Effect of External Constraints on Deformation Behavior of Aluminum Single Crystals Cold-Rolled to High Reduction: Crystal Plasticity FEM Study and Experimental Verification
Abstract
1. Introduction
2. CPFEM Modeling
2.1. CPFEM Model and Implementation
2.2. Simulation Conditions
3. Results
3.1. CPFEM Predictions vs. Experimental Observations
3.2. Shear Strain and Texture Evolution
4. Discussion
4.1. Effect of External Constraints on Deformation Behavior
4.2. Heterogeneity Deformation After Rolling
5. Conclusions
- 1
- CPFEM simulations of single crystals have been conducted up to 6-pass, and the predictions match well with the experimental observations. This confirms the capability of CPFEM in accurately capturing deformation behavior and texture evolution under different rolling conditions.
- 2
- The external constraints make the deformation behavior far different from PS deformation rather than closer to it, leading to different non-TD rotation in the 3DRC model compared to the 3DR model. In the 3DR model, texture evolves along the RD, while in the 3DRC model, it follows the ND, with the non-TD rotation angle in the 3DRC model being larger than in the 3DR model. Moreover, the external constraints slow down the texture evolution process; the 3DR model exhibits a concentrated texture, while the 3DRC model shows a more dispersed distribution.
- 3
- The uneven distribution of shear strain leads to inhomogeneous deformation, which predominantly manifests as deformation bands in Cube single crystals. In the 3DR model, deformation bands appear only in the central region, whereas in the 3DRC model, they are observed throughout the entire sample. Consequently, texture evolution varies depending on the location.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SPD | Severe plastic deformation |
CPFEM | Crystal plasticity finite element method |
TD | Transverse direction |
RD | Rolling direction |
ND | Normal direction |
PS | Plane strain |
CP | Crystal plasticity |
UMAT | User-defined material |
SDV | Solution-dependent state variable |
3DR | 3D rolling model |
3DRC | 3D rolling model with external constraints |
References
- Miyahara, Y.; Adachi, K.; Maehara, Y.; Horita, Z.; Langdon, T.G. Effect of microstructures on tensile properties of AZ31 Mg alloy processed by ECAP. MSF 2005, 488–489, 473–476. [Google Scholar] [CrossRef]
- Edalati, K.; Bertrand, A.; Edalati, P.; Nguyen, T.T.; Enikeev, N.; Mito, M. Influence of nanostructuring through high-pressure torsion (HPT) on superconductivity of a high-entropy alloy. Scr. Mater. 2025, 266, 116769. [Google Scholar] [CrossRef]
- He, Y.W.; Adachi, N.; Todaka, Y.; Wang, L.; Sun, Y.H. Shear-strain induced β phase transformed by high pressure torsion process at room temperature in pure Ti. Appl. Phys. Lett. 2025, 127, 011906. [Google Scholar] [CrossRef]
- Sahu, V.K.; Chakraborty, P.; Yadava, M.; Gurao, N.P. Micro-mechanisms of anisotropic deformation in the presence of notch in commercially pure titanium: An. in-situ study with CPFEM simulations. Int. J. Plast. 2024, 177, 103985. [Google Scholar] [CrossRef]
- Sasani, F.; Taheri, A.K.; Pouranvari, M. Correlation between microstructure and mechanical properties of AlMg6/CNT-Al composite produced by accumulative roll bonding process: Experimental and modelling analysis. Mater. Sci. Eng. A 2022, 850, 143559. [Google Scholar] [CrossRef]
- Li, Z.-G.; Li, W.-Q.; Liu, F.-N.; Ma, P.-K.; Liu, P.-L.; Jia, H.-L. Microstructure and mechanical properties of AT31/ATX3105 magnesium alloy composite sheets fabricated by accumulative roll bonding. J. Mater. Res. Technol. 2024, 31, 1596–1606. [Google Scholar] [CrossRef]
- Ramkumar, K.R.; Dinaharan, I.; Murugan, N.; Kim, H.S. Development of aluminum matrix composites through accumulative roll bonding: A review. J. Mater. Sci. 2024, 59, 8606–8649. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Yang, Q.; Wang, Q.; Wang, Y.; Li, W. Mechanism of lateral metal flow on residual stress distribution during hot strip rolling. J. Mater. Process. Technol. 2021, 288, 116838. [Google Scholar] [CrossRef]
- Wert, J.A. Macroscopic crystal rotation patterns in rolled aluminium single crystals. Acta Mater. 2002, 50, 3127–3141. [Google Scholar] [CrossRef]
