The Role of Foaming Agent and Processing Route in the Mechanical Performance of Fabricated Aluminum Foams
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
Code | Process | Cell wall constituents |
---|---|---|
F1 | Alporas route | Al + (Al + Al3Ti + Al4Ca) domains + Al-Ca-Ti particles |
F2 | Alporas route | Al + (Al + Al4Ca) domains |
F3 | PM technique | Al + particles: Al3Ti, TiH2/Al3Ti, Al2O3 |
F4 | PM technique | Al + particles: CaO, CaCO3, Al2O3 |
2.2. Mechanical Properties and Damage Behavior of Cell Wall Constituents
Material/Foam Code | E , | Нh , | HV , | δА/δH | σys , | K1c, |
---|---|---|---|---|---|---|
GPa | GPa | GPa | GPa | MPa × m1/2 | ||
α-AlTi/F1, F3 | 97.0 ± 10 | 1.05 ± 0.18 | 0.40 | 0.94/0.96 | – | – |
α-Al/F2, F4 | 74.0 ± 3 | 0.54 ± 0.0 | 0.25 ± 0.01 | 0.96/0.97 | 0.40 * | – |
(Al + Al4Ca + Al3Ti)/F2, F3 | 116 ± 17 | 5.51 ± 1.27 | – | 0.72/– | – | – |
(Al + Al4Ca)/F1 | 79 ± 7 | 1.32 ± 0.15 | – | 0.90/– | – | – |
Al3Ti/F1, F3 | 220.0 ± 7 | 8.9 ± 0.9 | 5.3 ± 0.3 | 0.72/0.78 | 0.90 | 1.71 ± 0.18 |
Al4Ca/ F2 | 39.4 ± 1.4 | 2.2 ± 0.1 | 1.7 ± 0.06 | 0.64/0.63 | 0.28 | 0.78 ± 0.09 |
TiH1.92 /F1, F3 | 40.5 ± 0.2 | 1.82 ± 0.16 | 1.32 ± 0.05 | 0.72/0.78 | 0.21 | 0.71 ± 0.01 |
CaCO3/F4 | 79.0 ± 1 | 2.2 ± 0.1 | 1.60 ± 0.05 | 0.77/0.79 | 0.79 | 0.52 ± 0.20 |
CaО/F4 | 181 ** | – | 6.05 ** | –/0.67 | – | – |
Al2O3/F3, F4 | 403.9 ** | – | 25 | –/0.47 | – | 4.0 ± 0.15 |
Technical Glass | 61 | – | 5.25 ± 0.03 | –/0.29 | – | 1.17 ± 0.09 |
2.3. Compressive Response of Al-Foams
2.4. Comparison of Al-foam Compressive Strength with Theoretical Models
Kind of Al-foam | Composition of solid material | Yield strength, σys (MPa) |
---|---|---|
F1 | Al + (Al + Al3Ti + Al4Ca) domains | 42.80 ± 4.89 |
F2 | Al + (Al + Al4Ca) domains | 43.50 ± 7.1 |
F3 | Al + (Al + Al3Ti) domain traces | 41.00 ± 5.4 |
F4 | Al + CaCO3/CaO particles | 43.30 ± 3.35 |
Foam Code | Approximation | | |
---|---|---|---|
F1 (σy/σys andσpl/σys) | Equation (2)/Equation (3) | 0.35 /0.33 | 0.15 /0.25 |
F2 (σy/σys andσpl/σys) | Equation (2)/Equation (3) | 0.25/0.33 | 0.65 /0.65 |
F3 (σy /σys) | Equation (3) | 0.33 | 0.02 |
F3 (σpl/σys) | Equation (3) | 0.33 | 0.1 |
F4 (σy /σys) (1) | Equation (2) | 0.15 | 0 |
F4 (σpl/σys) (1) | Equation (2) | 0.30 | 0 |
F4 (σy /σys and σpl/σys) (2) | Equation (2) | 0.15 | 0 |
F4 (σy/σys) (3) | Equation (2) | 0.30 | 0.10 |
F4 (σpl/σys) (3) | Equation (2) | 0.33 | 0.10 |
2.5. Correlation of Al-foam Compressive Response and Damage Behavior of Cell Wall Constituents
3. Experimental
3.1. Materials and Experimental Procedure
Code | Process | Processing additives | Relative density (ρ/ρs) (1) |
---|---|---|---|
F1 | Alporas route | 1 wt.%Ca + 1 wt.%TiH2 | 0.371–0.207 |
F2 | Alporas route | 1wt.% Ca + 2 wt.% CaCO3 | 0.244–0.089 |
F3 | PM technique | 2 wt.%TiH2 | 0.165–0.075 |
F4 | PM technique | 2 wt.% CaCO3 | 0.418–0.274 |
No | Raw materials | Process |
---|---|---|
1 | Al + 1 wt.% Ca + 1wt.%Ti | Casting |
2 | Al + 1 wt.% Ca | Casting |
