Achieving Superplasticity in Ultrafine-Grained Mg-9Li Alloy via Dual-Phase Microstructure Optimization
Abstract
1. Introduction
2. Experimental Details
3. Results
3.1. Microstructural Evolution of Mg-9Li Alloy
3.2. Superplastic Behavior at Room Temperature
3.3. High Strain Rate Superplastic Behavior Under Heating Conditions
3.4. Fracture Surface Morphology and Void Evolution
4. Discussion
4.1. Analysis of Superplastic Deformation Mechanism of Mg-9Li Alloy Based on m and Q Values
4.2. Analysis of Enhancing Plastic Deformation Ability Based on Ultrafine Grains
5. Conclusions
- The SS-ECAP alloy exhibits an average TEL of 144.2% at 298 K, with uniform deformation and no necking. This is mechanistically linked to reduced dislocation density and enhanced grain boundary sliding enabled by ultrafine grains.
- At 373 K, the alloy achieves 602.1% elongation under a strain rate of 1 × 10−3 s−1, exhibiting excellent deformation capability.
- Strain rate sensitivity (m > 0.5) and activation energy (Q = 61.55 kJ/mol) calculations (Table 4 and Table 5) reveal that grain boundary sliding controlled by grain boundary diffusion is the primary deformation mechanism. The α-Mg/β-Li dual-phase interface further enhances strain accommodation by suppressing void coalescence (Figure 7 and Figure 8).
- TEM analysis (Figure 13) confirms that the SS-ECAP process refines grains to ~360 nm, significantly smaller than Cast-ECAP (~550 nm) while promoting equiaxed morphology and grain-size uniformity.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhong, F.; Wu, H.; Jiao, Y.; Wu, R.; Zhang, J.; Hou, L.; Zhang, M. Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy. J. Mater. Sci. Technol. 2020, 39, 124–134. [Google Scholar] [CrossRef]
- Deng, H.; Yang, Y.; Li, M.; Xiong, X.; Wei, G.; Xie, W.; Jiang, B.; Peng, X.; Pan, F. Effect of Mn content on the microstructure and mechanical properties of Mg–6Li–4Zn-xMn alloys. Prog. Nat. Sci. Mater. Int. 2021, 31, 583–590. [Google Scholar] [CrossRef]
- Wang, J.; Xu, L.; Wu, R.; Feng, J.; Zhang, J.; Hou, L.; Zhang, M. Enhanced Electromagnetic Interference Shielding in a Duplex-Phase Mg–9Li–3Al–1Zn Alloy Processed by Accumulative Roll Bonding. Acta Metall. Sin. Engl. Lett. 2020, 33, 490–499. [Google Scholar] [CrossRef]
- Xu, T.; Yang, Y.; Peng, X.; Song, J.; Pan, F. Overview of advancement and development trend on magnesium alloy. J. Magnes. Alloys 2019, 7, 536–544. [Google Scholar] [CrossRef]
- Yeganeh, M.; Mohammadi, N. Superhydrophobic surface of Mg alloys: A review. J. Magnes. Alloys 2018, 6, 59–70. [Google Scholar] [CrossRef]
