Wildlife Hosts of Leishmania infantum in a Re-Emerging Focus of Human Leishmaniasis, in Emilia-Romagna, Northeast Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Molecular Analysis
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moriconi, M.; Rugna, G.; Calzolari, M.; Bellini, R.; Albieri, A.; Angelini, P.; Cagarelli, R.; Landini, M.P.; Charrel, R.N.; Varani, S. Phlebotomine sand fly-borne pathogens in the Mediterranean Basin: Human leishmaniasis and phlebovirus infections. PLoS Negl. Trop. Dis. 2017, 11, e0005660. [Google Scholar] [CrossRef] [Green Version]
- Berriatua, E.; Maia, C.; Conceicao, C.; Ozbel, Y.; Toz, S.; Baneth, G.; Perez-Cutillas, P.; Ortuno, M.; Munoz, C.; Jumakanova, Z.; et al. Leishmaniases in the European Union and Neighboring Countries. Emerg. Infect. Dis. 2021, 27, 1723. [Google Scholar] [CrossRef]
- Gaspari, V.; Zaghi, I.; Macri, G.; Patrizi, A.; Salfi, N.; Locatelli, F.; Carra, E.; Re, M.C.; Varani, S. Autochthonous Cases of Mucosal Leishmaniasis in Northeastern Italy: Clinical Management and Novel Treatment Approaches. Microorganisms 2020, 8, 588. [Google Scholar] [CrossRef] [Green Version]
- Gradoni, L.; López-Vélez, R.; Mokni, M. Manual on Case Management and Surveillance of the Leishmaniases in the WHO European Region. 2017. Available online: https://apps.who.int/iris/bitstream/handle/10665/344118/9789289052511-eng.pdf?sequence=1&isAllowed=y (accessed on 25 October 2022).
- Solano-Gallego, L.; Koutinas, A.; Miro, G.; Cardoso, L.; Pennisi, M.G.; Ferrer, L.; Bourdeau, P.; Oliva, G.; Baneth, G. Directions for the diagnosis, clinical staging, treatment and prevention of canine leishmaniosis. Vet. Parasitol. 2009, 165, 1–18. [Google Scholar] [CrossRef]
- Maia, C.; Cardoso, L. Spread of Leishmania infantum in Europe with dog travelling. Vet. Parasitol. 2015, 213, 2–11. [Google Scholar] [CrossRef]
- Maroli, M.; Rossi, L.; Baldelli, R.; Capelli, G.; Ferroglio, E.; Genchi, C.; Gramiccia, M.; Mortarino, M.; Pietrobelli, M.; Gradoni, L. The northward spread of leishmaniasis in Italy: Evidence from retrospective and ongoing studies on the canine reservoir and phlebotomine vectors. Trop. Med. Int. Health 2008, 13, 256–264. [Google Scholar] [CrossRef]
- Pampiglione, S. La Leishmaniosi Viscerale in Emilia-Romagna. Ann. Sanità Pubblica 1974, 35, 1021–1028. [Google Scholar]
- Pampiglione, S.; La Placa, M.; Schlick, G. Studies on mediterranean Leishmaniasis. I. An outbreak of visceral leishmaniasis in Northern Italy. Trans R. Soc. Trop. Med. Hyg. 1974, 68, 349–359. [Google Scholar] [CrossRef]
- Baldelli, R.; Di Francesco, A. Leishmaniosi in Italia: Risultati di indagini sierologiche condotte su cani di diversa provenienza geografica. Atti Della Soc. Delle Sci. Vet. 1992, 46, 1395–1399. [Google Scholar]
- Varani, S.; Cagarelli, R.; Melchionda, F.; Attard, L.; Salvadori, C.; Finarelli, A.C.; Gentilomi, G.A.; Tigani, R.; Rangoni, R.; Todeschini, R.; et al. Ongoing outbreak of visceral leishmaniasis in Bologna Province, Italy, November 2012 to May 2013. Eurosurveillance 2013, 18, 20530. [Google Scholar] [CrossRef] [Green Version]