- Kashihara, K.; Inagaki, H. Effect of external constraint and deviation from ideal orientation on development of rolling texture in pure aluminum single crystal having {100} orientation. Ceram. Trans. Ser. 2008, 48, 453–460. [Google Scholar] [CrossRef]
- Kashihara, K.; Inagaki, H. Effect of constraint on development of rolling texture in pure aluminum single crystal having cube orientation. J. Jpn. Inst. Light Met. 2006, 56, 514–520. [Google Scholar] [CrossRef]
- Kashihara, K.; Inagaki, H. Rolling textures in aluminum single crystal deviated by 5 degrees about rolling direction from (001) [100] orientation. Mater. Trans. 2007, 48, 1986–1991. [Google Scholar] [CrossRef][Green Version]
- Kamijo, T.; Inoue, A.; Fukutomi, H. Inhomogeneous deformation in embedded aluminum single crystals during cold-rollings. Acta Metall. Mater. 1993, 41, 1245–1251. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Kang, G.; Zaiser, M. Geometrically necessary dislocations and related kinematic hardening in gradient grained materials: A nonlocal crystal plasticity study. Int. J. Plast. 2023, 163, 103553. [Google Scholar] [CrossRef]
- Zhou, X.; Zan, S.; Zeng, Y.; Guo, R.; Wang, G.; Wang, T.; Zhao, L.; Chen, M. Comprehensive study of plastic deformation mechanism of polycrystalline copper using crystal plasticity finite element. J. Mater. Res. Technol. 2024, 30, 9221–9236. [Google Scholar] [CrossRef]
- Li, M.; Huang, W.; Yang, X.; Xiao, W.; Wang, X.; Zhu, X.; Xiong, D. Effect of pre-straining direction on the microstructure, mechanical properties and microstructural response of AA2099-T83 Al-Li alloy. Mater. Today Commun. 2024, 40, 110122. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Y.; Guo, L. Crystal plasticity finite element simulation study on thread rolling pure aluminum. J. Phys. Conf. Ser. 2021, 1802, 42077. [Google Scholar] [CrossRef]
- Wang, H.; Yang, P.; Jiang, W.; Xie, Q.; Gu, X. Crystal plasticity finite element study on the microstructure and orientations evolution of {100} columnar grains in electrical steels. Mater. Today Commun. 2024, 40, 109678. [Google Scholar] [CrossRef]
- Asaro, R.J. Crystal Plasticity. J. Appl. Mech. 1983, 50, 921–934. [Google Scholar] [CrossRef]
- Peirce, D.; Asaro, R.J.; Needleman, A. An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall. 1982, 30, 1087–1119. [Google Scholar] [CrossRef]
- Peirce, D.; Asaro, R.J.; Needleman, A. Material rate dependence and localized deformation in crystalline solids. Acta Metall. 1983, 31, 1951–1976. [Google Scholar] [CrossRef]
- Deng, G.; Tieu, A.; Si, L.; Su, L.; Lu, C.; Wang, H.; Liu, M.; Zhu, H.; Liu, X. Influence of cold rolling reduction on the deformation behaviour and crystallographic orientation development. Comput. Mater. Sci. 2014, 81, 2–9. [Google Scholar] [CrossRef]
- Wu, T.-Y.; LBassani, J.; Laird, C. Latent Hardening in Single Crystals I. Theory and Experiments. Pro. R. Soc. A 1991, 435, 20. Available online: https://api.semanticscholar.org/CorpusID:137296141 (accessed on 8 October 1991).
- Bassani, J.L.; Wu, T.-Y. Latent Hardening in Single Crystals II. Analytical Characterization and Predictions. Pro. R. Soc. A 1991, 435, 21. [Google Scholar] [CrossRef]
- Lin, G.; Havner, K.S. A comparative study of hardening theories in torsion using the Taylor polycrystal model. Int. J. Plast. 1996, 12, 695–718. [Google Scholar] [CrossRef]
- Magalhães, D.C.C.; Cintho, O.M.; Rubert, J.B.; Sordi, V.L.; Kliauga, A.M. The role of shear strain during Accumulative Roll-Bonding of multilayered composite sheets: Pattern formation, microstructure and texture evolution. Mater. Sci. Eng. A 2020, 796, 140055. [Google Scholar] [CrossRef]
- Dabou, O.; Bensouilah, A.; Baudin, T.; Brisset, F.; Perrière, L.; Helbert, A.-L.; Bradai, D. Evolution of the texture, microstructure, and magnetic properties of a Permimphy alloy after accumulative roll bonding and aging. J. Mater. Sci. 2023, 58, 15884–15900. [Google Scholar] [CrossRef]
- Huang, Y. A User-Material Subroutine Incorporating Single Crystal Plasticity in the Abaqus Finite Element Program; Harvard University: Cambridge, MA, USA, 1991; Available online: https://api.semanticscholar.org/CorpusID:64967027 (accessed on 1 June 1991).