- Luo, K.; Zhang, L.; Wu, G.; Liu, W.; Ding, W. Effect of Y and Gd content on the microstructure and mechanical properties of Mg–Y–RE alloys. J. Magnes. Alloys 2019, 7, 345–354. [Google Scholar] [CrossRef]
- Lowski, W.; Stanisław, M. Friction stir processing–State of the art. Arch. Civ. Mech. Eng. 2018, 18, 114–129. [Google Scholar] [CrossRef]
- Nikulin, L.V.; Lykasova, G.L.; Shklyaeva, N.M. Structure and properties of binary magnesium-lithium alloys subjected to pressure casting. Met. Sci. Heat Treat. 1986, 28, 777–782. [Google Scholar] [CrossRef]
- Nes, N. Modelling grain boundary strengthening in ultra-fine grained aluminum alloys. Mater. Sci. Eng. A 2005, 410, 178–182. [Google Scholar] [CrossRef]
- Li, C.Q.; Xu, D.K.; Chen, X.-B.; Wang, B.J.; Wu, R.Z.; Han, E.H.; Birbilis, N. Composition and microstructure dependent corrosion behaviour of Mg-Li alloys. Electrochim. Acta 2018, 260, 55–64. [Google Scholar] [CrossRef]
- Atkins, G.; Marya, M.; Olson, D.; Eliezer, D. Magnesium-Lithium Alloy Weldability: A Microstructural Characterization. JOM 2004, 6, 37–41. [Google Scholar]
- Li, C.; He, Y.; Huang, H. Effect of lithium content on the mechanical and corrosion behaviors of HCP binary Mg–Li alloys. J. Magnes. Alloys 2021, 9, 569–580. [Google Scholar] [CrossRef]
- Zeng, Y.; Jiang, B.; Yang, Q.R.; Quan, G.F.; He, J.J.; Jiang, Z.T.; Pan, F.S. Effect of Li content on microstructure, texture and mechanical behaviors of the as-extruded Mg-Li sheets. Mater. Sci. Eng. A 2017, 700, 59–65. [Google Scholar] [CrossRef]
- Peng, Q.Z.; Zhou, H.T.; Zhong, F.H.; Ding, H.B.; Zhou, X.; Liu, R.R.; Xie, T.; Peng, Y. Effects of homogenization treatment on the microstructure and mechanical properties of Mg–8Li–3Al–Y alloy. Mater. Des. 2015, 66, 566–574. [Google Scholar] [CrossRef]
- Ji, H.; Peng, X.; Zhang, X.; Liu, W.; Wu, G.; Zhang, L.; Ding, W. Balance of mechanical properties of Mg-8Li-3Al-2Zn-0.5Y alloy by solution and low-temperature aging treatment. J. Alloys Compd. 2019, 791, 655–664. [Google Scholar] [CrossRef]
- Maurya, R.; Mittal, D.; Balani, K. Effect of heat-treatment on microstructure, mechanical and tribological properties of Mg-Li-Al based alloy. J. Mater. Res. Technol. 2020, 9, 4749–4762. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, W.; Wu, S.D.; Jiang, C.B.; Li, S.X.; Xu, Y.B. Mechanical properties of a two-phase alloy Mg–8%Li–1%Al processed by equal channel angular pressing. Mater. Sci. Eng. A 2003, 360, 345–349. [Google Scholar] [CrossRef]
- Lu, L.; Sui, M.L.; Lu, K. Superplastic Extensibility of Nanocrystalline Copper at Room Temperature. Science 2000, 287, 1463–1466. [Google Scholar] [CrossRef]
