Effect of Nb and Si Content on Phase Stability, Microstructure and Mechanical Properties of Sintered Ti–Nb–Si Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Calculations and Diagrams
3.2. Powder Characterization
3.3. Phase Analysis and Microstructure of the Sintered and Treated Samples
3.4. Porosity and Relative Density
3.5. Mechanical Properties
4. Discussion
5. Conclusions
- A predominantly β phase alloy was successfully produced through pressing, sintering, and heat treatment, offering an alternative route to casting and rolling. Also, a lower sintering temperature, when compared to the work of Yilmaz et al. [46], of 1200 °C was used.
- The formation of Si precipitates and minor amounts of the α phase, as anticipated, was confirmed through SEM and XRD analyses.
- The influence of precipitate growth, predicted in the literature, was observed as a change in mechanical behavior at 0.35 wt.% Si during tensile testing.
- Further reductions in the elastic modulus may be achievable through the addition of other alloying elements like Sn and Ta.
- From the results analyzed, it can be concluded that complete diffusion occurred, with no elemental Ti, Nb, or Si observed. XRD analysis showed that Si was in solid solution for 0.10 wt.% and, at 0.6 wt.%, it formed precipitates of (Ti,Nb)3Si.
- The results of the relative density anslysis showed that contents above 0.25 wt.% reduced relative density as the precipitates grew, also reducing the ultimate tensile strength and elastic modulus.
- The best result for relative density was 78.7 ± 0.8% and occurred at 0.35 wt.% Si and 35 wt.% Nb.
- The highest UTSs observed were at 35 wt.%Nb for both 0.10 and 0.35 wt.% Si.
- The lowest elastic moduli observed were for Nb at 45 wt.%, at 0.10 and 0.60 wt.% Si.
- SEM of the fractured surfaces showed a mainly ductile surface, but tensile strength tests showed very low elongation. This behavior was attributed to the highly porous structure, with porosity being the dominant effect.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alberta, L.; Vishnu, J.; Douest, Y.; Perrin, K.; Sfarghiu, A.-M.; Courtois, N.; Gebert, A.; Ter-Ovanessian, B.; Calin, M. Tribocorrosion Behavior of β-Type Ti-Nb-Ga Alloys in a Physiological Solution. Tribol. Int. 2023, 181, 108325. [Google Scholar] [CrossRef]
- Rao, X.; Chu, C.L.; Zheng, Y.Y. Phase Composition, Microstructure, and Mechanical Properties of Porous Ti-Nb-Zr Alloys Prepared by a Two-Step Foaming Powder Metallurgy Method. J. Mech. Behav. Biomed. Mater. 2014, 34, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Denard, P.J.; Raiss, P.; Gobezie, R.; Edwards, T.B.; Lederman, E. Stress Shielding of the Humerus in Press-Fit Anatomic Shoulder Arthroplasty: Review and Recommendations for Evaluation. J. Shoulder Elb. Surg. 2018, 27, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Fouda, N.; Mostafa, R.; Saker, A. Numerical Study of Stress Shielding Reduction at Fractured Bone Using Metallic and Composite Bone-Plate Models. Ain Shams Eng. J. 2019, 10, 481–488. [Google Scholar] [CrossRef]
- Zhang, Q.-H.; Cossey, A.; Tong, J. Stress Shielding in Periprosthetic Bone Following a Total Knee Replacement: Effects of Implant Material, Design and Alignment. Med. Eng. Phys. 2016, 38, 1481–1488. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, K. Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 102, 844–862. [Google Scholar] [CrossRef]
