In-Vitro Efficacy of Cefiderocol in Carbapenem-Non-Susceptible Gram-Negative Bacilli of Different Genotypes in Sub-Region of North Rhine Westphalia, Germany
Abstract
:1. Introduction
2. Results
2.1. Enterobacterales
2.2. P. aeruginosa and A. baumannii
2.3. Cefiderocol-Susceptible Enterobacterales, P. aeruginosa and A. baumannii with Emphasis on blaOXA-23-type and blaOXA-48-type β-lactamase
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Livermore, D.M. Current Epidemiology and Growing Resistance of Gram-Negative Pathogens. Korean J. Intern. Med. 2012, 27, 128–142. [Google Scholar] [CrossRef]
- Tängdén, T.; Giske, C.G. Global dissemination of extensively drug-resistant carbapenemase-producing Enterobacteriaceae: Clinical perspectives on detection, treatment and infection control. J. Intern. Med. 2015, 277, 501–512. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Xu, J.; Murphy, S.; Arias, E.; Kochanek, K. Deaths: Final Data for 2019. Natl. Vital Stat. Rep. 2021, 70. [Google Scholar] [CrossRef]
- Hall, M.J.; Levant, S.; DeFrances, C.J. Trends in Inpatient Hospital Deaths: National Hospital Discharge Survey, 2000–2010; No. 118; US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Washington, DC, USA, 2013; pp. 1–8.
- Liu, V.; Escobar, G.J.; Greene, J.D.; Soule, J.; Whippy, A.; Angus, D.C.; Iwashyna, T.J. Hospital Deaths in Patients With Sepsis From 2 Independent Cohorts. J. Am. Med. Assoc. 2014, 312, 90–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandra, S.; Trett, A.; Klein, E.Y.; Laxminarayan, R. Is Antimicrobial Resistance a Bigger Problem in Tertiary Care Hospitals Than in Small Community Hospitals in the United States? Clin. Infect. Dis. 2017, 65, 860–863. [Google Scholar] [CrossRef] [PubMed]
- WHO. New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis. Available online: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (accessed on 25 September 2021).
- Burnham, J.P.; Olsen, M.A.; Kollef, M.H. Re-estimating annual deaths due to multidrug-resistant organism infections. Infect. Control. Hosp. Epidemiol. 2018, 40, 112–113. [Google Scholar] [CrossRef] [Green Version]
- Antimicrobial Threats Report by the Center of Disease Control and Prevention (CDC). 2019. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 25 September 2021).
- ECDC. Antibiotic Resistance—An Increasing Threat to Human Health. Available online: https://antibiotic.ecdc.europa.eu/en/publications-data/antibiotic-resistance-increasing-threat-human-health (accessed on 25 September 2021).
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2018, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of the Siderophore Cephalosporin, Cefiderocol, against Carbapenem-Nonsusceptible and Multidrug-Resistant Isolates of Gram-Negative Bacilli Collected Worldwide in 2014 to 2016. Antimicrob. Agents Chemother. 2018, 62, e0196817. [Google Scholar] [CrossRef] [Green Version]
- Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; et al. Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef]
- Kazmierczak, K.M.; Tsuji, M.; Wise, M.G.; Hackel, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In vitro activity of cefiderocol, a siderophore cephalosporin, against a recent collection of clinically relevant carbapenem-non-susceptible Gram-negative bacilli, including serine carbapenemase- and metallo-β-lactamase-producing isolates (SIDERO-WT-2014 Study). Int. J. Antimicrob. Agents 2019, 53, 177–184. [Google Scholar] [CrossRef]
- Sato, T.; Yamawaki, K. Cefiderocol: Discovery, Chemistry, and In Vivo Profiles of a Novel Siderophore Cephalosporin. Clin. Infect. Dis. 2019, 69, S538–S543. [Google Scholar] [CrossRef] [Green Version]
- Naas, T.; Lina, G.; Santerre Henriksen, A.; Longshaw, C.; Jehl, F. In vitro activity of cefiderocol and comparators against isolates of Gram-negative pathogens from a range of infection sources: SIDERO-WT-2014-2018 studies in France. JAC Antimicrob. Resist. 2021, 3, dlab081. [Google Scholar] [CrossRef]