- Langdon, T.G. Grain boundary sliding revisited: Developments in sliding over four decades. J. Mater. Sci. 2006, 41, 597–609. [Google Scholar] [CrossRef]
- Ashby, M.F.; Verrall, R.A. Diffusion-accommodated flow and superplasticity. Acta Metall. 1973, 21, 149–163. [Google Scholar] [CrossRef]
- Spingarn, J.R.; Nix, W.D. Diffusional creep and diffusionally accommodated grain rearrangement. Acta Metall. 1978, 26, 1389–1398. [Google Scholar] [CrossRef]
- Ball, A.; Hutchison, M.M. Superplasticity in the Aluminium–Zinc Eutectoid. Metal. Sci. J. 1969, 3, 1–7. [Google Scholar] [CrossRef]
- Gifkins, R.C. Grain-boundary sliding and its accommodation during creep and superplasticity. Metall. Trans. A 1976, 7, 1225–1232. [Google Scholar] [CrossRef]
- Langdon, T.G. A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 1994, 42, 2437–2443. [Google Scholar] [CrossRef]
- Xun, Y.; Mohamed, F.A. Superplastic behavior of Zn–22%Al containing nano-scale dispersion particles. Acta Mater. 2004, 52, 4401–4412. [Google Scholar] [CrossRef]
- Yoshida, Y.; Cisar, L.; Kamado, S.; Kojima, Y. Low Temperature Superplasticity of ECAE Processed Mg-10%Li-1%Zn Alloy. Mater. Trans. 2002, 43, 2419–2423. [Google Scholar] [CrossRef]
- Furui, M.; Kitamura, H.; Anada, H.; Langdon, T.G. Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP. Acta Mater. 2007, 55, 1083–1091. [Google Scholar] [CrossRef]
- Zhang, H.-M.; Cheng, X.-M.; Zha, M.; Li, Y.-K.; Wang, C.; Yang, Z.-Z.; Wang, J.-G.; Wang, H.-Y. A superplastic bimodal grain-structured Mg–9Al–1Zn alloy processed by short-process hard-plate rolling. Materialia 2019, 8, 100443. [Google Scholar] [CrossRef]
- Chen, D.; Kong, J.; Gui, Z.; Li, W.; Long, Y.; Kang, Z. High-temperature superplastic behavior and ECAP deformation mechanism of two-phase Mg-Li alloy. Mater. Lett. 2021, 301, 130358. [Google Scholar] [CrossRef]
- Mehrabi, A.; Mahmudi, R.; Miura, H. Superplasticity in a multi-directionally forged Mg–Li–Zn alloy. Mater. Sci. Eng. A 2019, 765, 138274. [Google Scholar] [CrossRef]
- Langdon, T.G. Seventy-five years of superplasticity: Historic developments and new opportunities. J. Mater. Sci. 2009, 44, 5998–6010. [Google Scholar] [CrossRef]
- Taleff, E.M.; Ruano, O.A.; Wolfenstine, J.; Sherby, O.D. Superplastic behavior of a fine-grained Mg–9Li material at low homologous temperature. J. Mater. Res. 1992, 7, 2131–2135. [Google Scholar] [CrossRef]
- Mohamed, F.A. Micrograin Superplasticity: Characteristics and Utilization. Materials 2011, 4, 1194–1223. [Google Scholar] [CrossRef]
