The Cyclic Deformation Behavior of Severe Plastic Deformation (SPD) Metals and the Influential Factors
Abstract
:1. Introduction
2. Overview of the Cyclic Deformation Behavior of SPDed Metals
3. The Effect of Applied Cyclic Plastic Strain
4. The Effect of Cyclic Lifespan
5. The Effect of Microstructure Stability
6. The Effects from Other Influencing Factors
7. Concluding Remarks
References
- Wang, N.; Wang, Z.; Aust, K.T.; Erb, U. Effect of grain size on mechanical properties of nanocrystalline materials. Acta Metall. Mater. 1995, 43, 519–528. [Google Scholar] [CrossRef]
- Takeuchi, S. The Mechanism of the inverse hall-petch relation of nanocrystals. Scr. Mater. 2001, 44, 1483–1487. [Google Scholar] [CrossRef]
- Saada, G. Hall-Petch revisited. Mater. Sci. Eng. A 2005, 400–401, 146–149. [Google Scholar]
- Zhu, Y.T.; Langdon, T.G. Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials. Mater. Sci. Eng. A 2005, 409, 234–242. [Google Scholar] [CrossRef]
- Conrad, N.; Jung, K. Effects of grain size from millimeters to nanometers on the flow stress of metals and compounds. J. Electron. Mater. 2006, 35, 857–861. [Google Scholar] [CrossRef]
- Segal, V.M. Materials processing by simple shear. Mater. Sci. A 1995, 197, 157–164. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y.T. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM J. Miner. Met. Mater. Soc. 2006, 58, 33–39. [Google Scholar]
- Saito, Y.; Tsuji, N.; Utsunomiya, H.; Sakai, T.; Hong, R.G. Ultra-fine grained bulk aluminum produced by Accumulative Roll-Bonding (ARB) process. Scripta Mater. 1998, 39, 1221–1227. [Google Scholar]
- Saito, Y.; Utsunomiya, H.; Tsuji, N.; Sakai, T. Novel ultra-high straining process for bulk materials—Development of the Accumulative Roll-Bonding (ARB) Process. Acta Mater. 1999, 47, 579–583. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Karsilnikov, N.A.; Tsenev, N.K. Plastic deformation of alloys with submicron-grained structure. Mater. Sci. Eng. A 1991, 137, 35–40. [Google Scholar]
- Galeev, R.M.; Valiakhmetov, O.R.; Salishchev, G.A. Dynamic recrystallization of coarse-grained titanium alloy in the (α+β)-region. Russ. Metall. 1990, 4, 97–103. [Google Scholar]
- Korbel, A.; Richert, M. Formation of shear bands during cyclic deformation of aluminum. Acta Metall. 1985, 33, 1971–1978. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000, 45, 103–189. [Google Scholar] [CrossRef]
- Lowe, T.C.; Valiev, R.Z. The use of severe plastic deformation techniques in grain refinement. JOM J. Miner. Met. Mater. Soc. 2004, 56, 64–77. [Google Scholar]
- Langdon, T.G. The processing of ultrafine-grained materials through the application of severe plastic deformation. J. Mater. Sci. 2007, 42, 3388–3397. [Google Scholar] [CrossRef]
- Tsuji, N.; Saito, Y.; Lee, S.-H.; Minamino, Y. ARB (Accumulative Roll-Bonding) and other new techniques to produce bulk ultrafine grained materials. Adv. Eng. Mater. 2003, 5, 338–344. [Google Scholar] [CrossRef]
- Azushima, A.; Kopp, R.; Korhonen, A.; Yang, D.Y.; Micari, F.; Lahoti, G.D.; Groche, P.; Yanagimoto, J.; Tsuji, N.; Rosochowski, A.; Yanagida, A. Severe Plastic Deformation (SPD) processes for metals. CIRP Ann. Manuf. Technol. 2008, 57, 716–735. [Google Scholar] [CrossRef]
- Glazov, M.V.; Laird, C. Size effects of dislocation patterning in fatigued metals. Acta Metall. Mater. 1995, 43, 2849–2857. [Google Scholar] [CrossRef]
- Thiele, E.; Klemm, R.; Hollag, L.; Holste, C.; Schell, N.; Natter, H.; Hempelmann, R. An approach to cyclic plasticity and deformation-induced structure changes of electrodeposited nickel. Mater. Sci. Eng. A 2005, 390, 42–51. [Google Scholar] [CrossRef]
- Vinogradov, A.; Kaneko, Y.; Kitagawa, K.; Hashimoto, S.; Stolyarov, V.; Valiev, R. Cyclic response of ultrafine-grained copper at constant plastic strain amplitude. Scr. Mater. 1997, 36, 1345–1451. [Google Scholar] [CrossRef]
