Pathology of African Swine Fever in Wild Boar Carcasses Naturally Infected with German Virus Variants
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.1.1. Pathological Examination
Necropsy
Histopathology and Immunohistochemistry
Histopathology including Semiquantitative Antigen Scoring
2.1.2. Detection of ASFV Genome
2.1.3. Detection of Anti-ASFV Antibodies
2.1.4. Statistical Analysis
3. Results
3.1. Pathogen Detection in Blood and Tissues
3.2. Pathological Assessment of Organ Systems
3.3. Immune System
3.3.1. Lymph Nodes
Gross Pathology
Histopathology
3.3.2. Spleen
Gross Pathology
Histopathology
3.3.3. Bone Marrow
Gross Pathology
3.4. Respiratory System
3.4.1. Lung
Gross Pathology
Histopathology
3.5. Cardiovascular System
3.5.1. Heart
Gross Pathology
Histopathology
3.6. Urinary System
3.6.1. Kidney
Gross Pathology
Histopathology
3.6.2. Urinary Bladder
Gross Pathology
3.7. Gastrointestinal System
3.7.1. Liver and Gall Bladder
Gross Pathology
Histopathology
3.7.2. Stomach and Intestine
Gross Pathology
3.8. Nervous System
3.8.1. Brain
Gross Pathology
Histopathology
3.9. Endocrine System
3.9.1. Adrenal Gland
Gross Pathology
Histopathology
3.9.2. Pancreas
Gross Pathology
3.10. Reproductive System
3.11. Occasional Findings
3.12. Antibody Detection against African Swine Fever Virus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blome, S.; Franzke, K.; Beer, M. African swine fever—A review of current knowledge. Virus Res. 2020, 287, 198099. [Google Scholar] [CrossRef] [PubMed]
- Sauter-Louis, C.; Forth, J.H.; Probst, C.; Staubach, C.; Hlinak, A.; Rudovsky, A.; Holland, D.; Schlieben, P.; Göldner, M.; Schatz, J.; et al. Joining the club: First detection of African swine fever in wild boar in Germany. Transbound Emerg. Dis. 2021, 68, 1744–1752. [Google Scholar] [CrossRef]
- Sánchez-Vizcaíno, J.M.; Mur, L.; Gomez-Villamandos, J.C.; Carrasco, L. An update on the epidemiology and pathology of African swine fever. J. Comp. Pathol. 2015, 152, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, C.; Blome, S.; Malogolovkin, A.; Parilov, S.; Kolbasov, D.; Teifke, J.P.; Beer, M. Characterization of African swine fever virus Caucasus isolate in European wild boars. Emerg. Infect. Dis. 2011, 17, 2342–2345. [Google Scholar] [CrossRef] [PubMed]
- Sauter-Louis, C.; Conraths, F.J.; Probst, C.; Blohm, U.; Schulz, K.; Sehl, J.; Fischer, M.; Forth, J.H.; Zani, L.; Depner, K.; et al. African Swine Fever in Wild Boar in Europe-A Review. Viruses 2021, 13, 1717. [Google Scholar] [CrossRef]
- Salguero, F.J. Comparative Pathology and Pathogenesis of African Swine Fever Infection in Swine. Front. Vet. Sci. 2020, 7, 282. [Google Scholar] [CrossRef] [PubMed]
- Forth, J.H.; Calvelage, S.; Fischer, M.; Hellert, J.; Sehl-Ewert, J.; Roszyk, H.; Deutschmann, P.; Reichold, A.; Lange, M.; Thulke, H.-H.; et al. African swine fever virus—Variants on the rise. Emerg. Microbes Infect. 2022. [Google Scholar] [CrossRef] [PubMed]
