The Influence Mechanism of Deformation on the Precipitation Behavior and Mechanical Properties of 7075 Aluminum Alloy During Hot Forming-Quenching Integrated Process
Abstract
:1. Introduction
2. Experimental Details
2.1. Material
2.2. Isothermal Uniaxial Tensile Tests
2.3. Microstructural and Properties Characterization
3. Theoretical Model
4. Results and Discussion
4.1. Curves of Differential Scanning Calorimetry
4.2. Evolution of the Non-Isothermal Transformation Fraction
4.3. Evolution of the Isothermal Transformation Fraction
4.4. Aging Hardening Behavior
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hua, L.; Zhang, W.P.; Hu, L.; Zhang, Z.C.; Hu, Z.L. Mechanical responses and microstructure evolution of a 7A09 aluminum alloy extrusion profile during novel stretch bending. Mater. Charact. 2024, 212, 113938. [Google Scholar] [CrossRef]
- Sun, Q.; Yu, S.; Wang, H.; Ma, H.J.; Li, H.H.; Hu, Z.L. Experimental and simulation study for the influence of thermal pre-deformation on subsequent aging precipitation kinetics of Al-Zn-Mg-Cu alloy. Materials 2022, 15, 4634. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; He, Z.; Zhou, W.; Yuan, S. Formability and strengthening mechanism of solution treated Al-Mg-Si alloy sheet under hot stamping conditions. J. Mater. Process. Tech. 2016, 228, 179–185. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, B.; Wang, K.; Li, S.; Zhang, Y. Friction behaviors of 6061 aluminum alloy sheets in hot stamping under dry and lubricated conditions based on hot strip drawing test. Tribol. Int. 2020, 151, 106504. [Google Scholar] [CrossRef]
- Xiao, W.; Cai, H.; Lu, W.; Li, Y.; Zheng, K.; Wu, Y. Multi-objective optimization with automatic simulation for partition temperature control in aluminum hot stamping process. Struct. Multidiscip. O 2022, 65, 84–93. [Google Scholar] [CrossRef]
- Harrison, N.R.; Luckey, S.G. Hot stamping of a b-pillar outer from high strength aluminum sheet AA7075. SAE World Congr. Exhib. Detroit 2014, 60, 26–32. [Google Scholar] [CrossRef]
- Fan, X.; He, Z.; Zheng, K.; Yuan, S. Strengthening behavior of Al–Cu–Mg alloy sheet in hot forming–quenching integrated process with cold–hot dies. Mater. Des. 2015, 83, 557–565. [Google Scholar] [CrossRef]
- Ma, W.; Wang, B.; Yang, L.; Tang, X.; Xiao, W.; Zhou, J. Influence of solution heat treatment on mechanical response and fracture behaviour of aluminium alloy sheets: An experimental study. Mater. Des. 2015, 88, 1119–1126. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Z.; Wang, Z.; Zhu, B.; Wang, Y.; Zhang, Y. Formability and lubrication of a b-pillar in hot stamping with 6061 and 7075 aluminum alloy sheets. Procedia. Eng. 2017, 207, 723–728. [Google Scholar] [CrossRef]
- Xiao, W.; Zheng, K.; Wang, B.; Yang, X. Experimental characterization of heat transfer coefficients for hot stamping AA7075 sheets with an air gap. Arch. Civ. Mech. Eng. 2020, 20, 93–102. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Yan, W.; Xu, H. Constitutive modelling of plastic deformation behaviour for AA7075-H18 alloy based on hot forming and in-die quenching (HFQ®) process. Int. J. Mater. Form. 2022, 15, 62. [Google Scholar] [CrossRef]
- Lu, J.; Song, Y.; Zhou, P.; Xu, H.; Liu, Y.; Hua, L. Effect of thermal strain on the microstructure evolution and post-aging mechanical properties of Al-Zn-Mg-Cu alloy in simulating hot stamping process. Mat. Sci. Eng. A-Struct. 2023, 880, 145316. [Google Scholar] [CrossRef]
- Kumar, M.; Poletti, C.; Degasser, H.P. Precipitation kinetics in warm forming of aw-7020 alloy. Mat. Sci. Eng. A-Struct. 2013, 561, 362–370. [Google Scholar] [CrossRef]