- Agnew, S.R.; Weertman, J.R. Cyclic softening of ultrafine grain copper. Mater. Sci. Eng. A 1998, 244, 145–153. [Google Scholar]
- Agnew, S.R.; Vinogradov, A.Yu.; Hashimoto, S.; Weertman, J. Overview of fatigue performance of Cu processed by severe plastic deformation. J. Electron. Mater. 1999, 28, 1038–1044. [Google Scholar] [CrossRef]
- Höppel, H.W.; Brunnbauer, M.; Mughrabi, H. Cyclic deformation behaviour of ultrafine grain size copper produced by equal channel angular extrusion. Munich, Germany, 25-28 September 2000; Werkstoffwoche-Partnerschaft GbR: Frankfurt, Germany, 2000; pp. 25–28. [Google Scholar]
- Höppel, H.W.; Zhou, Z.M.; Mughrabi, H.; Valiev, R.Z. Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 2002, 82, 1781–1794. [Google Scholar]
- Wu, S.D.; Wang, Z.G.; Jiang, C.B.; Li, G.Y.; Alexandrov, I.V.; Valiev, R.Z. The formation of PSB-like shear bands in cyclically deformed ultrafine grained copper processed by ECAP. Scr. Mater. 2003, 48, 1605–1609. [Google Scholar] [CrossRef]
- Li, X.W.; Umakoshi, Y.; Wu, S.D.; Wang, Z.G.; Alexandrov, I.V.; Valiev, R.Z. Temperature effects on the fatigue behavior of ultrafine-grained copper produced by equal channel angular pressing. Phys. Stat. Sol. 2004, 201, R119–R122. [Google Scholar] [CrossRef]
- Huang, C.X.; Wang, S.C.; Wu, S.D.; Jiang, C.B.; Li, G.Y.; Li, S.X. On the stability of defects and grain size in ultrafine-grained copper during cyclic deformation and subsequent ageing at room temperature. Mater. Sci. Forum 2005, 475–479, 4055–4058. [Google Scholar]
- Li, X.W.; Wu, S.D.; Wu, Y.; Yasuda, H.Y.; Umakoshi, Y. Temperature-dependent microstructures in fatigued ultrafine-grained copper produced by equal channel angular pressing. Adv. Eng. Mater. 2005, 7, 829–833. [Google Scholar] [CrossRef]
- Maier, H.J.; Gabor, P.; Gupta, N.; Karaman, I.; Haouaoui, M. Cyclic stress-strain response of ultrafine grained copper. Int. J. Fatigue 2006, 28, 243–250. [Google Scholar] [CrossRef]
- Goto, M.; Han, S.Z.; Yakushiji, T.; Lim, C.Y.; Kim, S.S. Formation process of shear bands and protrusions in ultrafine grained copper under cyclic stresses. Scr. Mater. 2006, 54, 2101–2106. [Google Scholar]
- Han, S.Z.; Goto, M.; Lim, C.; Kim, C.J.; Kim, S. Fatigue behavior of nano-grained copper prepared by ECAP. J. Alloy. Comd. 2007, 434–435, 304–306. [Google Scholar]
- Li, X.-W.; Jiang, Q.-W.; Ying, W.; Wang, Y.; Umakoshi, Y. Stress-amplitude-dependent deformation characteristics and microstructures of cyclically stressed ultrafine-grained copper. Adv. Eng. Mater. 2008, 10, 720–726. [Google Scholar] [CrossRef]
- Goto, M.; Han, S.Z.; Yakushiji, T.; Kim, S.S.; Lim, C.Y. Fatigue strength and formation behavior of surface damage in ultrafine grained copper with different non-equilibrium microstructures. Int. J. Fatigue 2008, 30, 1333–1344. [Google Scholar] [CrossRef]
- Canadinc, D.; Maier, H.J.; Haouaoui, M.; Karaman, I. On the cyclic stability of nanocrystalline copper obtained by powder consolidation at room temperature. Scr. Mater. 2008, 58, 307–310. [Google Scholar] [CrossRef]
- Furukawa, Y.; Fujii, T.; Onaka, S.; Kato, M. Cyclic deformation behaviour of ultra-fine grained copper produced by equal channel angular pressing. Mater. Trans. 2009, 50, 70–75. [Google Scholar] [CrossRef]
- Khatibi, G.; Horky, J.; Weiss, B.; Zehetbauer, M.J. High cycle fatigue behavior of copper deformed by high pressure torsion. Int. J. Fatigue 2010, 32, 269–278. [Google Scholar] [CrossRef]
- Wang, Q.; Du, Z.; Liu, X.; Kunz, L. Fatigue property and fatigue cracks of ultra-fine grained copper processed by equal-channel angular pressing. Mater. Sci. Forum 2011, 682, 231–237. [Google Scholar] [CrossRef]