- Palka, K.; Pokrowiecki, R. Porous Titanium Implants: A Review. Adv. Eng. Mater. 2018, 20, 1700648. [Google Scholar] [CrossRef]
- Manivasagam, G.; Singh, A.K.; Rajamanickam, A.; Gogia, A. Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Mavros, N.; Larimian, T.; Esqivel, J.; Gupta, R.; Contieri, R.; Borkar, T. Spark Plasma Sintering of Low Modulus Titanium-Niobium-Tantalum-Zirconium (TNTZ) Alloy for Biomedical Applications. Mater. Des. 2019, 183, 108163. [Google Scholar] [CrossRef]
- Goi, K.L.S.; Butler, D.L.; Jarfors, A.E.W.; Yong, J.M.S.; Lim, D.C.S. Elastic Modulus of Sintered Porous Ti–Si–Zr, Using Activation by Ti–Si Mechanically Alloyed Powder and TiH2 Powder. Mater. Sci. Eng. A 2008, 475, 45–51. [Google Scholar] [CrossRef]
- Kuroda, P.A.B.; Da Silva, L.M.; Sousa, K.D.S.J.; Donato, T.A.G.; Grandini, C.R. Preparation, Structural, Microstructural, Mechanical, and Cytotoxic Characterization of Ti-15Nb Alloy for Biomedical Applications. Artif. Organs 2020, 44, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Bahl, S.; Krishnamurthy, A.S.; Suwas, S.; Chatterjee, K. Controlled Nanoscale Precipitation to Enhance the Mechanical and Biological Performances of a Metastable β Ti-Nb-Sn Alloy for Orthopedic Applications. Mater. Des. 2017, 126, 226–237. [Google Scholar] [CrossRef]
- Cavilha Neto, F.; Medeiros, V.K.; Salinas-Barrera, V.; Pio, E.; Aguilar, C.; Ramos, B.B.; Klein, A.N.; Henriques, B.; Binder, C. Synthesis and Characterization of Ti-13Ta-6Sn Foams Produced Using Mechanical Alloying, the Space Holder Method and Plasma-Assisted Sintering. Metals 2024, 14, 1145. [Google Scholar] [CrossRef]
- Li, H.; Cai, Q.; Li, S.; Xu, H. Effects of Mo Equivalent on the Phase Constituent, Microstructure and Compressive Mechanical Properties of Ti–Nb–Mo–Ta Alloys Prepared by Powder Metallurgy. J. Mater. Res. Technol. 2022, 16, 588–598. [Google Scholar] [CrossRef]
- Kong, W.; Cox, S.C.; Lu, Y.; Villapun, V.; Xiao, X.; Ma, W.; Liu, M.; Attallah, M.M. The Influence of Zirconium Content on the Microstructure, Mechanical Properties, and Biocompatibility of in-Situ Alloying Ti-Nb-Ta Based β Alloys Processed by Selective Laser Melting. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 131, 112486. [Google Scholar] [CrossRef]
- Nouri, A.; Hodgson, P.D.; Wen, C.E. Effect of Process Control Agent on the Porous Structure and Mechanical Properties of a Biomedical Ti–Sn–Nb Alloy Produced by Powder Metallurgy. Acta Biomater. 2010, 6, 1630–1639. [Google Scholar] [CrossRef]
- Ehtemam-Haghighi, S.; Liu, Y.; Cao, G.; Zhang, L.-C. Influence of Nb on the β → A″ Martensitic Phase Transformation and Properties of the Newly Designed Ti–Fe–Nb Alloys. Mater. Sci. Eng. C 2016, 60, 503–510. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, W.; Xin, H.; Yu, F. Microstructure, Corrosion and Anti-Bacterial Investigation of Novel Ti-xNb-yCu Alloy for Biomedical Implant Application. J. Mater. Res. Technol. 2022, 18, 5212–5225. [Google Scholar] [CrossRef]
- Tavares, A.M.G.; Ramos, W.S.; de Blas, J.C.G.; Lopes, E.S.N.; Caram, R.; Batista, W.W.; Souza, S.A. Influence of Si Addition on the Microstructure and Mechanical Properties of Ti-35Nb Alloy for Applications in Orthopedic Implants. J. Mech. Behav. Biomed. Mater. 2015, 51, 74–87. [Google Scholar] [CrossRef]