3 | Al alloy powder doped with 2 wt.% Ti | Hot extrusion |
4 | Powdered mixture of Al + 2 wt.% CaCO3 | Hot extrusion |
3.2. Structural Characterization
3.3. Mechanical Testing
3.4. Indentation Experiments
4. Conclusions
Acknowledgements
References
- Markaki, A.E.; Clyne, T.V. Characterization of impact response of metallic foam/ceramic laminates. Mater. Sci. Technol. 2000, 16, 785–791. [Google Scholar]
- Crupi, V.; Epasto, G.; Guglielmino, E. Impact response of aluminum sandviches for light-weight ship structures. Metals 2011, 1, 98–112. [Google Scholar]
- Ashby, M.F.; Evans, A.G.; Fleck, N.A.; Gibson, L.J. Metal Foams: A Design Guide; Butterworth-Heinemann Press: Waltham, MA, USA, 2000. [Google Scholar]
- Banhart, J. Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 2001, 46, 559–632. [Google Scholar]
- Neugebauer, R.; Hipke, J.; Hohlfeld, T.; Thummler, R. Highly damped machine tools with metal foam. In Proceedings of the International Conference Advanced metallic materials, Smolenice Castle, Slovakia, 5–7 November 2003; Jerz, J., Ed.; Institute of Materials and Machine Mechanics: Smolenice, Slovakia, 2003; pp. 214–218. [Google Scholar]
- Nakamura, T.; Gnyloskurenko, S.V.; Sakamoto, K.; Byakova, A.V.; Ishikava, R. Development of new foaming agent for metal foam. Mater. Trans. 2002, 43, 1191–1196. [Google Scholar]
- Gergely, V.; Curran, D.C.; Clyne, T.W. The FOAMCARP process: Foaming of aluminum MMCs by the chalk-aluminum reaction in precursor. Compos. Sci. Technol. 2003, 63, 2301–2310. [Google Scholar] [CrossRef]
- Byakova, A.V.; Gnyloskurenko, S.V.; Maeda, M.; Nakamura, T.; Sakamoto, K.; Podrezov, Y.N.; Ishikawa, R. Development of lightweight Al alloy and technique. Can. Metall. Q. 2005, 44, 7–12. [Google Scholar]
- Byakova, A.V.; Sirko, A.I.; Mykhalenkov, K.V.; Milman, Y.V.; Gnyloskurenko, S.V.; Nakamura, T. Progress in aluminum foam technique: Application of the carbonate foaming agent for Alporas and powder compact routes. In Porous Metals and Metal Foaming Technology; Nakajima, H., Kanetake, N., Eds.; JIM Press: Tokyo, Japan, 2005; pp. 273–278. [Google Scholar]
- Byakova, A.V.; Sirko, A.I.; Mykhalenkov, K.V.; Milman, Y.V.; Gnyloskurenko, S.V.; Nakamura, T. Improvements in stabilisation and cellular structure of Al based foams with novel carbonate foaming agent. High Temp. Mater. Processes. 2007, 26, 239–245. [Google Scholar] [CrossRef]
- Gibson, L.J. Mechanical behavior of metallic foams. Annu. Rev. Mater. Sci. 2000, 30, 191–227. [Google Scholar]
- Milman, Y.; Byakova, A.; Podrezov, Y.; Verbilo, D.; Nakamura, T. The effect of processing route on the energy management of foamed Al alloys. In Porous Metals and Metal Foaming Technology; Nakajima H. Kanetake, N., Ed.; JIM Press: Tokyo, Japan, 2005; pp. 503–508. [Google Scholar]
- Markaki, A.E.; Clyne, T.W. The effect of cell wall microstructure on the deformation and fracture of aluminum-based foams. Acta mater. 2001, 49, 1677–1686. [Google Scholar]