- Liu, F.C.; Tan, M.J.; Liao, J.; Ma, Z.Y.; Meng, Q.; Nakata, K. Microstructural evolution and superplastic behavior in friction stir processed Mg–Li–Al–Zn alloy. J. Mater. Sci. 2013, 48, 8539–8546. [Google Scholar] [CrossRef]
- Matsunoshita, H.; Edalati, K.; Furui, M.; Horita, Z. Ultrafine-grained magnesium–lithium alloy processed by high-pressure torsion: Low-temperature superplasticity and potential for hydroforming. Mater. Sci. Eng. A 2015, 640, 443–448. [Google Scholar] [CrossRef]
- Nene, S.S.; Liu, K.; Sinha, S.; Frank, M.; Williams, S.; Mishra, R.S. Superplasticity in fine grained dual phase high entropy alloy. Materialia 2020, 9, 100521. [Google Scholar] [CrossRef]
- Nazeer, F.; Long, J.; Yang, Z.; Li, C. Superplastic deformation behavior of Mg alloys: A-review. J. Magnes. Alloys 2022, 10, 97–109. [Google Scholar] [CrossRef]
- Chen, F.; Li, H.; Guo, J.; Yang, Y. Predictive model of superplastic properties of aluminum bronze and of the superplastic extrusion test. Mater. Sci. Eng. A 2009, 499, 315–319. [Google Scholar] [CrossRef]
- Kim, W.J. Explanation for deviations from the Hall–Petch Relation based on the creep behavior of an ultrafine-grained Mg–Li alloy with low diffusivity. Scr. Mater. 2009, 61, 652–655. [Google Scholar] [CrossRef]
- Ren, R.; Fan, J.; Wang, B.; Zhang, Q.; Li, W.; Dong, H. Hall-Petch relationship and deformation mechanism of pure Mg at room temperature. J. Alloys Compd. 2022, 920, 165924. [Google Scholar] [CrossRef]
- Xu, C.; Furukawa, M.; Horita, Z.; Langdon, T.G. Achieving a Superplastic Forming Capability through Severe Plastic Deformation. Adv. Eng. Mater. 2003, 5, 359–364. [Google Scholar] [CrossRef]
Elemental | Mg | Li | Zn | Si | Ce | Fe | Mn |
---|---|---|---|---|---|---|---|
content (wt.%) | Bal. | 8.809 | 0.014 | 0.012 | 0.011 | 0.010 | 0.024 |
Alloys | ε (s−1) | UTS (MPa) | TYS (MPa) | UEL (%) | TEL (%) |
---|---|---|---|---|---|
Cast | 1.0 × 10−4 | 69.5 ± 4.2 | 52.3 ± 3.1 | 13.1 ± 0.7 | 95.0 ± 5.7 |
2.5 × 10−4 | 88.8 ± 6.3 | 65.7 ± 4.6 | 15.1 ± 1.0 | 87.2 ± 6.1 | |
5.0 × 10−4 | 105.2 ± 7.4 | 75.0 ± 5.4 | 13.8 ± 0.9 | 66.9 ± 4.7 | |
7.5 × 10−4 | 114.7 ± 8.1 | 81.5 ± 5.4 | 16.3 ± 1.2 | 58.3 ± 4.1 | |
1.0 × 10−3 | 120.5 ± 9.4 | 86.8 ± 6.9 | 19.2 ± 1.5 | 50.4 ± 4.0 | |
Cast-ECAP | 1.0 × 10−4 | 97.4 ± 5.0 | 75.4 ± 3.7 | 14.9 ± 0.8 | 110.2 ± 5.6 |
2.5 × 10−4 | 128.6 ± 7.6 | 100.3 ± 5.9 | 18.1 ± 1.1 | 95.3 ± 5.5 | |
5.0 × 10−4 | 157.7 ± 9.5 | 120.1 ± 7.1 | 22.3 ± 1.3 | 90.8 ± 5.6 | |
7.5 × 10−4 | 177.0 ± 10.8 | 141.1 ± 8.6 | 17.3 ± 1.1 | 82.1 ± 5.0 | |
1.0 × 10−3 | 191.3 ± 13.2 | 154.4 ± 10.5 | 22.8 ± 1.4 | 70.3 ± 4.7 | |