- Franceschini, E.; Puzzolante, C.; Menozzi, M.; Rossi, L.; Bedini, A.; Orlando, G.; Gennari, W.; Meacci, M.; Rugna, G.; Carra, E.; et al. Clinical and Microbiological Characteristics of Visceral Leishmaniasis Outbreak in a Northern Italian Nonendemic Area: A Retrospective Observational Study. Biomed. Res. Int. 2016, 2016, 6481028. [Google Scholar] [CrossRef]
- Rugna, G.; Carra, E.; Corpus, F.; Calzolari, M.; Salvatore, D.; Bellini, R.; Di Francesco, A.; Franceschini, E.; Bruno, A.; Poglayen, G.; et al. Distinct Leishmania infantum Strains Circulate in Humans and Dogs in the Emilia-Romagna Region, Northeastern Italy. Vector Borne Zoonotic Dis. 2017, 17, 409–415. [Google Scholar] [CrossRef]
- Rugna, G.; Carra, E.; Bergamini, F.; Calzolari, M.; Salvatore, D.; Corpus, F.; Gennari, W.; Baldelli, R.; Fabbi, M.; Natalini, S.; et al. Multilocus microsatellite typing (MLMT) reveals host-related population structure in Leishmania infantum from northeastern Italy. PLoS Negl. Trop. Dis. 2018, 12, e0006595. [Google Scholar] [CrossRef] [Green Version]
- Calzolari, M.; Carra, E.; Rugna, G.; Bonilauri, P.; Bergamini, F.; Bellini, R.; Varani, S.; Dottori, M. Isolation and Molecular Typing of Leishmania infantum from Phlebotomus perfiliewi in a Re-Emerging Focus of Leishmaniasis, Northeastern Italy. Microorganisms 2019, 7, 644. [Google Scholar] [CrossRef] [Green Version]
- Calzolari, M.; Romeo, G.; Bergamini, F.; Dottori, M.; Rugna, G.; Carra, E. Host preference and Leishmania infantum natural infection of the sand fly Phlebotomus perfiliewi in northern Italy. Acta Trop. 2022, 226, 106246. [Google Scholar] [CrossRef]
- Cardoso, L.; Schallig, H.; Persichetti, M.F.; Pennisi, M.G. New Epidemiological Aspects of Animal Leishmaniosis in Europe: The Role of Vertebrate Hosts Other Than Dogs. Pathogens 2021, 10, 307. [Google Scholar] [CrossRef]
- Antolini, G.; Pavan, V.; Tomozeiu, R.; Marletto, V. Atlante Climatico Dell’Emilia-Romagna 1961–2015, 2017th ed.; Arpae Emilia-Romagna: Bologna, Italy, 2017. [Google Scholar]
- Regione Emilia-Romagna. Piano Regionale di Sorveglianza e Controllo Della Leishmaniosi Canina. Available online: https://www.anagrafecaninarer.it/acrer/Default.aspx?tabid=160#. (accessed on 25 October 2022).
- Regione Emilia Romagna Sorveglianza e Monitoraggio della Fauna Selvatica. Available online: https://www.alimenti-salute.it/documentazione-regionale/90355. (accessed on 25 October 2022).
- Galletti, E.; Bonilauri, P.; Bardasi, L.; Fontana, M.C.; Ramini, M.; Renzi, M.; Dosa, G.; Merialdi, G. Development of a minor groove binding probe based real-time PCR for the diagnosis and quantification of Leishmania infantum in dog specimens. Res. Vet. Sci. 2011, 91, 243–245. [Google Scholar] [CrossRef]
- Clopper, C.J.; Pearson, E.S. The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial. Biometrika 1934, 26, 404–413. [Google Scholar] [CrossRef]
- R Core Team R: A language and Environment for Statistical Computing. 2022. Available online: https://www.R-project.org (accessed on 25 October 2022).