- Milman, Y.; Byakova, A.; Sirko, A.; Gnyloskurenko, S.; Nakamura, T. Improvement of structure and deformation behavior of high-strength Al-Zn-Mg foams. Mater. Sci. Forum 2006, 519-521, 573-578. [Google Scholar]
- Miyoshi, T.; Mukai, T.; Hihashi, K. Energy absorption in closed-cell Al-Zn-Mg-Ca-Ti foam. Mater. Trans. 2002, 43, 1778–1781. [Google Scholar]
- Toda, H.; Kuroda, N.; Ohgaki, T. Image-based mechanical analysis of dynamic deformation and damage behaviors in an aluminum foam using synchrotron X-ray microtomography. In Porous Metals and Metal Foaming Technology; Nakajima H. Kanetake, N., Ed.; JIM Press: Tokyo, Japan, 2005; pp. 409–414. [Google Scholar]
- Sugimura, Y.; Meyer, J.; He, M.Y. On mechanical performance of closed cell Al alloy foams. Acta Mater. 1997, 45, 5245–5259. [Google Scholar]
- Byakova, A.; Gnyloskurenko, S.; Sirko, A.; Milman, Y.; Nakamura, T. The role of foaming agent in structure and mechanical performance of Al based foams. Mater. Trans. 2006, 47, 2131–2136. [Google Scholar]
- Gnyloskurenko, S.V.; Byakova, A.V.; Sirko, A.I.; Dudnyk, A.O.; Milman, Y.V.; Nakamura, T. Advanced structure and deformation pattern of Al based alloys foamed with calcium carbonate agent. In Metals and Melt Foaming Technology, Proceedings of 5th International Conference Porous Metals and Metallic Foams, Montreal, PQ, Canada, 5-7 September 2007; DEStech Publications, Inc.: Lancaster, USA, 2007; pp. 399–402.
- Markaki, A.E.; Clyne, T.V. Characterization of impact response of metallic foam/ceramic laminates. Mater. Sci. Technol. 2000, 16, 785–791. [Google Scholar]
- Crupi, V.; Epasto, G.; Guglielmino, E. Low velocity impact strength of sandwich materials. J. Sandw. Struct. Mater. 2011, 17, 32–41. [Google Scholar]
- Gibson, L.G.; Ashby, M.F. Cellular Solids: Structure and Properties; Pergamon Press: New York, NY, USA, 1988. [Google Scholar]
- Simone, A.E.; Gibsons, L.J. The effect of cell face and corrugations on the stiffness and strength of metallic foams. Acta Mater. 1998, 46, 3929–3935. [Google Scholar]
- Kriszt, B.; Foroughi, B.; Faure, K.; Degisher, H.P. Behavior of aluminum foam under uniaxial compression. Mater. Sci. Technol. 2000, 16, 792–796. [Google Scholar]
- Harders, H.; Huper, K.; Rosler, J. Influence of cell wall shape and density on mechanical behavior of 2d foam structures. Acta Mater. 2005, 53, 1335–1345. [Google Scholar] [CrossRef]
- Jeon, I.; Asahina, T. The effect of structural defects on the compressive behavior of closed-cell Al foam. Acta Mater. 2005, 53, 3415–342. [Google Scholar]
- Milman, Y.V.; Miracle, D.B.; Chugunova, S.I.; Voskoboinik, I.V.; Korzhova, N.P.; Legkayaa, T.N.; Podrezova, Y.N. Mechanical behavior of Al3Ti intermetallic and L12 phases on its basis. Intermetallics 2001, 9, 839–845. [Google Scholar]
- Milman, Y.V.; Galanov, B.A.; Chugunova, S.I. Plasticity characteristic obtained through hardness measurement. Acta Metall. Mater. 1993, 41, 2523–2532. [Google Scholar] [CrossRef]
