A Brief Note on the Nix–Gao Strain Gradient Plasticity Theory
Abstract
1. Introduction
- Is Equation (1) a constitutive relation, a balance law, or a combination of both?
- Whether the nonlocal term is energetic or dissipative, or even whether or not the theory is consistent with thermodynamics?
2. Kinematic Relations
3. Virtual-Power Principle and Force Balances
- Macroscopic force balance with concomitant macrotraction condition
- Microscopic force balance and its concomitant microtraction condition
4. Free Energy, Constitutive Relations, and Gurtin–Anand Flow Rule [34]
5. Mathematical Nature of the Nix–Gao Flow Rule
- Is the Nix–Gao flow rule, Equation (28), a constitutive relation, a balance law, or a combination of both?
- Whether the nonlocal term is energetic or dissipative, or even whether or not the theory is consistent with the laws of thermodynamics?
- (i)
- Microforce balance
- (ii)
- Constitutive relations for the microscopic stresseswhere , and a comparison with Equation (25) implies that has the specific form
- (iii)
- Flow rule of Aifantis (i.e., Equation (27))substituting Equation (31) into Equation (28), we arrive atand making use of Equations (30) and (31), we haveThus,
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nix, W.D.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Fleck, N.A.; Muller, G.M.; Ashby, M.F.; Hutchinson, J.W. Strain gradient plasticity: Theory and experiment. Acta Met. Mater. 1994, 42, 475–487. [Google Scholar] [CrossRef]
- Liu, D.; He, Y.; Dunstan, D.J.; Zhang, B.; Gan, Z.; Hu, P.; Ding, H. Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment. Int. J. Plast. 2013, 41, 30–52. [Google Scholar] [CrossRef]
- Liu, D.; He, Y.; Dunstan, D.J.; Zhang, B.; Gan, Z.; Hu, P.; Ding, H. Anomalous plasticity in the cyclic torsion of micron scale metallic wires. Phys. Rev. Lett. 2013, 110, 244301. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; He, Y.; Lei, J.; Li, Z.; Liu, D. Individual strain gradient effect on torsional strength of electropolished microscale copper wires. Scr. Mater. 2017, 130, 124–127. [Google Scholar] [CrossRef]
- Stölken, J.S.; Evans, A.G. A microbend test method for measuring the plasticity length scale. Acta Mater. 1998, 46, 5109–5115. [Google Scholar] [CrossRef]
- Ehrler, B.; Hou, X.; Zhu, T.T.; P'Ng, K.M.Y.; Walker, C.J.; Bushby, A.J.; Dunstan, D.J. Grain size and sample size interact to determine strength in a soft metal. Philos. Mag. 2008, 88, 3043–3050. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y. Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later. JOM 2016, 68, 1216–1226. [Google Scholar] [CrossRef]
- Estrin, Y.; Vinogradov, A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013, 61, 782–817. [Google Scholar] [CrossRef]
- Beygelzimer, Y. Vortices and mixing in metals during severe plastic deformation. Mater. Sci. Forum 2011, 683, 213–224. [Google Scholar] [CrossRef]
- Beygelzimer, Y.; Valiev, R.; Varyukhin, V. Simple shear: Double-stage deformation. Mater. Sci. Forum 2010, 667–669, 97–102. [Google Scholar] [CrossRef]
- Kulagin, R.; Beygelzimer, Y.; Ivanisenko, Y.; Mazilkin, A.; Straumal, B.; Hahn, H. Instabilities of interfaces between dissimilar metals induced by high pressure torsion. Mater. Lett. 2018, 222, 172–175. [Google Scholar] [CrossRef]
- Lapovok, R.; Dalla Torre, F.H.; Sandlin, J.; Davies, C.H.J.; Pereloma, E.V.; Thomson, P.F.; Estrin, Y. Gradient plasticity constitutive model reflecting the ultrafine micro-structure scale: The case of severely deformed copper. J. Mech. Phys. Solids 2005, 53, 729–747. [Google Scholar] [CrossRef]
- Aifantis, E.C. On the microstructural origin of certain inelastic models. J. Eng. Mater. ASME 1984, 106, 326–330. [Google Scholar] [CrossRef]
- Aifantis, E.C. The physics of plastic deformation. Int. J. Plast. 1987, 3, 211–247. [Google Scholar] [CrossRef]
- Kröner, E. Kontinuumstheorie der Versetzungen und Eigenspannungen; Springer: Berlin/Heidelberg, Germany, 1958; ISBN 978-3-540-02261-9. [Google Scholar]
- Teodosiu, C. A Dynamic Theory of Dislocations and Its Applications to Theory of Elastic-Plastic Continuum, Fundamental Aspects of Dislocation Theory; U.S. Government Printing Office: Washington, WA, USA, 1970; pp. 837–876.