- Santi, A.; Renzi, M.; Baldelli, R.; Calzolari, M.; Caminiti, A.; Dell’Anna, S.; Galletti, G.; Lombardini, A.; Paternoster, G.; Tamba, M. A surveillance program on canine leishmaniasis in the public kennels of Emilia-Romagna Region, Northern Italy. Vector Borne Zoonotic Dis. 2014, 14, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Cesinaro, A.M.; Nosseir, S.; Mataca, E.; Mengoli, M.C.; Cavatorta, C.; Gennari, W. An outbreak of cutaneous leishmaniasis in Modena province (Northern Italy): Report of 35 cases. Pathologica 2017, 109, 363–367. [Google Scholar]
- Corradetti, A. Phlebotomus and leishmaniasis in North-Central Italy (Apennine Region). Sci. Rep. Ist. Sup. Sanità 1962, 2, 103–109. [Google Scholar]
- Calzolari, M.; Romeo, G.; Callegari, E.; Bonilauri, P.; Chiapponi, C.; Carra, E.; Rugna, G.; Taddei, R.; Lelli, D.; Dottori, M. Co-Circulation of Phleboviruses and Leishmania Parasites in Sand Flies from a Single Site in Italy Monitored between 2017 and 2020. Viruses 2021, 13, 1660. [Google Scholar] [CrossRef]
- Oleaga, A.; Zanet, S.; Espi, A.; Pegoraro de Macedo, M.R.; Gortazar, C.; Ferroglio, E. Leishmania in wolves in northern Spain: A spreading zoonosis evidenced by wildlife sanitary surveillance. Vet. Parasitol. 2018, 255, 26–31. [Google Scholar] [CrossRef]
- Risueno, J.; Ortuno, M.; Perez-Cutillas, P.; Goyena, E.; Maia, C.; Cortes, S.; Campino, L.; Bernal, L.J.; Munoz, C.; Arcenillas, I.; et al. Epidemiological and genetic studies suggest a common Leishmania infantum transmission cycle in wildlife, dogs and humans associated to vector abundance in Southeast Spain. Vet. Parasitol. 2018, 259, 61–67. [Google Scholar] [CrossRef]
- Battisti, E.; Zanet, S.; Khalili, S.; Trisciuoglio, A.; Hertel, B.; Ferroglio, E. Molecular Survey on Vector-Borne Pathogens in Alpine Wild Carnivorans. Front. Vet. Sci. 2020, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Dipineto, L.; Manna, L.; Baiano, A.; Gala, M.; Fioretti, A.; Gravino, A.E.; Menna, L.F. Presence of Leishmania infantum in red foxes (Vulpes vulpes) in southern Italy. J. Wildl. Dis. 2007, 43, 518–520. [Google Scholar] [CrossRef] [Green Version]
- Ranieri, V.; Poli, A.; Ariti, G.; Nardoni, S.; Bertuccelli, M. Fanucchi Manciant Detection of Leishmania infantum DNA in tissues of free-ranging red foxes (Vulpes vulpes) in Central Italy. Eur. J. Wildl. Res. 2010, 56, 689–692. [Google Scholar]
- Abbate, J.M.; Arfuso, F.; Napoli, E.; Gaglio, G.; Giannetto, S.; Latrofa, M.S.; Otranto, D.; Brianti, E. Leishmania infantum in wild animals in endemic areas of southern Italy. Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101374. [Google Scholar] [CrossRef]
- Criado-Fornelio, A.; Gutierrez-Garcia, L.; Rodriguez-Caabeiro, F.; Reus-Garcia, E.; Roldan-Soriano, M.A.; Diaz-Sanchez, M.A. A parasitological survey of wild red foxes (Vulpes vulpes) from the province of Guadalajara, Spain. Vet. Parasitol. 2000, 92, 245–251. [Google Scholar] [CrossRef]
- Sobrino, R.; Ferroglio, E.; Oleaga, A.; Romano, A.; Millan, J.; Revilla, M.; Arnal, M.C.; Trisciuoglio, A.; Gortazar, C. Characterization of widespread canine leishmaniasis among wild carnivores from Spain. Vet. Parasitol 2008, 155, 198–203. [Google Scholar] [CrossRef]