- Kumar, R.; Gautam, R.K. Investigation of Sliding Wear, Electrochemical Corrosion, and Biocompatibility of Ti-Nb Alloys for Biomedical Applications. Mater. Today Commun. 2024, 41, 110365. [Google Scholar] [CrossRef]
- Liu, J.; Ruan, J.; Chang, L.; Yang, H.; Ruan, W. Porous Nb-Ti-Ta Alloy Scaffolds for Bone Tissue Engineering: Fabrication, Mechanical Properties and in Vitro/Vivo Biocompatibility. Mater. Sci. Eng. C 2017, 78, 503–512. [Google Scholar] [CrossRef]
- Hayat, M.D.; Singh, H.; Miodowski, A.; Bokhari, S.W.; He, Z.; Cao, P. Fabrication, Microstructure and Mechanical Properties of in Situ Formed Particle Reinforced Titanium Matrix Composite. Int. J. Refract. Met. Hard Mater. 2020, 92, 105257. [Google Scholar] [CrossRef]
- Jiao, Y.; Huang, L.J.; An, Q.; Jiang, S.; Gao, Y.N.; Cui, X.P.; Geng, L. Effects of Ti5Si3 Characteristics Adjustment on Microstructure and Tensile Properties of In-Situ (Ti5Si3+TiBw)/Ti6Al4V Composites with Two-Scale Network Architecture. Mater. Sci. Eng. A 2016, 673, 595–605. [Google Scholar] [CrossRef]
- Zhao, E.; Sun, S.; Zhang, Y. Recent Advances in Silicon Containing High Temperature Titanium Alloys. J. Mater. Res. Technol. 2021, 14, 3029–3042. [Google Scholar] [CrossRef]
- Gallardo-Moreno, A.M.; Multigner, M.; Calzado-Martín, A.; Méndez-Vilas, A.; Saldaña, L.; Galván, J.C.; Pacha-Olivenza, M.A.; Perera-Núñez, J.; González-Carrasco, J.L.; Braceras, I.; et al. Bacterial Adhesion Reduction on a Biocompatible Si+ Ion Implanted Austenitic Stainless Steel. Mater. Sci. Eng. C 2011, 31, 1567–1576. [Google Scholar] [CrossRef]
- Kheradmandfard, M.; Penkov, O.V.; Kashani-Bozorg, S.F.; Lee, J.S.; Kim, C.-L.; Khadem, M.; Cho, S.-W.; Hanzaki, A.Z.; Kim, D.-E. Exceptional Improvement in the Wear Resistance of Biomedical β-Type Titanium Alloy with the Use of a Biocompatible Multilayer Si/DLC Nanocomposite Coating. Ceram. Int. 2022, 48, 17376–17384. [Google Scholar] [CrossRef]
- Sevostyanov, M.A.; Kolmakov, A.G.; Sergiyenko, K.V.; Kaplan, M.A.; Baikin, A.S.; Gudkov, S.V. Mechanical, Physical–Chemical and Biological Properties of the New Ti–30Nb–13Ta–5Zr Alloy. J. Mater. Sci. 2020, 55, 14516–14529. [Google Scholar] [CrossRef]
- Gill, H.S.; Waite, J.C.; Short, A.; Kellett, C.F.; Price, A.J.; Murray, D.W. In Vivo Measurement of Volumetric Wear of a Total Knee Replacement. Knee 2006, 13, 312–317. [Google Scholar] [CrossRef]
- Añez, R.; San-Miguel, M.; Sanz, J. Study of the TiSi Interface Formed by Ti Deposition on a Clean Si (100) Surface. A Periodic DFT Study. Surf. Sci. 2012, 606, 754–761. [Google Scholar] [CrossRef]
- Yeh, C.-W.; Chen, W.H.; Hsu, C.C. Formation of Titanium Silicides Ti5Si3 and TiSi2 by Self–Propagating Combustion Synthesis. J. Alloys Compd. 2007, 432, 90–95. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Y.; Tabie, V.; Cai, C.; Xiao, Y.; Zhang, X.; Li, C.; Jiang, Z.; Liu, Q.; Chen, H. High-Temperature Oxidation Resistance of a Ti–Al–Sn–Zr Titanium Matrix Composites Reinforced with in Situ TiC and Ti5Si3 Fabricated by Powder Metallurgy. Appl. Phys. A 2020, 126, 254. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, X.; Zhang, Q.; Chen, L.; Shi, Q.; Wu, Z.-X. Enhanced Mechanical Properties of Porous Titanium Implants via In-Situ Synthesized Titanium Carbide in Lamellar Pore Walls. Ceram. Int. 2021, 48, 5083–5090. [Google Scholar] [CrossRef]