- Rahmati, S.; Veiga, R.G.A.; Jodoin, B.; Zúñiga, A. Crystal orientation and grain boundary effects on plastic deformation of FCC particles under high velocity impacts. Materialia 2021, 15, 101004. [Google Scholar] [CrossRef]
- Wert, J.; Liu, Q.; Hansen, N. Dislocation boundary formation in a cold-rolled cube-oriented Al single crystal. Acta Mater. 1997, 45, 2565–2576. [Google Scholar] [CrossRef]
- Si, L.Y.; Lu, C.; Huynh, N.N.; Tieu, A.K.; Liu, X.H. Simulation of rolling behaviour of cubic oriented al single crystal with crystal plasticity FEM. J. Mater. Process. Technol. 2008, 201, 79–84. [Google Scholar] [CrossRef]
- Liu, Q.; Wert, J.; Hansen, N. Location-dependent lattice rotation and shear strain in rolled aluminium single crystals of cube and goss orientations. Acta Mater. 2000, 48, 4267–4279. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Badirujjaman, S. Relative stability of cube orientation in single crystal aluminium during deformation. Trans. Indian Inst. Met. 2012, 65, 343–353. [Google Scholar] [CrossRef]
- Wang, H.; Lu, C.; Wang, R. A crystal plasticity FEM study on macro- and micro-subdivision of an aluminium single crystal after multi-pass unidirectional rolling, reverse rolling and accumulative roll-bonding. Int. J. Adv. Manuf. Technol. 2020, 111, 37–51. [Google Scholar] [CrossRef]
- Kashihara, K. The relationship between crystal rotation axis orientation and active slip system in pure aluminum tricrystal deformed in compression. Mater. Trans. 2008, 49, 419–423. [Google Scholar] [CrossRef]
- Lee, C.S.; Duggan, B.J. A simple theory for the development of inhomogeneous rolling textures. Metall. Trans. A 1991, 22, 2637–2643. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Q.; Liu, Z.; Li, F. A review of texture evolution mechanisms during deformation by rolling in aluminum alloys. J. Mater. Eng. Perform. 2018, 27, 3350–3373. [Google Scholar] [CrossRef]
- Truszkowski, W.; Krol, J.; Major, B. On penetration of shear texture into the rolled aluminum and copper. Metall. Trans. A 1982, 13, 665–669. [Google Scholar] [CrossRef]
- Mishin, O.V.; Bay, B.; Jensen, D.J. Through-thickness texture gradients in cold-rolled aluminum. Metall. Mater. Trans. A 2000, 31, 1653–1662. [Google Scholar] [CrossRef]
- Wang, H.; Lu, C.; Tieu, K.; Wei, P.; Yu, H. Texture stability and transition in an accumulative roll-bonding-processed aluminum single crystal. Metall. Mater. Trans. A 2019, 50, 1611–1615. [Google Scholar] [CrossRef]
- Kashihara, K.; Ikushima, W.; Miyajima, Y.; Terada, D.; Tsuji, N. Change in crystal orientations of a {100} <001> pure aluminum single crystal during accumulative roll bonding. Mater. Trans. 2011, 52, 825–829. [Google Scholar] [CrossRef]
- Liu, Q.; Hansen, N. Macroscopic and microscopic subdivision of a cold-rolled aluminium single crystal of cubic orientation. Proc. R. Soc. A: Math. Phys. Eng. Sci. 1998, 454, 2555–2592. [Google Scholar] [CrossRef]
- Lee, C.S.; Duggan, B.J.; Smallman, R.E. A theory of deformation banding in cold rolling. Acta Metall. Mater. 1993, 41, 2265–2270. [Google Scholar] [CrossRef]
(MPa) | (MPa) | (MPa) | (MPa) | |||
---|---|---|---|---|---|---|
300 | 0.0001 | 100 | 0.01 | 6.3 | 6 | 1 |
Slip Plane | (111) | (11) | (1) | (11) | ||||||||
Slip Direction | [01] | [10] | [10] | [01] | [110] | [101] | [>011] | [110] | [10] | [011] | [0] | [101] |
Slip System | a1 | a2 | a3 | b1 | b2 | b3 | c1 | c2 | c3 | d1 | d2 | d3 |
Group | RD | TD | ND | RD | TD | ND | RD | TD | ND | RD | TD | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Dong, J.; Yao, S.; Liu, S.; Cao, L.; Huang, X. Effect of External Constraints on Deformation Behavior of Aluminum Single Crystals Cold-Rolled to High Reduction: Crystal Plasticity FEM Study and Experimental Verification. Metals 2025, 15, 885. https://doi.org/10.3390/met15080885
Wang H, Dong J, Yao S, Liu S, Cao L, Huang X. Effect of External Constraints on Deformation Behavior of Aluminum Single Crystals Cold-Rolled to High Reduction: Crystal Plasticity FEM Study and Experimental Verification. Metals. 2025; 15(8):885. https://doi.org/10.3390/met15080885
Chicago/Turabian StyleWang, Hui, Junyao Dong, Shunjie Yao, Shuqi Liu, Letian Cao, and Xi Huang. 2025. "Effect of External Constraints on Deformation Behavior of Aluminum Single Crystals Cold-Rolled to High Reduction: Crystal Plasticity FEM Study and Experimental Verification" Metals 15, no. 8: 885. https://doi.org/10.3390/met15080885
APA StyleWang, H., Dong, J., Yao, S., Liu, S., Cao, L., & Huang, X. (2025). Effect of External Constraints on Deformation Behavior of Aluminum Single Crystals Cold-Rolled to High Reduction: Crystal Plasticity FEM Study and Experimental Verification. Metals, 15(8), 885. https://doi.org/10.3390/met15080885