- Del Rio, L.; Chitimia, L.; Cubas, A.; Victoriano, I.; de la Rua, P.; Gerrikagoitia, X.; Barral, M.; Munoz-Garcia, C.I.; Goyena, E.; Garcia-Martinez, D.; et al. Evidence for widespread Leishmania infantum infection among wild carnivores in L. infantum periendemic northern Spain. Prev. Vet. Med. 2014, 113, 430–435. [Google Scholar] [CrossRef]
- Petrisceva, P.A. The natural focality of leishmaniasis in the USSR. Bull. World Health Organ. 1971, 44, 567–576. [Google Scholar]
- Magri, A.; Galuppi, R.; Fioravanti, M.; Caffara, M. Survey on the presence of Leishmania sp. in peridomestic rodents from the Emilia-Romagna Region (North-Eastern Italy). Vet. Res. Commun. 2022, 2022, 1–6. [Google Scholar] [CrossRef]
- Calzolari, M.; Romeo, G.; Munari, M.; Bonilauri, P.; Taddei, R.; Sampieri, M.; Bariselli, S.; Rugna, G.; Dottori, M. Sand Flies and Pathogens in the Lowlands of Emilia-Romagna (Northern Italy). Viruses 2022, 14, 2209. [Google Scholar] [CrossRef]
- Ruiz-Fons, F.; Ferroglio, E.; Gortazar, C. Leishmania infantum in free-ranging hares, Spain, 2004–2010. Eurosurveillance 2013, 18, 20541. [Google Scholar] [CrossRef] [Green Version]
- Tsokana, C.N.; Sokos, C.; Giannakopoulos, A.; Mamuris, Z.; Birtsas, P.; Papaspyropoulos, K.; Valiakos, G.; Spyrou, V.; Lefkaditis, M.; Chatzopoulos, D.C.; et al. First evidence of Leishmania infection in European brown hare (Lepus europaeus) in Greece: GIS analysis and phylogenetic position within the Leishmania spp. Parasitol. Res. 2016, 115, 313–321. [Google Scholar] [CrossRef]
- Gradoni, L.; Pozio, E.; Gramiccia, M.; Maroli, M.; Bettini, S. Leishmaniasis in Tuscany (Italy): VII. Studies on the role of the black rat, Rattus rattus, in the epidemiology of visceral leishmaniasis. Trans R. Soc. Trop. Med. Hyg. 1983, 77, 427–431. [Google Scholar] [CrossRef]
- Molina, R.; Jimenez, M.I.; Cruz, I.; Iriso, A.; Martin-Martin, I.; Sevillano, O.; Melero, S.; Bernal, J. The hare (Lepus granatensis) as potential sylvatic reservoir of Leishmania infantum in Spain. Vet. Parasitol. 2012, 190, 268–271. [Google Scholar] [CrossRef]
- Millan, J.; Ferroglio, E.; Solano-Gallego, L. Role of wildlife in the epidemiology of Leishmania infantum infection in Europe. Parasitol. Res. 2014, 113, 2005–2014. [Google Scholar] [CrossRef]
- Alcover, M.M.; Riera, M.C.; Fisa, R. Leishmaniosis in Rodents Caused by Leishmania infantum: A Review of Studies in the Mediterranean Area. Front. Vet. Sci. 2021, 8, 702687. [Google Scholar] [CrossRef]
- Munoz-Madrid, R.; Belinchon-Lorenzo, S.; Iniesta, V.; Fernandez-Cotrina, J.; Parejo, J.C.; Serrano, F.J.; Monroy, I.; Baz, V.; Gomez-Luque, A.; Gomez-Nieto, L.C. First detection of Leishmania infantum kinetoplast DNA in hair of wild mammals: Application of qPCR method to determine potential parasite reservoirs. Acta Trop. 2013, 128, 706–709. [Google Scholar] [CrossRef]
- Miro, G.; Troyano, A.; Montoya, A.; Farinas, F.; Fermin, M.L.; Flores, L.; Rojo, C.; Checa, R.; Galvez, R.; Marino, V.; et al. First report of Leishmania infantum infection in the endangered orangutan (Pongo pygmaeus pygmaeus) in Madrid, Spain. Parasit. Vectors 2018, 11, 185. [Google Scholar] [CrossRef] [Green Version]