- Mushtaq, S.; Sadouki, Z.; Vickers, A.; Livermore, D.M.; Woodford, N. In Vitro Activity of Cefiderocol, a Siderophore Cephalosporin, against Multidrug-Resistant Gram-Negative Bacteria. Antimicrob Agents Chemother. 2020, 64, e01582-20. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Kaminski, M.; Landman, D.; Quale, J. Cefiderocol Resistance in Acinetobacter baumannii: Roles of β-Lactamases, Siderophore Receptors, and Penicillin Binding Protein 3. Antimicrob Agents Chemother. 2020, 64, e0122120. [Google Scholar] [CrossRef] [PubMed]
- Iregui, A.; Khan, Z.; Landman, D.; Quale, J. Activity of Cefiderocol Against Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii Endemic to Medical Centers in New York City. Microb. Drug Resist. 2020, 26, 722–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Sadek, M.; Nordmann, P. Contribution of PER-type and NDM-type ß-lactamases to cefiderocol resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2021, 65, e0087721. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.R.; Abdelhamed, A.M.; Good, C.E.; Rhoads, D.D.; Hujer, A.M.; Domitrovic, T.N.; Rudin, S.D.; Richter, S.S.; van Duin, D.; Kreiswirth, B.N. ARGONAUT-I: Activity of cefiderocol (S-649266), a siderophore cephalosporin, against Gram-negative bacteria, including carbapenem-resistant nonfermenters and Enterobacteriaceae with defined extended-spectrum β-lactamases and carbapenemases. Antimicrob. Agents Chemother. 2019, 63, e0180118. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Nishikawa, T.; Matsumoto, S.; Yoshizawa, H.; Sato, T.; Nakamura, R.; Tsuji, M.; Yamano, Y. Siderophore Cephalosporin Cefiderocol Utilizes Ferric Iron Transporter Systems for Antibacterial Activity against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2016, 60, 7396–7401. [Google Scholar] [CrossRef] [Green Version]
- Ito-Horiyama, T.; Ishii, Y.; Ito, A.; Sato, T.; Nakamura, R.; Fukuhara, N.; Tsuji, M.; Yamano, Y.; Yamaguchi, K.; Tateda, K. Stability of Novel Siderophore Cephalosporin S-649266 against Clinically Relevant Carbapenemases. Antimicrob. Agents Chemother. 2016, 60, 4384–4386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Kieffer, N.; Nordmann, P. Stability of cefiderocol against clinically significant broad-spectrum oxacillinases. Int. J. Antimicrob. Agents 2018, 52, 866–867. [Google Scholar] [CrossRef] [Green Version]
- Smiljanic, M.; Kaase, M.; Ahmad-Nejad, P.; Ghebremedhin, B. Comparison of in-house and commercial real time-PCR based carbapenemase gene detection methods in Enterobacteriaceae and non-fermenting gram-negative bacterial isolates. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pazzini, C.; Ahmad-Nejad, P.; Ghebremedhin, B. Ceftolozane/tazobactam susceptibility testing in extended-spectrum betalactamase- and carbapenemase-producing gram-negative bacteria of various clonal lineages. Eur. J. Microbiol. Immunol. 2019, 9, 1–4. [Google Scholar] [CrossRef]
- Ghebremedhin, B.; Halstenbach, A.; Smiljanić, M.; Kaase, M.; Ahmad-Nejad, P. MALDI-TOF MS based carbapenemase detection from culture isolates and from positive blood culture vials. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodford, N.; Ellington, M.J.; Coelho, J.M.; Turton, J.; Ward, M.E.; Brown, S.; Amyes, S.G.; Livermore, D.M. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 2006, 27, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Kresken, M.; Körber-Irrgang, B.; Korte-Berwanger, M.; Pfennigwerth, N.; Gatermann, S.G.; Seifert, H. German Carbapenem Resistance Study Group Dissemination of carbapenem-resistant Pseudomonas aeruginosa isolates and their susceptibilities to ceftolozane-tazobactam in Germany. Int. J. Antimicrob. Agents 2020, 55, 105959. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of Mics and Zone Diameters, (Version 11.0). The European Committee on Antimicrobial Susceptibility Testing. 2021. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.pdf (accessed on 31 August 2021).