SS | 1.0 × 10−4 | 70.1 ± 2.9 | 52.4 ± 2.1 | 10.1 ± 0.4 | 100.2 ± 4.1 |
2.5 × 10−4 | 90.9 ± 4.2 | 71.3 ± 3.7 | 14.2 ± 0.7 | 89.3 ± 4.4 | |
5.0 × 10−4 | 107.7 ± 5.4 | 87.9 ± 4.4 | 17.0 ± 1.0 | 79.2 ± 4.0 | |
7.5 × 10−4 | 117.2 ± 6.3 | 96.1 ± 4.9 | 20.2 ± 1.0 | 69.7 ± 3.6 | |
1.0 × 10−3 | 123.2 ± 7.3 | 104.1 ± 6.3 | 15.0 ± 0.9 | 59.6 ± 3.5 | |
SS-ECAP | 1.0 × 10−4 | 104.8 ± 3.2 | 68.5 ± 2.1 | 29.1 ± 0.9 | 144.2 ± 4.5 |
2.5 × 10−4 | 140.9 ± 5.5 | 105.9 ± 3.9 | 17.8 ± 0.7 | 130.3 ± 5.1 | |
5.0 × 10−4 | 175.4 ± 7.0 | 137.0 ± 5.3 | 21.2 ± 0.8 | 122.6 ± 4.9 | |
7.5 × 10−4 | 198.8 ± 8.2 | 159.3 ± 6.1 | 33.9 ± 1.4 | 113.9 ± 4.7 | |
1.0 × 10−3 | 217.1 ± 10.6 | 192.7 ± 9.4 | 21.0 ± 1.0 | 101.9 ± 5.8 |
Alloys | ε (s−1) | UTS (MPa) | TYS (MPa) | UEL (%) | TEL (%) |
---|---|---|---|---|---|
Cast | 1.0 × 10−3 | 17.9 ± 1.1 | 12.8 ± 1.0 | 9.6 ± 0.6 | 162.3 ± 9.9 |
2.5 × 10−3 | 24.7 ± 1.7 | 20.0 ± 1.4 | 16.2 ± 1.1 | 146.6 ± 10.1 | |
5.0 × 10−3 | 30.7 ± 2.1 | 25.6 ± 1.8 | 13.5 ± 0.9 | 135.3 ± 9.5 | |
7.5 × 10−3 | 35.0 ± 2.5 | 27.9 ± 2.0 | 22.3 ± 1.6 | 125.1 ± 8.9 | |
1.0 × 10−2 | 38.2 ± 3.0 | 32.0 ± 2.5 | 11.3 ± 1.0 | 106.9 ± 8.4 | |
Cast-ECAP | 1.0 × 10−3 | 22.6 ± 1.2 | 16.2 ± 0.8 | 24.7 ± 1.3 | 212.2 ± 10.8 |
2.5 × 10−3 | 31.5 ± 1.9 | 24.6 ± 1.5 | 17.9 ± 1.1 | 194.9 ± 11.5 | |
5.0 × 10−3 | 40.2 ± 2.4 | 30.8 ± 1.8 | 24.7 ± 1.5 | 185.4 ± 11.1 | |
7.5 × 10−3 | 46.2 ± 2.8 | 35.7 ± 2.2 | 18.1 ± 1.1 | 172.5 ± 10.5 | |
1.0 × 10−2 | 50.8 ± 3.5 | 40.4 ± 2.8 | 16.5 ± 1.1 | 151.1 ± 10.4 | |
SS | 1.0 × 10−3 | 16.4 ± 0.7 | 12.4 ± 0.7 | 26.4 ± 1.1 | 173.1 ± 7.1 |
2.5 × 10−3 | 23.1 ± 1.1 | 19.7 ± 1.0 | 14.8 ± 0.8 | 155.2 ± 7.6 | |
5.0 × 10−3 | 29.0 ± 1.5 | 24.3 ± 1.2 | 14.3 ± 0.7 | 145.3 ± 7.3 | |
7.5 × 10−3 | 33.0 ± 1.7 | 28.2 ± 1.4 | 17.0 ± 0.9 | 133.9 ± 6.8 | |
1.0 × 10−2 | 36.9 ± 2.2 | 32.6 ± 1.9 | 18.5 ± 1.1 | 125.3 ± 7.4 | |
SS-ECAP | 1.0 × 10−3 | 13.7 ± 0.4 | 8.1 ± 0.3 | 75.2 ± 2.3 | 602.1 ± 18.7 |
2.5 × 10−3 | 23.6 ± 0.9 | 14.3 ± 0.6 | 98.4 ± 3.8 | 472.1 ± 18.4 | |
5.0 × 10−3 | 33.3 ± 1.3 | 24.2 ± 1.0 | 52.0 ± 2.1 | 395.2 ± 15.8 | |
7.5 × 10−3 | 39.7 ± 1.6 | 31.1 ± 1.3 | 42.2 ± 1.7 | 295.2 ± 12.1 | |
1.0 × 10−2 | 44.7 ± 2.2 | 35.4 ± 1.7 | 46.0 ± 2.3 | 255.0 ± 12.5 |
T/K | ε (s−1) | m | |||
---|---|---|---|---|---|
Cast | SS | Cast-ECAP | SS-ECAP | ||
298 K | 1.0 × 10−4 | 0.3163 | 0.3206 | 0.3350 | 0.4280 |
2.5 × 10−4 | 0.2990 | 0.3004 | 0.3239 | 0.4160 | |
5.0 × 10−4 | 0.2910 | 0.2994 | 0.3110 | 0.4115 | |
7.5 × 10−4 | 0.2810 | 0.2893 | 0.3080 | 0.4010 | |
1.0 × 10−3 | 0.2710 | 0.2744 | 0.3042 | 0.3590 | |
323 K | 1.0 × 10−3 | 0.3320 | 0.3444 | 0.3580 | 0.5000 |