- Afonso, C.L.; Piccone, M.E.; Zaffuto, K.M.; Neilan, J.; Kutish, G.F.; Lu, Z.; Balinsky, C.A.; Gibb, T.R.; Bean, T.J.; Zsak, L.; et al. African swine fever virus multigene family 360 and 530 genes affect host interferon response. J. Virol. 2004, 78, 1858–1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, V.; Holinka, L.G.; Gladue, D.P.; Sanford, B.; Krug, P.W.; Lu, X.; Arzt, J.; Reese, B.; Carrillo, C.; Risatti, G.R.; et al. African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus. J. Virol. 2015, 89, 6048–6056. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, C.; Soler, A.; Nieto, R.; Cano, C.; Pelayo, V.; Sánchez, M.A.; Pridotkas, G.; Fernandez-Pinero, J.; Briones, V.; Arias, M. Experimental Infection of Domestic Pigs with African Swine Fever Virus Lithuania 2014 Genotype II Field Isolate. Transbound Emerg. Dis. 2017, 64, 300–304. [Google Scholar] [CrossRef]
- Zani, L.; Forth, J.H.; Forth, L.; Nurmoja, I.; Leidenberger, S.; Henke, J.; Carlson, J.; Breidenstein, C.; Viltrop, A.; Hoper, D.; et al. Deletion at the 5′-end of Estonian ASFV strains associated with an attenuated phenotype. Sci. Rep. 2018, 8, 6510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulton, J.; Coggins, L. Comparison of lesions in acute and chronic African swine fever. Cornell Vet. 1968, 58, 364–388. [Google Scholar] [PubMed]
- Moulton, J.E.; Pan, I.C.; Hess, W.R.; DeBoer, C.J.; Tessler, J. Pathologic features of chronic pneumonia in pigs with experimentally induced African swine fever. Am. J. Vet. Res. 1975, 36, 27–32. [Google Scholar] [PubMed]
- Hervás, J.; Gómez-Villamandos, J.C.; Méndez, A.; Carrasco, L.; Sierra, M.A. The lesional changes and pathogenesis in the kidney in African swine fever. Vet. Res. Commun. 1996, 20, 285–299. [Google Scholar] [CrossRef]
- Gómez-Villamandos, J.C.; Hervás, J.; Méndez, A.; Carrasco, L.; Villeda, C.J.; Wilkinson, P.J.; Sierra, M.A. Pathological changes in the renal interstitial capillaries of pigs inoculated with two different strains of African swine fever virus. J. Comp. Pathol. 1995, 112, 283–298. [Google Scholar] [CrossRef]
- Pikalo, J.; Schoder, M.-E.; Sehl-Ewert, J.; Breithaupt, A.; Cay, A.B.; Lhoëst, C.; van Campe, W.; Mostin, L.; Deutschmann, P.; Roszyk, H.; et al. Towards Efficient Early Warning: Pathobiology of African Swine Fever Virus “Belgium 2018/1” in Domestic Pigs of Different Age Classes. Animals 2021, 11, 2602. [Google Scholar] [CrossRef] [PubMed]
- Pikalo, J.; Schoder, M.E.; Sehl, J.; Breithaupt, A.; Tignon, M.; Cay, A.B.; Gager, A.M.; Fischer, M.; Beer, M.; Blome, S. The African swine fever virus isolate Belgium 2018/1 shows high virulence in European wild boar. Transbound Emerg. Dis. 2020, 67, 1654–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sehl, J.; Pikalo, J.; Schäfer, A.; Franzke, K.; Pannhorst, K.; Elnagar, A.; Blohm, U.; Blome, S.; Breithaupt, A. Comparative Pathology of Domestic Pigs and Wild Boar Infected with the Moderately Virulent African Swine Fever Virus Strain “Estonia 2014”. Pathogens 2020, 9, 662. [Google Scholar] [CrossRef]
- Nurmoja, I.; Petrov, A.; Breidenstein, C.; Zani, L.; Forth, J.H.; Beer, M.; Kristian, M.; Viltrop, A.; Blome, S. Biological characterization of African swine fever virus genotype II strains from north-eastern Estonia in European wild boar. Transbound Emerg. Dis. 2017, 64, 2034–2041. [Google Scholar] [CrossRef] [PubMed]