- Azami-Conesa, I.; Gomez-Munoz, M.T.; Martinez-Diaz, R.A. A Systematic Review (1990–2021) of Wild Animals Infected with Zoonotic Leishmania. Microorganisms 2021, 9, 1101. [Google Scholar] [CrossRef]
- Mhadhbi, M.; Sassi, A. Infection of the equine population by Leishmania parasites. Equine Vet. J. 2020, 52, 28–33. [Google Scholar] [CrossRef]
- Paixao-Marques, M.D.S.; Alves-Martin, M.F.; Guiraldi, L.M.; Dos Santos, W.J.; de Lemos, F.A.; Sanchez, G.P.; Richini-Pereira, V.B.; Lucheis, S.B. First isolation of Leishmania infantum by blood culture in bovines from endemic area for canine visceral leishmaniasis. Parasitology 2019, 146, 911–913. [Google Scholar] [CrossRef]
- Moraes-Silva, E.; Antunes, F.R.; Rodrigues, M.S.; da Silva Juliao, F.; Dias-Lima, A.G.; Lemos-de-Sousa, V.; de Alcantara, A.C.; Reis, E.A.; Nakatani, M.; Badaro, R.; et al. Domestic swine in a visceral leishmaniasis endemic area produce antibodies against multiple Leishmania infantum antigens but apparently resist to L. infantum infection. Acta Trop. 2006, 98, 176–182. [Google Scholar] [CrossRef]
- Brazil, R.P.; Desterro, M.D.; Nascimento, S.B.; Macau, R.P. Natural infection of a pig (Sus scrofa) by Leishmania in a recent focus of cutaneous leishmaniasis on the Island of Sao Luis, Maranhao. Mem. Inst. Oswaldo Cruz 1987, 82, 145. [Google Scholar] [CrossRef] [Green Version]
- Martin-Sanchez, J.; Torres-Medina, N.; Morillas-Marquez, F.; Corpas-Lopez, V.; Diaz-Saez, V. Role of wild rabbits as reservoirs of leishmaniasis in a non-epidemic Mediterranean hot spot in Spain. Acta Trop. 2021, 222, 106036. [Google Scholar] [CrossRef]
- Ortega-Garcia, M.V.; Salguero, F.J.; Rodriguez-Bertos, A.; Moreno, I.; Garcia, N.; Garcia-Seco, T.; Luz Torre, G.; Dominguez, L.; Dominguez, M. A pathological study of Leishmania infantum natural infection in European rabbits (Oryctolagus cuniculus) and Iberian hares (Lepus granatensis). Transbound. Emerg. Dis. 2019, 66, 2474–2481. [Google Scholar] [CrossRef]
- Aslan, H.; Oliveira, F.; Meneses, C.; Castrovinci, P.; Gomes, R.; Teixeira, C.; Derenge, C.A.; Orandle, M.; Gradoni, L.; Oliva, G.; et al. New Insights into the Transmissibility of Leishmania infantum From Dogs to Sand Flies: Experimental Vector-Transmission Reveals Persistent Parasite Depots at Bite Sites. J. Infect. Dis. 2016, 213, 1752–1761. [Google Scholar] [CrossRef] [Green Version]
- Arumugam, S.; Scorza, B.M.; Petersen, C. Visceral Leishmaniasis and the Skin: Dermal Parasite Transmission to Sand Flies. Pathogens 2022, 11, 610. [Google Scholar] [CrossRef] [PubMed]
- Svobodova, M.; Votypka, J. Experimental transmission of Leishmania tropica to hamsters and mice by the bite of Phlebotomus sergenti. Microbes Infect. 2003, 5, 471–474. [Google Scholar] [CrossRef]
- Ready, P.D. Biology of phlebotomine sand flies as vectors of disease agents. Annu. Rev. Entomol. 2013, 58, 227–250. [Google Scholar] [CrossRef]