MIC in mg/L | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GNB Species | 0.016 | 0.023 | 0.032 | 0.047 | 0.064 | 0.094 | 0.125 | 0.19 | 0.25 | 0.38 | 0.39 | 0.5 | 0.75 | 1 | 1.5 | 2 | 3 | 4 | 8 | 9 | 12 | 16 | 17 | 24 | Total (Species) |
A. baumannii | 2 | 1 | 1 | 5 | 2 | 5 | 1 | 2 | 3 | 3 | 3 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 39 | ||||||
C. freundii | 1 | 1 | 1 | 3 | |||||||||||||||||||||
E. cloacae | 1 | 2 | 1 | 4 | |||||||||||||||||||||
E. coli | 4 | 1 | 1 | 2 | 1 | 1 | 1 | 11 | |||||||||||||||||
K. aerogenes | 1 | 1 | 2 | ||||||||||||||||||||||
K. oxytoca | 1 | 1 | 2 | ||||||||||||||||||||||
K. pneumoniae | 4 | 5 | 2 | 4 | 2 | 3 | 2 | 2 | 3 | 2 | 4 | 2 | 1 | 36 | |||||||||||
P. aeruginosa | 2 | 2 | 3 | 1 | 1 | 1 | 4 | 1 | 15 | ||||||||||||||||
R. ornithinolytica | 1 | 1 | |||||||||||||||||||||||
S. marcescens | 1 | 1 | 2 | ||||||||||||||||||||||
total (isolates) | 14 | 5 | 3 | 4 | 3 | 1 | 5 | 7 | 8 | 9 | 1 | 8 | 4 | 5 | 8 | 10 | 3 | 3 | 1 | 1 | 2 | 5 | 1 | 1 | 115 |
MIC mg/L Cefiderocol | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
3 | 4 | 8 | 9 | 12 | 16 | 17 | 24 | |||
GNB Species | n | R% | ||||||||
A. baumannii | 1 | 2 | 1 | 2 | 2 | 1 | 9 | 23.1% | ||
NDM-1/-6 + OXA-23 | 1 | 1 | ||||||||
NDM-9 | 1 | 1 | ||||||||
OXA-23 | 1 | 1 | 1 | 2 | 1 | 1 | 7 | |||
E. cloacae | 1 | 1 | 25.0% | |||||||
VIM-1/OXA-48 | 1 | 1 | ||||||||
K. aerogenes | 1 | 1 | 50.0% | |||||||
AmpC | 1 | 1 | ||||||||
K. oxytoca | 1 | 1 | 50.0% | |||||||
VIM-4 | 1 | 1 | ||||||||
K. pneumoniae | 4 | 2 | 1 | 7 | 19.4% | |||||
ESBL | 2 | 2 | ||||||||
KPC-2 | 1 | 1 | 2 | |||||||
NDM-1/NDM-6/NDM-16/OXA-48 | 1 | 1 | ||||||||
NDM-5/-20 | 1 | 1 | ||||||||
NDM-7/NDM-19 | 1 | 1 | ||||||||
P. aeruginosa | 1 | 1 | 6.7% | |||||||
AmpC | 1 | 1 | ||||||||
total | 6 | 3 | 1 | 1 | 2 | 5 | 1 | 1 | 20 |
MIC mg/L Cefiderocol | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GNB Species, Genes | 0.016 | 0.023 | 0.032 | 0.047 | 0.064 | 0.094 | 0.125 | 0.19 | 0.25 | 0.38 | 0.39 | 0.5 | 0.75 | 1.0 | 1.5 | 2.0 | n |
A. baumannii | 2 | 1 | 1 | 5 | 2 | 5 | 1 | 2 | 3 | 3 | 3 | 2 | 30 | ||||
GIM-1 | 1 | 1 | |||||||||||||||
NDM-1/-6 | 1 | 1 | 2 | ||||||||||||||
NDM-1/-6 + OXA-23 | 1 | 1 | |||||||||||||||
NDM-2 | 1 | 1 | |||||||||||||||
OXA-164 | 1 | 1 | |||||||||||||||
OXA-23 | 1 | 5 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 17 | |||||||
OXA-40 | 1 | 1 | |||||||||||||||
OXA-58 | 1 | 1 | 2 | ||||||||||||||
OXA-72 | 1 | 2 | 1 | 4 | |||||||||||||
E. coli | 4 | 1 | 1 | 2 | 1 | 1 | 1 | 11 | |||||||||
KPC-2 | 1 | 1 | |||||||||||||||
KPC-3 | 2 | 2 | |||||||||||||||
NDM-3 | 1 | 1 | |||||||||||||||
NDM-5 | 1 | 1 | 2 | ||||||||||||||
OXA-181 | 1 | 1 | 2 | ||||||||||||||
OXA-48 | 2 | 1 | 3 | ||||||||||||||
K. pneumoniae | 4 | 5 | 2 | 4 | 2 | 3 | 2 | 2 | 3 | 2 | 29 | ||||||
ESBL + other mechanisms | 1 | 1 | |||||||||||||||
KPC-2 | 1 | 1 | 1 | 3 | |||||||||||||
KPC-3 | 1 | 1 | 1 | 1 | 4 | ||||||||||||
NDM-1/-6 | 1 | 1 | |||||||||||||||
NDM-1/NDM-6/NDM-16 | 1 | 1 | |||||||||||||||