- Pietschmann, J.; Guinat, C.; Beer, M.; Pronin, V.; Tauscher, K.; Petrov, A.; Keil, G.; Blome, S. Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus isolate. Arch. Virol. 2015, 160, 1657–1667. [Google Scholar] [CrossRef]
- Nga, B.T.T.; Tran Anh Dao, B.; Nguyen Thi, L.; Osaki, M.; Kawashima, K.; Song, D.; Salguero, F.J.; Le, V.P. Clinical and Pathological Study of the First Outbreak Cases of African Swine Fever in Vietnam, 2019. Front. Vet. Sci. 2020, 7, 392. [Google Scholar] [CrossRef] [PubMed]
- Pornthummawat, A.; Truong, Q.L.; Hoa, N.T.; Lan, N.T.; Izzati, U.Z.; Suwanruengsri, M.; Nueangphuet, P.; Hirai, T.; Yamaguchi, R. Pathological lesions and presence of viral antigens in four surviving pigs in African swine fever outbreak farms in Vietnam. J. Vet. Med. Sci. 2021, 83, 1653–1660. [Google Scholar] [CrossRef]
- Oh, T.; Do, D.T.; Lai, D.C.; Nguyen, T.C.; Vo, H.V.; Chae, C. Age-related viral load and severity of systemic pathological lesions in acute naturally occurring African swine fever virus genotype II infections. Comp. Immunol. Microbiol. Infect. Dis. 2021, 79, 101709. [Google Scholar] [CrossRef]
- Brooks, J.W. Postmortem Changes in Animal Carcasses and Estimation of the Postmortem Interval. Vet. Pathol. 2016, 53, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Cardiel, I.; Ballester, M.; Solanes, D.; Nofrarias, M.; Lopez-Soria, S.; Argilaguet, J.M.; Lacasta, A.; Accensi, F.; Rodriguez, F.; Segales, J. Standardization of pathological investigations in the framework of experimental ASFV infections. Virus Res. 2013, 173, 180–190. [Google Scholar] [CrossRef]
- King, D.P.; Reid, S.M.; Hutchings, G.H.; Grierson, S.S.; Wilkinson, P.J.; Dixon, L.K.; Bastos, A.D.; Drew, T.W. Development of a TaqMan PCR assay with internal amplification control for the detection of African swine fever virus. J. Virol. Methods 2003, 107, 53–61. [Google Scholar] [CrossRef]
- Sánchez-Cordón, P.J.; Vidaña, B.; Neimanis, A.; Núñez, A.; Wikström, E.; Gavier-Widén, D. 4—Pathology of African swine fever. In Understanding and Combatting African Swine Fever; Wageningen Academic Publishers: Wageningen, The Netherlands, 2021; pp. 87–139. [Google Scholar]
- Spiekermeier, I.; Freitag, M.; Baumgärtner, W. Interstitial nephritis in pigs. Tierarztl. Prax. Ausg. G Grosstiere/Nutztiere 2017, 45, 350–356. [Google Scholar]
- Paz-Sánchez, Y.; Herráez, P.; Quesada-Canales, Ó.; Poveda, C.G.; Díaz-Delgado, J.; Quintana-Montesdeoca, M.D.P.; Plamenova Stefanova, E.; Andrada, M. Assessment of Lung Disease in Finishing Pigs at Slaughter: Pulmonary Lesions and Implications on Productivity Parameters. Animals 2021, 11, 3604. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Yoshihara, S.; Suda, H.; Ikeda, K. Pathological studies on white spots of the liver in fattening pigs. Natl. Inst. Anim. Health Q. 1983, 23, 138–149. [Google Scholar]