- Han, B.; Wei, L.; Xu, Y.; Ma, X.; Liu, Y.; Hou, H. Effect of pre-deformation on microstructure and mechanical properties of ultra-high strength Al-Zn-Mg-Cu alloy after ageing treatment. Acta. Met. Sin 2020, 56, 1007–1014. [Google Scholar]
- Wang, X.; Pan, Q.; Wang, W.; Huang, Z.; Chen, J.; Pan, B.; Liu, X. Effects of pre-strain and aging treatments on the mechanical property and corrosion resistance of the spray formed ultra-high strength Al-Zn-Mg-cu alloy. Mater. Charact. 2022, 194, 112381. [Google Scholar] [CrossRef]
- Yu, X.W.; Chen, J.H.; Li, J.Y.; Wu, C.L.; Yang, X.B. Effect of pre-deformation on quench-induced inhomogeneity of microstructure and hardness in 7050 aluminum alloy. Mater. Charact. 2019, 158, 110005. [Google Scholar] [CrossRef]
- Zou, Y.; Wu, X.; Tang, S.; Wang, Y.; Zhao, K.; Cao, L. The effect of pre-ageing/stretching on the ageing-hardening behavior of Al-Zn-Mg-Cu alloys correlated with Zn/Mg ratio. Mat. Sci. Eng. A-Struct. 2022, 830, 142331. [Google Scholar] [CrossRef]
- Waterloo, G.; Hansen, V.; Gj Nnes, J.; Skjervold, S.R. Effect of predeformation and preaging at room temperature in Al–Zn–Mg– (Cu, Zr) alloys. Mat. Sci. Eng. A-Struct. 2001, 303, 226–233. [Google Scholar] [CrossRef]
- Ning, A.; Liu, Z.; Zeng, S. Effect of large cold deformation after solution treatment on precipitation characteristic and deformation strengthening of 2024 and 7A04 aluminum alloys. Trans. Nonferrous Met. Soc. China 2006, 6, 1341–1347. [Google Scholar] [CrossRef]
- GBT 228.1-2010; Tensile Testing of Metallic Materials Part 1: Room Temperature Test Method. Standards Press of China: Beijing, China, 2010.
- Marlaud, T.; Deschamps, A.; Bley, F.; Lefebvre, W.; Baroux, B. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy. Acta. Mater. 2010, 58, 4814–4826. [Google Scholar] [CrossRef]
- Sun, M. Effect of deformation conditions on precipitation kinetics of 2A14 aluminum alloy. In Study on Evolution of Deformation-Solid-Ageing Microstructure and Properties of 2A14 Aluminum Alloy; Wuhan University of Technology: Wuhan, China, 2018; Chapter 5; pp. 61–75. [Google Scholar]
- Primig, S.; Leitner, H. Transformation from continuous-to-isothermal aging applied on a maraging steel. Mat. Sci. Eng. A-Struct. 2010, 527, 4399–4405. [Google Scholar] [CrossRef]
- Zhang, W.P.; Li, H.H.; Hu, Z.L.; Hua, L. Investigation on the deformation behavior and post-formed microstructure/properties of AA7075-t6 alloy under pre-hardened hot forming process. Mat. Sci. Eng. A-Struct. 2020, 792, 139749. [Google Scholar] [CrossRef]
- Sha, G.; Cerezo, A. Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Mater. 2004, 52, 4503–4516. [Google Scholar] [CrossRef]
- Lendvai, J. Precipitation and strengthening in aluminium alloys. Mater. Sci. Forum 1996, 217–222, 43–56. [Google Scholar] [CrossRef]
- Yao, H. Precipitation behavior of the alloy during thermomechanical treatment. In A New Thermo-Mechanical Treatment of 7050 Aluminum Alloy; Harbin Institute of Technology: Harbin, China, 2013; Chapter 4; pp. 45–55. [Google Scholar]
- Elgallad, E.M.; Zhang, Z.; Chen, X.G. Effect of quenching rate on precipitation kinetics in AA2219 dc cast alloy. Phys. B-Condens. Matter. 2017, 514, 70–77. [Google Scholar] [CrossRef]
- Xiao, X.; Huang, G.; Cheng, L.; Ling, Q. Study on dynamics of Cu-1.5Ni-0.6Si alloy as-solutioned during aging precipitation. Mater. Heat Treat. 2011, 40, 173–176. [Google Scholar]
- Ma, W.; Wang, B.; Lin, J.; Tang, X. Influence of process parameters on properties of AA6082 in hot forming process. Trans. Nonferrous Met. Soc. China 2017, 27, 2454–2463. [Google Scholar] [CrossRef]