OXA-181 | 1 | 1 | 2 | ||||||||||||||
OXA-181/OXA-48 | 1 | 1 | |||||||||||||||
OXA-204 | 1 | 1 | |||||||||||||||
OXA-232 | 1 | 1 | |||||||||||||||
OXA-48 | 2 | 4 | 1 | 3 | 1 | 1 | 12 | ||||||||||
VIM-1 | 1 | 1 | |||||||||||||||
VIM-2 | 1 | 1 | |||||||||||||||
P. aeruginosa | 2 | 2 | 3 | 1 | 1 | 1 | 4 | 14 | |||||||||
AmpC + other mechanisms | 1 | 1 | 1 | 2 | 5 | ||||||||||||
VIM-2 | 2 | 2 | 2 | 1 | 2 | 9 | |||||||||||
total isolates | 10 | 5 | 2 | 4 | 2 | 1 | 5 | 7 | 7 | 9 | 1 | 8 | 4 | 5 | 5 | 9 | 84 |
GNB Species, Harbored Genes | n | % of Total Isolates |
---|---|---|
A. baumannii | 39 | 33.91% |
GIM-1 | 1 | |
NDM-1/-6 | 2 | |
NDM-1/-6 + OXA-23 | 2 | |
NDM-2 | 1 | |
NDM-9 | 1 | |
OXA-164 | 1 | |
OXA-23 | 24 | |
OXA-40 | 1 | |
OXA-58 | 2 | |
OXA-72 | 4 | |
C. freundii | 3 | 2.61% |
AmpC | 1 | |
OXA-162 | 1 | |
VIM-1 | 1 | |
E. cloacae | 4 | 3.48% |
NDM-1/-6 | 1 | |
VIM-1 | 1 | |
VIM-1/OXA-48 | 1 | |
VIM-4 | 1 | |
E. coli | 11 | 9.57% |
KPC-2 | 1 | |
KPC-3 | 2 | |
NDM-3 | 1 | |
NDM-5 | 2 | |
OXA-181 | 2 | |
OXA-48 | 3 | |
K. aerogenes | 2 | 1.74% |
AmpC | 1 | |
OXA-48 | 1 | |
K. oxytoca | 2 | 1.74% |
KPC-2 | 1 | |
VIM-4 | 1 | |
K. pneumoniae | 36 | 31.30% |
ESBL | 3 | |
KPC-2 | 5 | |
KPC-3 | 4 | |
NDM-1/-6 | 1 | |
NDM-1/NDM-6/NDM-16 | 1 | |
NDM-1/NDM-6/NDM-16/OXA-48 | 1 | |
NDM-5/-20 | 1 | |
NDM-7/NDM-19 | 1 | |
OXA-181 | 2 | |
OXA-181/OXA-48 | 1 | |
OXA-204 | 1 | |
OXA-232 | 1 | |
OXA-48 | 12 | |
VIM-1 | 1 | |
VIM-2 | 1 | |
P. aeruginosa | 15 | 13.04% |
AmpC | 6 | |
VIM-2 | 9 | |
R. ornithinolytica | 1 | 0.87% |
KPC-2 | 1 | |
S. marcescens | 2 | 1.74% |
OXA-48 | 1 | |
VIM-1 | 1 | |
total | 115 |
Gram-Negative Bacilli | MIC (mg/L) | Inhibition Zone Diameter (mm) | ||
---|---|---|---|---|
S | R | S | R | |
Enterobacterales spp. | ≤2 | >2 | ≥22 | <22 |
Pseudomonas aeruginosa | ≤2 | >2 | ≥22 | <22 |
Acinetobacter baumannii | ≤2 § | >2 § | ≥17 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghebremedhin, B.; Ahmad-Nejad, P. In-Vitro Efficacy of Cefiderocol in Carbapenem-Non-Susceptible Gram-Negative Bacilli of Different Genotypes in Sub-Region of North Rhine Westphalia, Germany. Pathogens 2021, 10, 1258. https://doi.org/10.3390/pathogens10101258
Ghebremedhin B, Ahmad-Nejad P. In-Vitro Efficacy of Cefiderocol in Carbapenem-Non-Susceptible Gram-Negative Bacilli of Different Genotypes in Sub-Region of North Rhine Westphalia, Germany. Pathogens. 2021; 10(10):1258. https://doi.org/10.3390/pathogens10101258
Chicago/Turabian StyleGhebremedhin, Beniam, and Parviz Ahmad-Nejad. 2021. "In-Vitro Efficacy of Cefiderocol in Carbapenem-Non-Susceptible Gram-Negative Bacilli of Different Genotypes in Sub-Region of North Rhine Westphalia, Germany" Pathogens 10, no. 10: 1258. https://doi.org/10.3390/pathogens10101258
APA StyleGhebremedhin, B., & Ahmad-Nejad, P. (2021). In-Vitro Efficacy of Cefiderocol in Carbapenem-Non-Susceptible Gram-Negative Bacilli of Different Genotypes in Sub-Region of North Rhine Westphalia, Germany. Pathogens, 10(10), 1258. https://doi.org/10.3390/pathogens10101258