- Rosell, C.; Segalés, J.; Domingo, M. Hepatitis and Staging of Hepatic Damage in Pigs Naturally Infected with Porcine Circovirus Type 2. Vet. Pathol. 2000, 37, 687–692. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Li, M.; Wang, Y.S.; Tell, L.A.; Baynes, R.E.; Davis, J.L.; Vickroy, T.W.; Riviere, J.E. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part I: Cattle and swine. J. Vet. Pharmacol. Ther. 2020, 43, 385–420. [Google Scholar] [CrossRef] [Green Version]
- Petrov, A.; Forth, J.H.; Zani, L.; Beer, M.; Blome, S. No evidence for long-term carrier status of pigs after African swine fever virus infection. Transbound Emerg. Dis. 2018, 65, 1318–1328. [Google Scholar] [CrossRef]
- Izzati, U.Z.; Inanaga, M.; Hoa, N.T.; Nueangphuet, P.; Myint, O.; Truong, Q.L.; Lan, N.T.; Norimine, J.; Hirai, T.; Yamaguchi, R. Pathological investigation and viral antigen distribution of emerging African swine fever in Vietnam. Transbound Emerg. Dis. 2021, 68, 2039–2050. [Google Scholar] [CrossRef]
- Truong, A.D.; Ly, D.V.; Vu, T.H.; Hoang, V.T.; Nguyen, T.C.; Chu, T.N.; Nguyen, H.T.; Nguyen, T.V.; Pham, N.T.; Tran, H.T.T.; et al. Unexpected cases in field diagnosis of African swine fever virus in Vietnam: The needs consideration when performing molecular diagnostic tests. Open Vet. J. 2020, 10, 189–197. [Google Scholar] [CrossRef]
- Rodríguez-Bertos, A.; Cadenas-Fernández, E.; Rebollada-Merino, A.; Porras-González, N.; Mayoral-Alegre, F.J.; Barreno, L.; Kosowska, A.; Tomé-Sánchez, I.; Barasona, J.A.; Sánchez-Vizcaíno, J.M. Clinical Course and Gross Pathological Findings in Wild Boar Infected with a Highly Virulent Strain of African Swine Fever Virus Genotype II. Pathogens 2020, 9, 688. [Google Scholar] [CrossRef]
- Roszyk, H.; Franzke, K.; Breithaupt, A.; Deutschmann, P.; Pikalo, J.; Carrau, T.; Blome, S.; Sehl-Ewert, J. The Role of Male Reproductive Organs in the Transmission of African Swine Fever—Implications for Transmission. Viruses 2022, 14, 31. [Google Scholar]
- Mascolo, P.; Feola, A.; Zangani, P.; Famularo, D.; Liguori, B.; Mansueto, G.; Campobasso, C.P. Waterhouse Friderichsen Syndrome: Medico-legal issues. Forensic Sci. Int. Rep. 2021, 4, 100235. [Google Scholar] [CrossRef]
- Karalyan, Z.A.; Sargsyan, M.A.; Arzumanyan, H.H.; Kotsinyan, A.A.; Hakobyan, L.H.; Karalova, E.M.; Voskanyan, H.E. Pathomorphology of the brain in the acute form of African swine fever. Ann. Parasitol. 2017, 63, 347–352. [Google Scholar] [PubMed]
- Neilan, J.G.; Zsak, L.; Lu, Z.; Burrage, T.G.; Kutish, G.F.; Rock, D.L. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology 2004, 319, 337–342. [Google Scholar] [CrossRef] [PubMed]
No | Origin | Virus Variant | Age (Year) | Sex | Weight (kg) | Stages of Decomposition * | Found Dead/Shot | Anomalies/Comments |
---|---|---|---|---|---|---|---|---|
1 | LOS | II | <1 | female | 10 | fresh stage | dead | Brachygnathia superior |
2 | LOS | II | <1 | female | 30 | fresh stage | dead | / |
3 | LOS | II | >2 | female | 62 | bloat stage | dead | / |
4 | LOS | II | <1 | female | 40 | bloat stage | dead | / |
5 | LOS | II | <1 | female | 31 | fresh stage | dead | / |
6 | LOS | II | <1 | male | 37 | bloat stage | dead | / |
7 | LOS | II | <1 | female | 27 | fresh stage | dead | / |
8 | MOL | III | <1 | female | 22 | fresh stage | dead | / |