- World Health Organization. Report of a meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, Switzerland, 22–26 March 2010. In Proceedings of the WHO Technical Report Series, Geneva, Switzerland, 22–26 March 2010; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Chaves, L.F.; Hernandez, M.; Dobson, A.P.; Pascual, M. Sources and sinks: Revisiting the criteria for identifying reservoirs for American cutaneous leishmaniasis. Trends Parasitol. 2007, 23, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Chicharro, C.; Llanes-Acevedo, I.P.; Garcia, E.; Nieto, J.; Moreno, J.; Cruz, I. Molecular typing of Leishmania infantum isolates from a leishmaniasis outbreak in Madrid, Spain, 2009 to 2012. Eurosurveillance 2013, 18, 20545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortes, S.; Mauricio, I.L.; Kuhls, K.; Nunes, M.; Lopes, C.; Marcos, M.; Cardoso, L.; Schonian, G.; Campino, L. Genetic diversity evaluation on Portuguese Leishmania infantum strains by multilocus microsatellite typing. Infect. Genet. Evol. 2014, 26, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Pomares, C.; Marty, P.; Banuls, A.L.; Lemichez, E.; Pratlong, F.; Faucher, B.; Jeddi, F.; Moore, S.; Michel, G.; Aluru, S.; et al. Genetic Diversity and Population Structure of Leishmania infantum from Southeastern France: Evaluation Using Multi-Locus Microsatellite Typing. PLoS Negl. Trop. Dis. 2016, 10, e0004303. [Google Scholar] [CrossRef] [Green Version]
- El Hamouchi, A.; El Kacem, S.; Ejghal, R.; Lemrani, M. Genetic polymorphism in Leishmania infantum isolates from human and animals determined by nagt PCR-RFLP. Infect Dis. Poverty 2018, 7, 54. [Google Scholar] [CrossRef]
Order | Species | Earlobe | Spleen | Total | |||
---|---|---|---|---|---|---|---|
Positive (Tested) | Prevalence (CI 95%) | Positive (Tested) | Prevalence (CI 95%) | Positive (Tested) | Prevalence (CI 95%) | ||
Artiodactyla | Roe deer | 36 (309) | 11.7 (8.3–15.8) | 5 (309) | 1.6 (0.5–3.7) | 38 (309) | 12.3 (8.9–16.5) |
Red deer | 1 (11) | 9.1 (0.2–41.3) | 0 (11) | 0.0 (0.0–28.5) | 1 (11) | 9.1 (0.2–41.3) | |
Wild boar | 6 (164) | 3.7 (1.4–7.8) | 2 (164) | 1.2 (0.2–4.3) | 8 (164) | 4.9 (2.1–9.4) | |
Carnivora | Wolf | 3 (18) | 16.7 (3.6–41.4) | 0 (18) | 0.0 (0.0–18.5) | 3 (18) | 16.7 (3.6–41.4) |
Red fox | 13 (319) | 4.1 (2.2–6.9) | 2 (319) | 0.6 (0.1–2.3) | 13 (319) | 4.1 (2.2–6.9) | |
European badger | 1 (59) | 1.7 (0.0–9.1) | 0 (59) | 0.0 (0.0–6.1) | 1 (59) | 1.7 (0.0–9.1) | |
Lagomorpha | European hare | 6 (39) | 15.4 (5.9–30.5) | 0 (39) | 0.0 (0.0–9.0) | 6 (39) | 15.4 (5.9–30.6) |
Rodentia | Porcupine | 1 (54) | 1.9 (0.1–9.9) | 0 (54) | 0.0 (0.0–6.6) | 1 (54) | 1.9 (0.1–9.9) |
Other species 1 | 0 (104) | - | 0 (104) | - | 0 (104) | - | |
All Species | 67 (1077) | 6.2 (4.9–7.8) | 9 (1077) | 0.8 (0.4–1.6) | 71 (1077) | 6.6 (5.2–8.2) |
Order | Species | No. of Lymph Node Positive Animals (No. Tested) | |||
---|---|---|---|---|---|
Earlobe | Spleen | Both | Total | ||
Artiodactyla | Roe deer | 2 (10) | 0 (1) | 1 (2) | 3 (13) |
Red deer | 1 (1) | 1 (1) | |||
Wild boar | 0 (1) | 0 (1) | |||
Carnivora | Wolf | 1 (3) | 1 (3) | ||
Red fox | 1 (3) | 0 (1) | 1 (4) | ||
European badger | 0 (1) | 0 (1) | |||
total | 5 (19) | 0 (1) | 1 (3) | 6 (23) |
Province | No. of Positive (Tested Animals) | Prevalence (%) | CI 95% |