2.5 × 10−3 | 0.3260 | 0.3374 | 0.3450 | 0.4360 | |
5.0 × 10−3 | 0.3110 | 0.3234 | 0.3380 | 0.4160 | |
7.5 × 10−3 | 0.3080 | 0.3204 | 0.3310 | 0.4090 | |
1.0 × 10−2 | 0.2930 | 0.3054 | 0.3140 | 0.4030 | |
348 K | 1.0 × 10−3 | 0.3350 | 0.3445 | 0.3600 | 0.5600 |
2.5 × 10−3 | 0.3280 | 0.3370 | 0.3550 | 0.4590 | |
5.0 × 10−3 | 0.3150 | 0.3310 | 0.3490 | 0.4210 | |
7.5 × 10−3 | 0.3090 | 0.3280 | 0.3410 | 0.4180 | |
1.0 × 10−2 | 0.2950 | 0.3220 | 0.3290 | 0.4020 | |
373 K | 1.0 × 10−3 | 0.3400 | 0.3620 | 0.3720 | 0.6530 |
2.5 × 10−3 | 0.3340 | 0.3510 | 0.3690 | 0.5850 | |
5.0 × 10−3 | 0.3260 | 0.3470 | 0.3550 | 0.4550 | |
7.5 × 10−3 | 0.3200 | 0.3390 | 0.3530 | 0.4450 | |
1.0 × 10−2 | 0.3070 | 0.3340 | 0.3240 | 0.4310 |
T/K | ε (s−1) | Q/(kJ/mol) | |||
---|---|---|---|---|---|
Cast | SS | Cast-ECAP | SS-ECAP | ||
298 K | 1.0 × 10−3 | 84.22 | 85.39 | 86.17 | 88.37 |
323 K | 1.0 × 10−3 | 82.56 | 80.84 | 77.61 | 73.32 |
2.5 × 10−3 | 81.95 | 79.33 | 77.06 | 67.50 | |
5.0 × 10−3 | 81.52 | 78.84 | 76.64 | 64.99 | |
7.5 × 10−3 | 80.95 | 78.36 | 76.16 | 63.35 | |
1.0 × 10−2 | 80.48 | 77.72 | 75.56 | 62.16 | |
348 K | 1.0 × 10−3 | 82.40 | 79.35 | 76.12 | 70.23 |
2.5 × 10−3 | 81.79 | 77.87 | 75.58 | 64.65 | |
5.0 × 10−3 | 81.36 | 77.39 | 75.16 | 62.25 | |
7.5 × 10−3 | 80.79 | 76.91 | 74.69 | 60.68 | |
1.0 × 10−2 | 80.32 | 76.29 | 74.11 | 59.53 | |
373 K | 1.0 × 10−3 | 79.07 | 76.00 | 74.52 | 61.55 |
2.5 × 10−3 | 78.49 | 74.59 | 74.0 | 56.91 | |
5.0 × 10−3 | 78.08 | 74.12 | 73.59 | 54.80 | |
7.5 × 10−3 | 77.53 | 73.67 | 73.12 | 53.42 | |
1.0 × 10−2 | 77.08 | 73.07 | 72.56 | 52.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Gong, X.; Zhao, W.; Sun, C.; Shan, G.; Liu, H.; Song, D. Achieving Superplasticity in Ultrafine-Grained Mg-9Li Alloy via Dual-Phase Microstructure Optimization. Metals 2025, 15, 533. https://doi.org/10.3390/met15050533
Xu J, Gong X, Zhao W, Sun C, Shan G, Liu H, Song D. Achieving Superplasticity in Ultrafine-Grained Mg-9Li Alloy via Dual-Phase Microstructure Optimization. Metals. 2025; 15(5):533. https://doi.org/10.3390/met15050533
Chicago/Turabian StyleXu, Jiahao, Xinyue Gong, Wanxiang Zhao, Chao Sun, Guibin Shan, Huan Liu, and Dan Song. 2025. "Achieving Superplasticity in Ultrafine-Grained Mg-9Li Alloy via Dual-Phase Microstructure Optimization" Metals 15, no. 5: 533. https://doi.org/10.3390/met15050533
APA StyleXu, J., Gong, X., Zhao, W., Sun, C., Shan, G., Liu, H., & Song, D. (2025). Achieving Superplasticity in Ultrafine-Grained Mg-9Li Alloy via Dual-Phase Microstructure Optimization. Metals, 15(5), 533. https://doi.org/10.3390/met15050533