- Lardner, R.W. Dislocation dynamics and the theory of the plasticity of single crystals. ZAMP 1969, 20, 514–529. [Google Scholar] [CrossRef]
- Ashby, M.F. The deformation of plastically non-homogeneous materials. Philos. Mag. 1970, 21, 399–424. [Google Scholar] [CrossRef]
- Nye, J.F. Some geometrical relations in dislocated crystals. Acta Metall. 1953, 1, 153–162. [Google Scholar] [CrossRef]
- Fleck, N.A.; Hutchinson, J.W.; Willis, J.R. Guidelines for constructing strain gradient plasticity theories. J. Appl. Mech. 2015, 82, 071002. [Google Scholar] [CrossRef]
- Lubarda, V.A. On the recoverable and dissipative parts of higher order stresses in strain gradient plasticity. Int. J. Plast. 2016, 78, 26–43. [Google Scholar] [CrossRef]
- Bardella, L. Strain gradient plasticity. Encycl. Continuum Mech. 2017, 1–13. [Google Scholar] [CrossRef]
- Liu, D.; Dunstan, D.J. Material length scale of strain gradient plasticity: A physical interpretation. Int. J. Plast. 2017, 98, 156–174. [Google Scholar] [CrossRef]
- Beaudoin, A.; Acharya, A. A model for rate-dependent flow of metal polycrystals based on the slip plane lattice incompatibility. Mat. Sci. Eng. A Struct. 2001, 309, 411–415. [Google Scholar] [CrossRef]
- Bammann, D.J. A model of crystal plasticity containing a natural length scale. Mater. Sci. Eng. A Struct. 2001, 309, 406–410. [Google Scholar] [CrossRef]
- Clayton, J.D.; McDowell, D.L.; Bammann, D.J. Modeling dislocations and disclinations with finite micropolar elastoplasticity. Int. J. Plast. 2006, 22, 210–256. [Google Scholar] [CrossRef]
- Steinmann, P. Views on multiplicative elastoplasticity and the continuum theory of dislocations. Int. J. Eng. Sci. 1996, 34, 1717–1735. [Google Scholar] [CrossRef]
- Shizawa, K.; Zbib, H.M. A thermodynamical theory of plastic spin and internal stress with dislocation density tensor. J. Eng. Mater. 1999, 121, 247–253. [Google Scholar] [CrossRef]
- Le, K.C.; Stumpf, H. A model of elastoplastic bodies with continuously distributed dislocations. Int. J. Plast. 1996, 12, 611–627. [Google Scholar] [CrossRef]
- Fleck, N.A.; Hutchinson, J.W. A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 2001, 49, 2245–2271. [Google Scholar] [CrossRef]
- Mühlhaus, H.B.; Aifantis, E.C. A variational principle for gradient plasticity. Int. J. Solids Struct. 1991, 28, 845–857. [Google Scholar] [CrossRef]
- Gudmundson, P. A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 2004, 52, 1379–1406. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Anand, L. Thermodynamics applied to gradient theories involving the accumulated plastic strain: The theories of aifantis and fleck and hutchinson and their generalization. J. Mech. Phys. Solids 2009, 57, 405–421. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Anand, L. A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part i: Small deformations. J. Mech. Phys. Solids 2005, 53, 1624–1649. [Google Scholar] [CrossRef]
- Hutchinson, J.W. Generalizing j(2) flow theory: Fundamental issues in strain gradient plasticity. Acta Mech. Sin. 2012, 28, 1078–1086. [Google Scholar] [CrossRef]
- Gurtin, M.E. A gradient theory of small-deformation isotropic plasticity that accounts for the burgers vector and for dissipation due to plastic spin. J. Mech. Phys. Solids 2004, 52, 2545–2568. [Google Scholar] [CrossRef]