- Ehtemam-Haghighi, S.; Attar, H.; Dargusch, M.S.; Kent, D. Microstructure, Phase Composition and Mechanical Properties of New, Low Cost Ti-Mn-Nb Alloys for Biomedical Applications. J. Alloys Compd. 2019, 787, 570–577. [Google Scholar] [CrossRef]
- Chen, W.Y.; Chen, Y.H.; Li, W.P.; Zhou, R.; Chou, T.H.; Wang, X.; Huang, J.C. Passivation Evolution of Ti -Ta-Nb Medium-Entropy Sputtered Thin Films in Sulfuric Acid Solution. Appl. Surf. Sci. 2022, 576, 151824. [Google Scholar] [CrossRef]
- Singh, H.; Hayat, M.; Zhang, H.; Cao, P. The Decomposition of Si3N4 in Titanium and Its Effect on Wear Properties. Wear 2019, 420, 87–95. [Google Scholar] [CrossRef]
- Mathabathe, M.N.; Bolokang, A.S.; Govender, G.; Siyasiya, C.W.; Mostert, R.J. Cold-Pressing and Vacuum Arc Melting of γ-TiAl Based Alloys. Adv. Powder Technol. 2019, 30, 2925–2939. [Google Scholar] [CrossRef]
- Morinaga, M. The Molecular Orbital Approach to Titanium Alloy Design. Key Eng. Mater. 2018, 770, 217–223. [Google Scholar] [CrossRef]
- Morinaga, M.; Yukawa, H. Alloy Design with the Aid of Molecular Orbital Method. Bull. Mater. Sci. 1997, 20, 805–815. [Google Scholar] [CrossRef]
- Fuwa, H.; Hinoshita, K.; Kimura, H.; Shinzato, Y.; Morinaga, M.; Gepreel, M. Phase Stability Change with Zr Content in β-type Ti-Nb Alloys. Scr. Mater. 2007, 57, 1000–1003. [Google Scholar] [CrossRef]
- Lundstedt, T.; Seifert, E.; Abramo, L.; Thelin, B.; Nyström, Å.; Pettersen, J.; Bergman, R. Experimental Design and Optimization. Chemom. Intell. Lab. Syst. 1998, 42, 3–40. [Google Scholar] [CrossRef]
- Chen, V.C.P.; Ruppert, D.; Shoemaker, C.A. Applying Experimental Design and Regression Splines to High-Dimensional Continuous-State Stochastic Dynamic Programming. Oper. Res. 1999, 47, 38–53. [Google Scholar] [CrossRef]
- Metal Powder Industries Federation. Determination of the Tensile Properties of Powder Metallurgy Materials—Standard 10; Metal Powder Industries Federation: Princeton, NJ, USA, 2012; ISBN 978-0-9819496-8-0. [Google Scholar]
- Borborema, S.; Ferrer, V.; Rocha, A.; Cossú, C.; Nunes, A.R.; Nunes, C.; Malet, L.; Almeida, L. Influence of Nb Addition on A″ and ω Phase Stability and on Mechanical Properties in the Ti-12Mo-xNb Stoichiometric System. Metals 2022, 12, 1508. [Google Scholar] [CrossRef]
- Dewangan, S.; Singhal, P. Study and Comparison of Microstructures in Ti-Alloy before and after the Heat Treatment. Mater. Today Proc. 2022, 62, 1570–1574. [Google Scholar] [CrossRef]
- Gao, B.; Wang, Q.; Wang, W.; Xin, S.; Sun, Y.; Wang, K. Study on the Deformation Mechanism of Ti-10Mo-1Fe Solid-Solution Alloys with Different Cooling Rates. J. Mater. Res. Technol. 2023, 23, 5221–5229. [Google Scholar] [CrossRef]
- Yılmaz, E.; Gökçe, A.; Findik, F.; Gulsoy, H. Metallurgical Properties and Biomimetic HA Deposition Performance of Ti-Nb PIM Alloys. J. Alloys Compd. 2018, 746, 301–313. [Google Scholar] [CrossRef]
- Talbot, C.; Church, N.; Hildyard, E.; Connor, L.; Miller, J.R., Jr.; Jones, N. On the Stability and Formation of the A″ and ω Phases in Ti-Nb Alloys upon Cooling. Acta Mater. 2024, 262, 119409. [Google Scholar] [CrossRef]