- Zheng, J.; Lin, J.; Lee, J.; Pan, R.; Li, C.; Davies, C.M. A novel constitutive model for multi-step stress relaxation ageing of a pre-strained 7xxx series alloy. Int. J. Plast. 2018, 106, 31–47. [Google Scholar] [CrossRef]
- Starink, M.J.; Wang, S.C. A model for the yield strength of Al-Zn-Mg-Cu alloys. Acta Mater. 2003, 51, 5131–5150. [Google Scholar] [CrossRef]
- Starink, M.J.; Deschamps, A.; Wang, S.C. The strength of friction stir welded and friction stir processed aluminium alloys. Scr. Mater. 2008, 58, 377–382. [Google Scholar] [CrossRef]
- Li, H.; Hu, Z.; Hua, L.; Sun, Q. Influence of thermal deformation parameters on mechanical properties and microstructure evolution of AA7075 aluminum alloy during hot stamping-quenching process. JOM 2019, 71, 4778–4788. [Google Scholar] [CrossRef]
- Hua, L.; Zhang, W.P.; Ma, H.J.; Hu, Z.L. Investigation of formability, microstructures and post-forming mechanical properties of heat-treatable aluminum alloys subjected to pre-aged hardening warm forming. Int. J. Mach. Tool. Manu. 2021, 169, 103799. [Google Scholar] [CrossRef]
- Huo, W.; Hou, L.; Zhang, Y.; Zhang, J. Warm formability and post-forming microstructure/property of high-strength AA7075-T6 Al alloy. Mat. Sci. Eng. A-Struct. 2016, 675, 44–54. [Google Scholar] [CrossRef]
- Abutalebi, M.H.S.M. Effect of equal channel angular pressing on aging treatment of Al-7075 alloy. Prog. Nat. Sci. Mater. Int. 2015, 25, 159–168. [Google Scholar]
- Ma, K.; Hu, T.; Yang, H.; Topping, T.; Yousefiani, A.; Lavernia, E.J.; Schoenung, J.M. Coupling of dislocations and precipitates: Impact on the mechanical behavior of ultrafine grained Al–Zn–Mg alloys. Acta Mater. 2016, 103, 153–164. [Google Scholar] [CrossRef]
- Ma, K.; Wen, H.; Hu, T.; Topping, T.D.; Schoenung, J.M. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014, 62, 141–155. [Google Scholar] [CrossRef]
Element | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
Wt% | 0.073 | 0.34 | 1.50 | 0.075 | 2.62 | 0.21 | 5.39 | <0.1 | Balance |
Solid Solution | Deformation Temperature | STRAIN Rate/s−1 | Deformation Ratio | Aging Temperature | Aging Time/h |
---|---|---|---|---|---|
475 °C 30 min | 400 °C | 0.1 | 0, 10%, 15%, 20%, 25% | 120 °C | 0~28 |
0.001, 0.01, 0.1, 1 | 10% |
Deformation Ratio | Activation Energy (kJ·mol−1) |
---|---|
0 | 120.8 |
10% | 115.3 |
15% | 111.1 |
20% | 107.5 |
25% | 102.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, X.; Dai, W.; Yan, W.; He, C.; Luo, J.; Li, M.; Wu, R.; Wang, D. The Influence Mechanism of Deformation on the Precipitation Behavior and Mechanical Properties of 7075 Aluminum Alloy During Hot Forming-Quenching Integrated Process. Metals 2025, 15, 15. https://doi.org/10.3390/met15010015
Li H, Zhang X, Dai W, Yan W, He C, Luo J, Li M, Wu R, Wang D. The Influence Mechanism of Deformation on the Precipitation Behavior and Mechanical Properties of 7075 Aluminum Alloy During Hot Forming-Quenching Integrated Process. Metals. 2025; 15(1):15. https://doi.org/10.3390/met15010015
Chicago/Turabian StyleLi, Huanhuan, Xinhang Zhang, Wei Dai, Wei Yan, Chaomei He, Jiake Luo, Mengxing Li, Ruolin Wu, and Dang Wang. 2025. "The Influence Mechanism of Deformation on the Precipitation Behavior and Mechanical Properties of 7075 Aluminum Alloy During Hot Forming-Quenching Integrated Process" Metals 15, no. 1: 15. https://doi.org/10.3390/met15010015
APA StyleLi, H., Zhang, X., Dai, W., Yan, W., He, C., Luo, J., Li, M., Wu, R., & Wang, D. (2025). The Influence Mechanism of Deformation on the Precipitation Behavior and Mechanical Properties of 7075 Aluminum Alloy During Hot Forming-Quenching Integrated Process. Metals, 15(1), 15. https://doi.org/10.3390/met15010015