9 | MOL | III | <1 | female | 28 | fresh stage | dead | / |
10 | MOL | III | <1 | female | 36 | fresh stage | dead | / |
11 | MOL | III | <1 | female | 38 | bloat stage | dead | / |
12 | MOL | III | <1 | female | 36 | bloat stage | shot | Lung not available |
13 | SN | IV | <1 | male | 36 | fresh stage | dead | / |
14 | SN | IV | <1 | male | 30 | bloat stage | dead | Scavenger feeding marks (thorax) |
15 | SN | IV | <1 | female | 31 | fresh stage | dead | / |
16 | SN | IV | >2 | female | 75 | bloat stage | dead | / |
Organ | Macroscopic Finding | Annotations |
---|---|---|
Lymph node (popliteal) | Enlargement | / |
Hemorrhage | ||
Lung | Alveolar edema | / |
Interstitial edema | ||
Hemorrhage | ||
Collapse | ||
Consolidation | ||
Thoracic effusion | ||
Pleuropneumonia | ||
Kidney * | Hemorrhage | Assessment of size (petechia, ecchymosis) and distributional pattern (focal (n = 1), oligofocal (n ≤ 20), multifocal (n ≥ 20)) |
Pelvic dilation | / | |
Pelvic hemorrhage | ||
Liver and gall bladder * | Congestion | / |
Gall bladder wall hemorrhage/edema | ||
Spleen * | Determination of relative spleen weight | / |
Pancreas | Hemorrhage/edema | / |
Necrosis | ||
Abdominal cavity * | Peritonitis | / |
Ascitis | ||
Urinary bladder | Hemorrhage | / |
Bone marrow | Hemorrhage | / |
Heart | Hemorrhage | Describing localization: endocardial, myocardial, epicardial |
Pericardial effusion | / | |
Pericarditis | ||
Tonsils | Hemorrhage | / |
Necrosis | ||
Brain | Hemorrhage | / |
Adrenal gland | ||
Genitals | ||
Skin | ||
Larynx |
Organs/Tissues | Gross Pathology | Histopathology | Immunohistochemistry |
---|---|---|---|
Immune system | Primary lesions associated with ASF Lymph nodes: • Hemorrhagic lymph-adenopathy Spleen: • Increased spleen weight Bone marrow: • Hemorrhages | Primary lesions associated with ASF Lymph nodes: • Lymphoid depletion • Thrombosis • Necrosis of interfollicular, paracortical areas and medullary chords Spleen: • Lymphoid depletion • Apoptosis/necrosis of myelomonocytic cells Bone marrow: • N/A | Lymph nodes: • Positive, macrophages Spleen: • Positive, macrophages Bone marrow: • N/A |
Respiratory system | Primary lesions associated with ASF Lung: • Alveolar edema • Hemorrhages • Consolidation • Loss of collapse Nose: • Hemorrhages Lesions, usually induced by bacteria or common background lesions Lung: • Fibrous pleuropneumonia | Primary lesions associated with ASF Lung: • Alveolar edema • Hemorrhages • Necrotizing interstitial pneumonia Nose: • N/A Lesions, usually induced by bacteria or common background lesions Lung: • Fibrino-suppurative/necrotizing bronchopneumonia | Lung: • Positive, alveolar/interstitial macrophages Nose: • N/A |
Cardiovascular system | Primary lesions associated with ASF Heart: • Hemorrhages (epi-, myo-, endocardial) Lesions, usually induced by bacteria or common back-ground lesions Heart: • Fibrous pericarditis | Primary lesions associated with ASF Heart: • Hemorrhages Mononuclear infiltration (endo-/subendocardial) | Heart: • Positive, macrophages |