- Mehjabeen, A.; Xu, W.; Qiu, D.; Qian, M. Redefining the β-Phase Stability in Ti-Nb-Zr Alloys for Alloy Design and Microstructural Prediction. JOM 2018, 70, 2254–2259. [Google Scholar] [CrossRef]
- Kuang, Q.B.; Zou, L.M.; Cai, Y.X.; Liu, X.; Xie, H.W. Microstructure and Properties of High Temperature Titanium Alloys with a High Si Content Prepared by Powder Metallurgy. Mater. Trans. 2017, 58, 1735–1741. [Google Scholar] [CrossRef]
- Guo, R.; Liu, B.; Xu, R.; Cao, Y.; Qiu, J.; Chen, F.; Yan, Z.; Liu, Y. Microstructure and Mechanical Properties of Powder Metallurgy High Temperature Titanium Alloy with High Si Content. Mater. Sci. Eng. A 2020, 777, 138993. [Google Scholar] [CrossRef]
- Kartamyshev, A.; Poletaev, D.; Lipnitskii, A.G. The Influence of Lattice Vibrations and Electronic Free Energy on Phase Stability of Titanium Silicides and Si Solubility in Hcp Titanium: A DFT Study. Calphad 2019, 65, 194–203. [Google Scholar] [CrossRef]
- German, R.M. Powder Metallurgy and Particulate Materials Processing: The Processes, Materials, Products, Properties and Applications; Metal Powder Industries Federation: Princeton, NJ, USA, 2005; ISBN 978-0-9762057-1-5. [Google Scholar]
- Vishnu, D.S.M.; Sure, J.; Schwandt, C. Effect of Nb on Phase Composition, Microstructure and Corrosion Resistance of Electrochemically Synthesised Porous Ti-xNb-13Zr for Use as a Bio-Alloy. J. Alloy. Metall. Syst. 2024, 6, 100072. [Google Scholar] [CrossRef]
- Paul, M.; Alshammari, Y.; Yang, F.; Bolzoni, L. Processing and Properties of Powder Metallurgy Ti-Cu-Nb Alloys. J. Alloys Compd. 2023, 944, 169041. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Li, Y.; Li, S.; Cai, Q. Densification Mechanism of Ti-Al-Nb Alloys Pressurelessly Sintered from Al-Nb Master Alloy Powder for Cost-Effective Manufacturing. J. Alloys Compd. 2023, 936, 168307. [Google Scholar] [CrossRef]
- Carman, A.; Zhang, L.C.; Ivasishin, O.M.; Savvakin, D.G.; Matviychuk, M.V.; Pereloma, E.V. Role of Alloying Elements in Microstructure Evolution and Alloying Elements Behaviour during Sintering of a Near-β Titanium Alloy. Mater. Sci. Eng. A 2011, 528, 1686–1693. [Google Scholar] [CrossRef]
- Kan, W.H.; Chiu, L.N.S.; Lim, C.V.S.; Zhu, Y.; Tian, Y.; Jiang, D.; Huang, A. A Critical Review on the Effects of Process-Induced Porosity on the Mechanical Properties of Alloys Fabricated by Laser Powder Bed Fusion. J. Mater. Sci. 2022, 57, 9818–9865. [Google Scholar] [CrossRef]
- Laursen, C.M.; DeJong, S.A.; Dickens, S.M.; Exil, A.N.; Susan, D.F.; Carroll, J.D. Relationship between Ductility and the Porosity of Additively Manufactured AlSi10Mg. Mater. Sci. Eng. A 2020, 795, 139922. [Google Scholar] [CrossRef]
- Sidhu, S.S.; Singh, H.; Gepreel, M.A.-H. A Review on Alloy Design, Biological Response, and Strengthening of β-Titanium Alloys as Biomaterials. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 121, 111661. [Google Scholar] [CrossRef]
- Khrunyk, Y.Y.; Ehnert, S.; Grib, S.V.; Illarionov, A.G.; Stepanov, S.I.; Popov, A.A.; Ryzhkov, M.A.; Belikov, S.V.; Xu, Z.; Rupp, F.; et al. Synthesis and Characterization of a Novel Biocompatible Alloy, Ti-Nb-Zr-Ta-Sn. Int. J. Mol. Sci. 2021, 22, 10611. [Google Scholar] [CrossRef]
Powder | Particle Size | Purity | Supplier | Production |
---|---|---|---|---|
Ti | 325 mesh | 99.8% | Alfa Aesar | Ar atomization |