- Fleck, N.A.; Willis, J.R. A mathematical basis for strain-gradient plasticity theory-part i: Scalar plastic multiplier. J. Mech. Phys. Solids 2009, 57, 161–177. [Google Scholar] [CrossRef]
- Fleck, N.A.; Willis, J.R. A mathematical basis for strain-gradient plasticity theory. Part ii: Tensorial plastic multiplier. J. Mech. Phys. Solids 2009, 57, 1045–1057. [Google Scholar] [CrossRef]
- Bardella, L. Some remarks on the strain gradient crystal plasticity modelling, with particular reference to the material length scales involved. Int. J. Plast. 2007, 23, 296–322. [Google Scholar] [CrossRef]
- Bardella, L. Size effects in phenomenological strain gradient plasticity constitutively involving the plastic spin. Int. J. Eng. Sci. 2010, 48, 550–568. [Google Scholar] [CrossRef]
- Bardella, L.; Panteghini, A. Modelling the torsion of thin metal wires by distortion gradient plasticity. J. Mech. Phys. Solids 2015, 78, 467–492. [Google Scholar] [CrossRef]
- Chiricotto, M.; Giacomelli, L.; Tomassetti, G. Torsion in strain-gradient plasticity: Energetic scale effects. SIAM J. Appl. Math. 2012, 72, 1169–1191. [Google Scholar] [CrossRef]
- Liu, D.; He, Y.; Shen, L.; Lei, J.; Guo, S.; Peng, K. Accounting for the recoverable plasticity and size effect in the cyclic torsion of thin metallic wires using strain gradient plasticity. Mat. Sci. Eng. A Struct. 2015, 647, 84–90. [Google Scholar] [CrossRef]
- Fleck, N.A.; Willis, J.R. Strain gradient plasticity: Energetic or dissipative? Acta Mech. Sin. 2015, 31, 465–472. [Google Scholar] [CrossRef]
- Gao, H.; Huang, Y.; Nix, W.D.; Hutchinson, J.W. Mechanism-based strain gradient plasticity-i. Theory. J. Mech. Phys. Solids 1999, 47, 1239–1263. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, H.; Nix, W.D.; Hutchinson, J.W. Mechanism-based strain gradient plasticity-ii. Analysis. J. Mech. Phys. Solids 2000, 48, 99–128. [Google Scholar] [CrossRef]
- Huang, Y.; Qu, S.; Hwang, K.C.; Li, M.; Gao, H. A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 2004, 20, 753–782. [Google Scholar] [CrossRef]
- Gao, H.; Huang, Y. Taylor-based nonlocal theory of plasticity. Int. J. Solids Struct. 2001, 38, 2615–2637. [Google Scholar] [CrossRef]
- Liu, J.; Soh, A.K. Strain gradient elasto-plasticity with a new taylor-based yield function. Acta Mech. 2016, 227, 3031–3048. [Google Scholar] [CrossRef]
- Abu Al-Rub, R.K.; Voyiadjis, G.Z. A physically based gradient plasticity theory. Int. J. Plast. 2006, 22, 654–684. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borokinni, A.S.; Liu, D. A Brief Note on the Nix–Gao Strain Gradient Plasticity Theory. Metals 2018, 8, 708. https://doi.org/10.3390/met8090708
Borokinni AS, Liu D. A Brief Note on the Nix–Gao Strain Gradient Plasticity Theory. Metals. 2018; 8(9):708. https://doi.org/10.3390/met8090708
Chicago/Turabian StyleBorokinni, A. S., and Dabiao Liu. 2018. "A Brief Note on the Nix–Gao Strain Gradient Plasticity Theory" Metals 8, no. 9: 708. https://doi.org/10.3390/met8090708
APA StyleBorokinni, A. S., & Liu, D. (2018). A Brief Note on the Nix–Gao Strain Gradient Plasticity Theory. Metals, 8(9), 708. https://doi.org/10.3390/met8090708