- Canadinc, D.; Niendorf, T.; Maier, H.J. A comprehensive evaluation of parameters governing the cyclic stability of ultrafine-grained FCC alloys. Mater. Sci. Eng. A 2011, 528, 6345–6355. [Google Scholar] [CrossRef]
- Vinogradov, A.; Kaneko, Y.; Kitagawa, K.; Hashimoto, S.; Valiev, R. On the cyclic response of ultrafine-grained copper. Mater. Sci. Forum 1998, 269–272, 987–992. [Google Scholar]
- Kunz, L.; Lukáš, P.; Svoboda, M. Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper. Mater. Sci. Eng. A 2006, 424, 97–104. [Google Scholar] [CrossRef]
- Lukáš, P.; Kunz, L.; Svoboda, M. Effect of low temperature on fatigue life and cyclic stress-strain response of ultrafine-grained copper. Metall. Mater. Trans. A 2007, 38A, 1910–1915. [Google Scholar]
- Xu, C.Z.; Wang, Q.J.; Zheng, M.S.; Li, J.D.; Huang, M.Q.; Jia, Q.M.; Zhu, J.W.; Kunz, L.; Buksa, M. Effect of low temperature on fatigue life and cyclic stress-strain response of ultrafine-grained copper. Mater. Sci. Eng. A 2008, 475, 249–256. [Google Scholar] [CrossRef]
- Kunz, L.; Lukáš, P.; Pantelejev, L.; Man, O. Stability of microstructure of ultrafine-grained copper under fatigue and thermal exposition. Strain 2010, 47, 476–482. [Google Scholar]
- Kunz, L.; Lukáš, P.; Pantelejev, L.; Man, O. Stability of ultrafine-grained structure of copper under fatigue loading. Proc. Eng. 2011, 10, 201–206. [Google Scholar] [CrossRef]
- Patlan, V.; Higashi, K.; Kitagawa, K.; Vinogradov, A.; Kawazoe, M. Cyclic response of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing. Cyclic response of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing 2001, 319–321, 587–591. [Google Scholar]
- Zhang, Z.F.; Wu, S.D.; Li, Y.J.; Liu, S.M.; Wang, Z.G. Cyclic deformation and fatigue properties of Al-0.7 wt.% Cu alloy produced by equal channel angular pressing. Mater. Sci. Eng. A 2005, 412, 279–286. [Google Scholar] [CrossRef]
- Wong, M.K.; Kao, W.P.; Lui, J.T.; Chang, C.P.; Kao, P.W. Cyclic deformation of ultrafine-grained aluminum. Acta Mater. 2007, 55, 715–725. [Google Scholar]
- Canadinc, D.; Maier, H.J.; Gabor, P.; May, J. On the cyclic deformation response of ultrafine-grained Al-Mg alloys at elevated temperatures. Mater. Sci. Eng. A 2008, 496, 114–120. [Google Scholar] [CrossRef]
- Höppel, H.W.; May, J.; Göken, M. Cyclic deformation behavior and fatigue lives of ultrafine-grained Aluminum-Magnesium alloys. Mater. Sci. Forum 2008, 584–586, 840–845. [Google Scholar]
- May, J.; Amberger, D.; Dinkel, M.; Höppel, H.W. Monotonic and cyclic deformation behavior of ultrafine-grained aluminum. Mater. Sci. Eng. A 2008, 483–484, 481–484. [Google Scholar]
- Hockauf, K.; Niendorf, T.; Wagner, S.; Halle, S.; Meyer, L.W. Cyclic behavior and microstructural stability of ultrafine-grained AA6060 under strain-controlled fatigue. Proc. Eng. 2010, 2, 2199–2208. [Google Scholar] [CrossRef]
- Vinogradov, A.Yu.; Stolyarov, V.V.; Hashimoto, S.; Valiev, R.Z. Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation. Mater. Sci. Eng. A 2001, 318, 163–173. [Google Scholar] [CrossRef]
- Niendorf, T.; Canadinc, D.; Maier, H.J.; Karaman, I. On the microstructural stability of ultrafine-grained interstitial-free steel under cyclic loading. Metall. Mater. Trans. A 2007, 38A, 1946–1955. [Google Scholar]
- Niendorf, T.; Maier, H.J.; Canadinc, D.; Karaman, I. On the cyclic stability and fatigue performance of ultrafine-grained interstitial-free steel under mean stress. Key Eng. Mater. 2008, 378–379, 39–52. [Google Scholar]
- Höppel, H.W. Mechanical Properites of ultrafine grained metals under cyclic and monotonic loads: An overview. Mater. Sci. Forum 2006, 503–504, 259–266. [Google Scholar] [CrossRef]
- Kwan, C.C.F.; Wang, Z. Cyclic deformation behavior of ultra-fine grained copper processed by accumulative roll-bonding. Proc. Eng. 2010, 2, 101–110. [Google Scholar]