Nb | 10 µm | 99.5% | SkySpring Nanomaterials | Ar atomization |
Si | 1~2 µm | 99.9% | SkySpring Nanomaterials | Ar atomization |
Alloy Nominal Composition | β Stability Indicators | |
---|---|---|
TiSi0.10Nb35 | 2.858 | 2.441 |
TiSi0.10Nb40 | 2.870 | 2.441 |
TiSi0.10Nb45 | 2.882 | 2.440 |
TiSi0.35Nb35 | 2.856 | 2.440 |
TiSi0.35Nb40 | 2.868 | 2.439 |
TiSi0.35Nb45 | 2.881 | 2.438 |
TiSi0.60Nb35 | 2.855 | 2.439 |
TiSi0.60Nb40 | 2.867 | 2.438 |
TiSi0.60Nb45 | 2.879 | 2.437 |
Calculated Phase Amount | |||
---|---|---|---|
α wt.% | β wt.% | Ti3Si wt.% | |
Ti.010Si35Nb | 64.61 | 35.01 | 0.38 |
Ti0.10Si45Nb | 54.52 | 45.06 | 0.42 |
Ti0.60Si35Nb | 61.53 | 35.01 | 3.46 |
Ti0.60Si45Nb | 51.44 | 45.07 | 3.49 |
σ | Rwp (%) | α wt.% | α Cell | β Phase wt.% | β Cell | (Ti,Nb)3Si wt.% | (Ti,Nb)3Si Cell | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alloy | Calc. | CIF | Calc. | CIF | Calc. | CIF | |||||||||
a | c | a | c | a | a | a | c | a | c | ||||||
Ti0.10Si35Nb | 2.23 | 7.76 | 9.24 | 2.96 | 4.76 | 2.91 | 4.67 | 90.76 | 3.30 | 3.31 | --- | --- | --- | --- | --- |
Ti0.10Si45Nb | 3.45 | 13.55 | 3.96 | 2.97 | 4.78 | 2.91 | 4.67 | 96.04 | 3.30 | 3.31 | --- | --- | --- | --- | --- |
Ti0.60Si35Nb | 1.77 | 6.84 | 4.90 | 2.96 | 4.77 | 2.91 | 4.67 | 89.55 | 3.30 | 3.31 | 5.55 | 10.21 | 5.03 | 10.21 | 5.07 |
Ti0.60Si45Nb | 2.06 | 5.84 | 8.02 | 2.98 | 4.78 | 2.91 | 4.67 | 89.11 | 3.31 | 3.31 | 2.87 | 10.20 | 5.14 | 10.21 | 5.07 |
Material Designation | UTS (MPa) | EL (%) | E (Gpa) |
---|---|---|---|
Cortical bone [6] | 70–150 | 0.55–0.94 | 15–30 |
Ti0.10Si35Nb | 412 ± 44 | 1.2 ± 0.6 | 68.6 ± 4.6 |
Ti0.10Si45Nb | 350 ± 21 | 1.1 ± 0.3 | 54.4 ± 3.1 |
Ti0.35Si40Nb | 396 ± 18 | 0.8 ± 0.5 | 64.0 ± 6.3 |
Ti0.60Si35Nb | 392 ± 20 | 0.8 ± 0.2 | 66.6 ± 3.9 |
Ti0.60Si45Nb | 361 ± 29 | 0.9 ± 0.2 | 59.5 ± 2.6 |
CP-Ti, grade 1 [60] | 240 | 24 | 115 |
CP-Ti, grade 4 [60] | 620 | 19 | 115 |
Ti6Al4V ELI, annealed [60] | 930 | 16 | 114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luup Carvalho, D.M.; Paim, D.D.; Schramm Deschamps, I.; Aguilar, C.; Klein, A.N.; Cavilha Neto, F.; Oliveira Neves, G.; Binder, C. Effect of Nb and Si Content on Phase Stability, Microstructure and Mechanical Properties of Sintered Ti–Nb–Si Alloys. Metals 2025, 15, 34. https://doi.org/10.3390/met15010034
Luup Carvalho DM, Paim DD, Schramm Deschamps I, Aguilar C, Klein AN, Cavilha Neto F, Oliveira Neves G, Binder C. Effect of Nb and Si Content on Phase Stability, Microstructure and Mechanical Properties of Sintered Ti–Nb–Si Alloys. Metals. 2025; 15(1):34. https://doi.org/10.3390/met15010034
Chicago/Turabian StyleLuup Carvalho, Derek Manoel, Deivison Daros Paim, Isadora Schramm Deschamps, Claudio Aguilar, Aloísio Nelmo Klein, Francisco Cavilha Neto, Guilherme Oliveira Neves, and Cristiano Binder. 2025. "Effect of Nb and Si Content on Phase Stability, Microstructure and Mechanical Properties of Sintered Ti–Nb–Si Alloys" Metals 15, no. 1: 34. https://doi.org/10.3390/met15010034
APA StyleLuup Carvalho, D. M., Paim, D. D., Schramm Deschamps, I., Aguilar, C., Klein, A. N., Cavilha Neto, F., Oliveira Neves, G., & Binder, C. (2025). Effect of Nb and Si Content on Phase Stability, Microstructure and Mechanical Properties of Sintered Ti–Nb–Si Alloys. Metals, 15(1), 34. https://doi.org/10.3390/met15010034