Urinary system | Primary lesions associated with ASF Kidney: • Hemorrhages (cortical, medullary, pelvic) • Perirenal edema and hemorrhages Urinary bladder: • Hemorrhages (mucosal, serosal, transmural) | Primary lesions associated with ASF Kidney: • Hemorrhages (interstitial, glomerular) • Vascular thrombosis Urinary bladder: • N/A Lesions, usually induced by bacteria or common background lesions Kidney: • Non-suppurative tubulointerstitial nephritis • Tubular necrosis | Kidney: • Positive, macrophages Urinary bladder: • N/A Urinary bladder: • N/A |
Gastrointestinal system/abdominal cavity | Primary lesions associated with ASF Liver: • Congestion • Hemorrhages (subcapsular) Gall bladder: • Wall edema • Wall hemorrhages Stomach: • Hemorrhagic gastritis Small intestine: • Hemorrhages (serosal, mucosal) Large intestine: • Hemorrhages (serosal, mucosal) Abdominal cavity: • Hemorrhagic ascites Lesions, usually induced by bacteria or common back-ground lesions Stomach: • Ulcerative gastritis Abdominal cavity: • Fibrous peritonitis | Primary lesions associated with ASF Liver: • Apoptosis/necrosis of Kupffer cells and hepatocytes Gall bladder: • N/A Stomach: • N/A Intestine: • N/A Lesions, usually induced by bacteria or common back-ground lesions Liver: • Mixed-cellular sinusoidal and periportal infiltration | Liver: • Positive, Kupffer cells Gall bladder/stomach/intestine: • N/A |
Nervous system | Primary lesions associated with ASF Brain: • Hemorrhages | Primary lesions associated with ASF Brain: • Hemorrhages • Non-suppurative meningitis (cerebral, cerebelar) • Non-suppurative encephalitis (cerebral, cerebellar) • Non-suppurative plexus choroiditis | Brain: • Positive, macrophages |
Endocrine system | Primary lesions associated with ASF Adrenal gland: • Hemorrhages Pancreas: • Hemorrhages • Edema | Primary lesions associated with ASF Adrenal gland: • Hemorrhages (cortical, medullary) • Sinusoidal thrombosis • Mixed-cellular infiltration (medullary Pancreas: • N/A | Adrenal gland: • Positive, macrophages Pancreas: • N/A |
Reproductive system | Primary lesions associated with ASF Testicle (spermatic chord): • Hemorrhages Vestibulum: • Hemorrhages | • N/A | • N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sehl-Ewert, J.; Deutschmann, P.; Breithaupt, A.; Blome, S. Pathology of African Swine Fever in Wild Boar Carcasses Naturally Infected with German Virus Variants. Pathogens 2022, 11, 1386. https://doi.org/10.3390/pathogens11111386
Sehl-Ewert J, Deutschmann P, Breithaupt A, Blome S. Pathology of African Swine Fever in Wild Boar Carcasses Naturally Infected with German Virus Variants. Pathogens. 2022; 11(11):1386. https://doi.org/10.3390/pathogens11111386
Chicago/Turabian StyleSehl-Ewert, Julia, Paul Deutschmann, Angele Breithaupt, and Sandra Blome. 2022. "Pathology of African Swine Fever in Wild Boar Carcasses Naturally Infected with German Virus Variants" Pathogens 11, no. 11: 1386. https://doi.org/10.3390/pathogens11111386
APA StyleSehl-Ewert, J., Deutschmann, P., Breithaupt, A., & Blome, S. (2022). Pathology of African Swine Fever in Wild Boar Carcasses Naturally Infected with German Virus Variants. Pathogens, 11(11), 1386. https://doi.org/10.3390/pathogens11111386