 | 9 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodgus, J.; Prakapaite, R.; Mitsidis, P.; Grigaleviciute, R.; Planciuniene, R.; Kavaliauskas, P.; Jauneikaite, E. Molecular Epidemiology of Group B Streptococci in Lithuania Identifies Multi-Drug Resistant Clones and Sporadic ST1 Serotypes Ia and Ib. Pathogens 2022, 11, 1060. https://doi.org/10.3390/pathogens11091060
Rodgus J, Prakapaite R, Mitsidis P, Grigaleviciute R, Planciuniene R, Kavaliauskas P, Jauneikaite E. Molecular Epidemiology of Group B Streptococci in Lithuania Identifies Multi-Drug Resistant Clones and Sporadic ST1 Serotypes Ia and Ib. Pathogens. 2022; 11(9):1060. https://doi.org/10.3390/pathogens11091060
Chicago/Turabian StyleRodgus, Jonah, Ruta Prakapaite, Panagiotis Mitsidis, Ramune Grigaleviciute, Rita Planciuniene, Povilas Kavaliauskas, and Elita Jauneikaite. 2022. "Molecular Epidemiology of Group B Streptococci in Lithuania Identifies Multi-Drug Resistant Clones and Sporadic ST1 Serotypes Ia and Ib" Pathogens 11, no. 9: 1060. https://doi.org/10.3390/pathogens11091060