- Kwan, C.C.F.; Wang, Z. A composite nature of cyclic strain accommodation mechanisms of accumulative roll bonding (ARB) processed Cu sheet materials. Mater. Sci. Eng. A 2011, 528, 2042–2048. [Google Scholar]
- Malekjani, S.; Hodgson, P.D.; Cizek, P.; Hilditch, T.B. Cyclic deformation response of ultrafine pure Al. Acta Mater. 2011, 59, 5358–5367. [Google Scholar]
- Malekjani, S.; Hodgson, P.D.; Cizek, P.; Sabirov, I.; Hilditch, T.B. Cyclic deformation response of UFG 2024 Al alloy. Int. J. Fatigue 2011, 33, 700–709. [Google Scholar] [CrossRef]
- Suresh, S. Fatigue of Materials; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Kwan, C.C.F.; Wang, Z. ARBed copper data. University of Toronto: Toronto, Canada, 2011; Unpublished work. [Google Scholar]
- Mughrabi, H.; Höppel, H.W. Cyclic deformation and fatigue properties of ultrafine grain size materials: current status and some criteria for improvement of the fatigue resistance. Mater. Res. Soc. Symp. Proc. 2001, 634, B2.1.1–B2.1.12. [Google Scholar]
- Höppel, H.W.; Xu, C.; Kautz, M.; Barta-Shreiba, N.; Langdon, T.G.; Mughrabi, H. Cyclic deformation behaviour and possibilities for enhancing the fatigue properties of ultrafine-grained metals. Vienna, Austria, 9–13 December; Zehetbauer, M.J., Valiev, R.Z., Eds.; Weinheim/Wiley VCG: New York, NY, USA; pp. 667–683.
- Mughrabi, H.; Höppel, H.W. Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 2010, 32, 1413–1427. [Google Scholar] [CrossRef]
- Vinogradov, A.; Hashimoto, S. Multiscale phenomena in fatigue of ultra-fine grain materials—An Overview. Mater. Trans. 2001, 42, 74–84. [Google Scholar] [CrossRef]
- Iwahashi, Y.; Horita, Z.; Nemoto, M.; Langdon, T.G. The process of grain refinement in equal-channel angular pressing. Acta Mater. 1998, 46, 3317–3331. [Google Scholar] [CrossRef]
- Langdon, T.G. The processing of ultrafine-grained materials through the application of severe plastic deformation. J. Mater. Sci. 2007, 42, 3388–3397. [Google Scholar] [CrossRef]
- Langdon, T.G. The principles of grain refinement in equal-channel angular pressing. Mater. Sci. Eng. A 2007, 462, 3–11. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Lee, T.-O.; Shin, D.H. Microstructural evolution and mechanical properties of ultrafine grained commercially pure 1100 aluminum alloy processed by accumulative roll-bonding (ARB). Mater. Sci. Forum 2004, 449–452, 625–628. [Google Scholar]
- Huang, X.; Tsuji, N.; Hansen, N.; Minamino, Y. Microstructual evolution during accumulative roll-bonding of commercial purity aluminum. Mater. Sci. Eng. A 2003, 340, 265–271. [Google Scholar] [CrossRef]
- Wang, Y.M.; Ma, E. Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng. A 2004, 375–377, 46–53. [Google Scholar]
- Höppel, H.W; May, J.; Göken, M. Enhanced strength and ductility in ultrafine-grained aluminum produced by accumulative roll bonding. Adv. Eng. Mater. 2004, 6, 219–222. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kwan, C.C.F.; Wang, Z. The Cyclic Deformation Behavior of Severe Plastic Deformation (SPD) Metals and the Influential Factors. Metals 2012, 2, 41-55. https://doi.org/10.3390/met2010041
Kwan CCF, Wang Z. The Cyclic Deformation Behavior of Severe Plastic Deformation (SPD) Metals and the Influential Factors. Metals. 2012; 2(1):41-55. https://doi.org/10.3390/met2010041
Chicago/Turabian StyleKwan, Charles C. F., and Zhirui Wang. 2012. "The Cyclic Deformation Behavior of Severe Plastic Deformation (SPD) Metals and the Influential Factors" Metals 2, no. 1: 41-55. https://doi.org/10.3390/met2010041
APA StyleKwan, C. C. F., & Wang, Z. (2012). The Cyclic Deformation Behavior of Severe Plastic Deformation (SPD) Metals and the Influential Factors. Metals, 2(1), 41-55. https://doi.org/10.3390/met2010041