Experimental Evidence of the Long-Term Survival of Infective African Swine Fever Virus Strain Ba71V in Soil under Different Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. ASFV Ba71V Stock Preparation
2.2. ASFV Field Isolates Stocks Preparation
2.3. Whole-Genome Sequencing of ASFV Field Isolates
2.4. Long-Term Survival Assay with Ba71V Strain
2.5. Detection of Infectious ASFV Ba71V Particles in Soil
2.6. Detection of ASFV Ba71V Genome in Soil
2.7. Recovery and Quantification of Infectious Field Isolate Virions from Different Soil Types
3. Results
3.1. Genetic Characterization of ASFV Field Isolates
3.2. Long-Term Survival of ASFV Ba71V Strain in Soil under Different Temperatures
3.3. The Detection of Infectious Field Strain ASFV Particles from Soil and Peat Employing the Hemadsorption Test
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Vizcaíno, J.M.; Laddomada, A.; Arias, M.L. African Swine Fever. In Diseases of Swine, 11th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; John Wiley and Sons, Inc.: Hoboken, NY, USA, 2019; pp. 443–452. [Google Scholar]
- Chenais, E.; Ståhl, K.; Guberti, V.; Depner, K. Identification of wild boar-habitat epidemiologic cycle in African swine fever epizootic. Emerg. Infect. Dis. 2018, 24, 810–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plowright, W. African swine fever. In Infectious Disease of Wild Mammals, 2nd ed.; Davis, J.W., Karstand, L.H., Trainer, D.O., Eds.; Iowa State University Press: Ames, IA, USA, 1981; pp. 178–190. [Google Scholar]
- EFSA AHAW Panel. Scientific opinion on African swine fever. EFSA J. 2015, 13, 4163. [Google Scholar] [CrossRef]
- Guinat, C.; Gogin, A.; Blome, S.; Guenther, K.; Pollin, R.; Pfeiffer, D.U.; Dixon, L. Transmission routes of African swine fever virus to domestic pigs: Current knowledge and future research directions. Vet. Rec. 2016, 178, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Probst, C.; Globing, A.; Knoll, B.; Conraths, F.J.; Depner, C. Behaviour of free ranging wild boar towards their dead fellows: Potential implications for the transmission of African swine fever. R. Soc. Open Sci. 2017, 4, 170054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masiulis, M.; Bašauskas, P.; Jonušaitis, V.; Pridotkas, G. Potential role of domestic pig carcasses disposed in the forest for the transmission of African swine fever. Berl. Münchener Tierärztliche Wochenschr. 2018, 132, 148–150. [Google Scholar] [CrossRef]
- Cukor, J.; Linda, R.; Václavek, P.; Mahlerová, K.; Šatrán, P.; Havránek, F. Confirmed cannibalism in wild boar and its possible role in African swine fever transmission. Transbound. Emerg. Dis. 2020, 67, 1068–1073. [Google Scholar] [CrossRef]
- Guberti, V.; Khomenko, S.; Masiulis, M.; Kerba, S. African swine fever in wild boar ecology and biosecurity. In Animal Production and Health Manual; FAO, OIE and EC: Rome, Italy, 2019; Volume 22. [Google Scholar] [CrossRef]
- Arzumanyan, H.; Hakobyan, S.; Savagyan, H.; Izmaylian, R.; Nersisyan, N.; Karalyan, Z. Possibility of long-term survival of African swine fever virus in natural conditions. Vet. World 2021, 14, 854–859. [Google Scholar] [CrossRef]
- Andrés, G.; Charro, D.; Matamoros, T.; Dillard, R.S.; Abrescia, N.G.A. The cryo-EM structure of African swine fever virus unravels a unique architecture comprising two icosahedral protein capsids and two lipoprotein membranes. J. Biol. Chem. 2020, 295, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kavanová, L.; Prodělalová, J.; Nedbalcová, K.; Matiašovic, J.; Volf, J.; Faldyna, M.; Salát, J. Immune response of porcine alveolar macrophages to a concurrent infection with porcine reproductive and respiratory syndrome virus and Haemophilus parasuis in vitro. Vet. Microbiol. 2015, 180, 28–35. [Google Scholar] [CrossRef]
- Milne, I.; Stephen, G.; Bayer, M.; Cock, P.J.A.; Pritchard, L.; Cardle, L.; Shaw, P.D.; Marshall, D. Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 2013, 14, 193–202. [Google Scholar] [CrossRef]
- Detection of African Swine Fever Virus (ASFV) by the OIE Real-Time Polymerase Chain Reaction (PCR) 1, King et al., 2003, Rev 6. 2021. Available online: https://asf-referencelab.info/asf/images/ficherosasf/PROTOCOLOS-EN/SOP-ASF-PCR-2_REV2021.pdf (accessed on 14 March 2022).
- Slana, I.; Kralik, P.; Kralova, A.; Pavlik, I. On-farm spread of Mycobacterium avium subsp. paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination. Int. J. Food Microbiol. 2008, 128, 250–257. [Google Scholar] [CrossRef] [PubMed]
- African Swine Fever Virus (ASFV) Isolation on Porcine Alveolar Macrophages and Haemadsorption Test. REV. 2013. Available online: https://asf-referencelab.info/asf/images/ficherosasf/PROTOCOLOS-EN/SOP-ASF-V2.pdf (accessed on 14 March 2022).