---|---|---|---|
Bologna | 27 (309) | 8.7 | (5.8–12.5) |
Forlì-Cesena | 22 (188) | 11.7 | (7.5–17.2) |
Modena | 11 (250) | 4.4 | (2.2–7.7) |
Ravenna | 3 (40) | 7.5 | (1.6–20.4) |
Reggio Emilia | 1 (162) | 0.6 | (0.0–3.4) |
Rimini | 7 (128) | 5.5 | (2.2–10.9) |
Season | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Order | Species | Spring | Summer | Autumn | Winter | ||||||||
N° Positive (n° Tested) | Prevalence | 95% CI | N° Positive (n° Tested) | Prevalence | 95% CI | N° Positive (n° Tested) | Prevalence | 95% CI | N° Positive (n° Tested) | Prevalence | 95% CI | ||
Artiodactyla | Red deer | 1 (6) | 16.7 | (0.4–64.1) | 0 (5) | 0 | (0–52.2) | ||||||
Roe deer | 1 (75) | 1.3 | (0–7.2) | 6 (53) | 11.3 | (4.3–23) | 13 (64) | 20.3 | (11.3–32.2) | 18 (117) | 15.4 | (9.4–23.2) | |
Wild boar | 1 (10) | 10 | (0.3–44.5) | 0 (21) | 0 | (0–16.1) | 3 (77) | 3.9 | (0.8–11) | 4 (56) | 7.1 | (2–17.3) | |
Carnivora | European badger | 1 (6) | 16.7 | (0.4–64.1) | 0 (10) | 0 | (0–30.8) | 0 (21) | 0 | (0–16.1) | 0 (22) | 0 | (0–15.4) |
Red fox | 0 (4) | 0 | (0–60.2) | 5 (157) | 3.2 | (1–7.3) | 4 (64) | 6.3 | (1.7–15.2) | 4 (94) | 4.3 | (1.2–10.5) | |
Wolf | 0 (1) | 0 | (0–97.5) | 0 (6) | 0 | (0–45.9) | 3 (11) | 27.3 | (6–61) | ||||
Lagomorpha | European hare | 0 (7) | 0 | (0–41) | 0 (4) | 0 | (0–60.2) | 1 (16) | 6.3 | (0.2–30.2) | 5 (12) | 41.7 | (15.2–72.3) |
Porcupine | 0 (8) | 0 | (0–36.9) | 0 (13) | 0 | (0–24.7) | 0 (17) | 0 | (0–19.5) | 1 (16) | 6.3 | (0.2–30.2) | |
All species | 3 (113) | 2.7 | (0.6–7.6) | 11 (288) | 3.8 | (1.9–6.7) | 22 (329) | 6.7 | (4.2–10.0) | 35 (347) | 10.1 | (7.1–13.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taddei, R.; Bregoli, A.; Galletti, G.; Carra, E.; Fiorentini, L.; Fontana, M.C.; Frasnelli, M.; Musto, C.; Pupillo, G.; Reggiani, A.; et al. Wildlife Hosts of Leishmania infantum in a Re-Emerging Focus of Human Leishmaniasis, in Emilia-Romagna, Northeast Italy. Pathogens 2022, 11, 1308. https://doi.org/10.3390/pathogens11111308
Taddei R, Bregoli A, Galletti G, Carra E, Fiorentini L, Fontana MC, Frasnelli M, Musto C, Pupillo G, Reggiani A, et al. Wildlife Hosts of Leishmania infantum in a Re-Emerging Focus of Human Leishmaniasis, in Emilia-Romagna, Northeast Italy. Pathogens. 2022; 11(11):1308. https://doi.org/10.3390/pathogens11111308
Chicago/Turabian StyleTaddei, Roberta, Arianna Bregoli, Giorgio Galletti, Elena Carra, Laura Fiorentini, Maria Cristina Fontana, Matteo Frasnelli, Carmela Musto, Giovanni Pupillo, Alessandro Reggiani, and et al. 2022. "Wildlife Hosts of Leishmania infantum in a Re-Emerging Focus of Human Leishmaniasis, in Emilia-Romagna, Northeast Italy" Pathogens 11, no. 11: 1308. https://doi.org/10.3390/pathogens11111308
APA StyleTaddei, R., Bregoli, A., Galletti, G., Carra, E., Fiorentini, L., Fontana, M. C., Frasnelli, M., Musto, C., Pupillo, G., Reggiani, A., Santi, A., Rossi, A., Tamba, M., Calzolari, M., & Rugna, G. (2022). Wildlife Hosts of Leishmania infantum in a Re-Emerging Focus of Human Leishmaniasis, in Emilia-Romagna, Northeast Italy. Pathogens, 11(11), 1308. https://doi.org/10.3390/pathogens11111308