- Wu, C.C.; Rice, R.W. Porosity dependence of wear and other mechanical properties of fine-grain Al2O3 and B4C. Ceram. Eng. Sci. Proc. 1985, 6, 977–994. [Google Scholar]
- Hainsworth, V.; Whitehead, A.J.; Page, T.F. The nanoindentation response of silicon and related isostructural materials. In Plastic Deformation of Ceramics; Bradt, R.C., Brookes, C.A., Routbort, J.L., Eds.; Plenum Press: New York, NY, USA, 1995. [Google Scholar]
- Bart-Smith, H.; Bastawros, A.F.; Mumm, D.R.; Evans, A.G.; Sypeck, D.J.; Wadley, H.N.G. Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping. Acta Mater. 1998, 46, 3583–3592. [Google Scholar]
- Akiyama, S.; Ueno, H.; Imagawa, K.; Kitahara, A.; Nagata, S.; Morimoto, K.; Nishikawa, T.; Itoh, M. Foamed Metal and Method of Producing Same. U.S. Patent 4,713,277, 15 December 1987. [Google Scholar]
- Nakamura, T.; Gnyloskurenko, S.V.; Sakamoto, K.; Byakova, A.V.; Ishikawa, R. Development of new foaming agent for metal foam. Mater. Trans. 2002, 43, 1191–1196. [Google Scholar]
- Byakova, A.V.; Milman, Yu.V.; Vlasov, A.A. Application of plasticity characteristic determined by indentation technique for evaluation of mechanical properties of coatings: I. specific features of test method procedure. Sci. Sinter. 2004, 36, 27–41. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sencing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Milman, Y.V.; Dub, S.; Golubenko, A. Plasticity characteristic obtained trough instrumental indentation. Mater. Res. Soc. Symp. Proc. 1049, 123–128. [Google Scholar]
- Galanov, B.A.; Milman, Y.V.; Chugunova, S.I.; Goncharova, I.V. Investigation of mechanical properties high hardness materials by indentation. Superhard Mater. 1999, 21, 23–39. [Google Scholar]
- Evans, A.G.; Charles, E.A. Fracture toughness determinations by indentation. J. Ame. Ceram. Soc. 1976, 59, 371–372. [Google Scholar]
- Niihara, K.; Morena, R.; Hasselman, D.P. Evaluation of stress intensity factor of brittle solids by the indentation method with low crack-to-indent rations. J. Mater. Sci. Lett. 1982, 1, 13–16. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Byakova, A.; Gnyloskurenko, S.; Nakamura, T. The Role of Foaming Agent and Processing Route in the Mechanical Performance of Fabricated Aluminum Foams. Metals 2012, 2, 95-112. https://doi.org/10.3390/met2020095
Byakova A, Gnyloskurenko S, Nakamura T. The Role of Foaming Agent and Processing Route in the Mechanical Performance of Fabricated Aluminum Foams. Metals. 2012; 2(2):95-112. https://doi.org/10.3390/met2020095
Chicago/Turabian StyleByakova, Alexandra, Svyatoslav Gnyloskurenko, and Takashi Nakamura. 2012. "The Role of Foaming Agent and Processing Route in the Mechanical Performance of Fabricated Aluminum Foams" Metals 2, no. 2: 95-112. https://doi.org/10.3390/met2020095
APA StyleByakova, A., Gnyloskurenko, S., & Nakamura, T. (2012). The Role of Foaming Agent and Processing Route in the Mechanical Performance of Fabricated Aluminum Foams. Metals, 2(2), 95-112. https://doi.org/10.3390/met2020095