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Plowright, W.; Parker, J. The stability of African swine fever virus with particular reference to heat and pH inactivation. Arch. Gesamte Virusforsch. 1967, 21, 383–402. [Google Scholar] [CrossRef]
- Petrini, S.; Feliziani, F.; Casciari, C.; Giammarioli, M.; Torresi, C.; De Mia, G.M. Survival of African swine fever virus (ASFV) in various traditional Italian dry-cured meat products. Prev. Vet. Med. 2019, 162, 126–130. [Google Scholar] [CrossRef]
- Olesen, A.S.; Lohse, L.; Boklund, A.; Halasa, T.; Belsham, G.J.; Rasmussen, T.B. Short time window for transmissibility of African swine fever virus from a contaminated environment. Transbound. Emerg. Dis. 2018, 65, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.; Goatley, L.C.; Guinat, C.; Netherton, C.L.; Gubbins, S.; Dixon, L.K.; Reis, A.L. Survival of African Swine Fever Virus in Excretions from Pigs Experimentally Infected with the Georgia 2007/1 Isolate. Transbound. Emerg. Dis. 2017, 64, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Frant, P.M.; Gal-Cisoń, B.; Bocian, Ł.; Ziętek-Barszcz, A.; Niemczuk, K.; Woźniakowski, G.; Szczotka-Bochniarz, A. African swine fever in wild boar (Poland 2020): Passive and active surveillance analysis and further perspectives. Pathogens 2021, 10, 1219. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Desmetch, D.; Gortázar Schmidt, C.; Grigaliuniene, V.; Helyes, G.; Kantere, M.; Korytarova, D.; Linden, A.; Miteva, A.; Neghirla, A.; et al. Epidemiological analysis of African swine fever in the European Union (September 2019 to August 2020). EFSA J. 2021, 19, e06572. [Google Scholar]
- Mačiulskis, P.; Masiulis, M.; Pridotkas, G.; Buitkuvienė, J.; Jurgelevičius, V.; Jacevičienė, I.; Zagrabskaitė, R.; Zani, L.; Pilevičienė, S. The African Swine fever epidemic in wild boar (Sus scrofa) in Lithuania (2014–2018). Vet. Sci. 2020, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Carlson, J.; Fischer, M.; Zani, L.; Eschbaumer, M.; Fuchs, W.; Mettenleiter, T.; Beer, M.; Blome, S. Stability of African Swine Fever Virus in Soil and Options to Mitigate the Potential Transmission Risk. Pathogens 2020, 9, 977. [Google Scholar] [CrossRef]
- Mazur-Panasiuk, N.; Woźniakowski, G. Natural inactivation of African swine fever virus in tissues: Influence of temperature and environmental conditions on virus survival. Vet. Microbiol. 2020, 242, 108609. [Google Scholar] [CrossRef] [PubMed]
- Hakobyan, S.A.; Ross, P.A.; Bayramyan, N.V.; Poghosyan, A.A.; Avetisyan, A.S.; Avagyan, H.R.; Hakobyan, L.H.; Abroyan, L.O.; Harutyunova, L.J.; Karalyan, Z.A. Experimental models of ecological niches for African swine fever virus. Vet. Microbiol. 2022, 266, 109365. [Google Scholar] [CrossRef] [PubMed]
- Zani, L.; Masiulis, M.; Busauskas, P.; Dietze, K.; Prodotkas, G.; Globig, A.; Blome, S.; Mettenleiter, T.; Depner, K.; Karveliene, B. African swine fever survival in buried wild boar carcasses. Transbound. Emerg. Dis. 2020, 67, 2086–2092. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-L.; Choi, Y.; Yoo, J.; Hwang, J.; Jeong, H.-G.; Jheong, W.-H.; Kim, S.-H. Identification of African swine fever virus genomic DNAs in wild boar habitats within outbreak regions in South Korea. J. Vet. Sci. 2021, 22, e28. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prodelalova, J.; Kavanova, L.; Salat, J.; Moutelikova, R.; Kobzova, S.; Krasna, M.; Vasickova, P.; Simek, B.; Vaclavek, P. Experimental Evidence of the Long-Term Survival of Infective African Swine Fever Virus Strain Ba71V in Soil under Different Conditions. Pathogens 2022, 11, 648. https://doi.org/10.3390/pathogens11060648
Prodelalova J, Kavanova L, Salat J, Moutelikova R, Kobzova S, Krasna M, Vasickova P, Simek B, Vaclavek P. Experimental Evidence of the Long-Term Survival of Infective African Swine Fever Virus Strain Ba71V in Soil under Different Conditions. Pathogens. 2022; 11(6):648. https://doi.org/10.3390/pathogens11060648
Chicago/Turabian StyleProdelalova, Jana, Lenka Kavanova, Jiri Salat, Romana Moutelikova, Sarka Kobzova, Magdalena Krasna, Petra Vasickova, Bronislav Simek, and Petr Vaclavek. 2022. "Experimental Evidence of the Long-Term Survival of Infective African Swine Fever Virus Strain Ba71V in Soil under Different Conditions" Pathogens 11, no. 6: 648. https://doi.org/10.3390/pathogens11060648
APA StyleProdelalova, J., Kavanova, L., Salat, J., Moutelikova, R., Kobzova, S., Krasna, M., Vasickova, P., Simek, B., & Vaclavek, P. (2022). Experimental Evidence of the Long-Term Survival of Infective African Swine Fever Virus Strain Ba71V in Soil under Different Conditions. Pathogens, 11(6), 648. https://doi.org/10.3390/pathogens11060648