Charge-Induced Structural Stability and Electronic Property of Sb, Bi, and PbTe Monolayers
Abstract
1. Introduction
2. Computational Method
3. Results and Discussion
3.1. Crystal Structures
3.2. Structural Stability
3.3. Electronic Properties
3.4. Bi/4H-SiC(0001) System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, A.; Wang, B. Two-dimensional graphene-like Xenes as potential topological materials. APL Mater. 2020, 8, 030701. [Google Scholar] [CrossRef]
- Hess, P. Bonding, structure, and mechanical stability of 2D materials: The predictive power of the periodic table. Nanoscale Horiz. 2021, 6, 856–892. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Zhang, T.; Sun, J.; Liu, L.; Yao, Y.; Wang, Y. Recent progress in 2D group-V elemental monolayers: Fabrications and properties. J. Semicond. 2020, 41, 081003. [Google Scholar] [CrossRef]
- Ersan, F.; Akturk, E.; Ciraci, S. Stable single-layer structure of group-V elements. Phys. Rev. B 2016, 94, 245417. [Google Scholar] [CrossRef]
- Behera, G.; Kangsabanik, J.; Chakraborty, B.; Balasubramaniam, K.R.; Alam, A. Two-Dimensional Layered Structures of Group-V Elements as Transparent Conductors: Insight from a First-Principles Study. Phys. Rev. Appl. 2023, 19, 054068. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, S.; Chen, Z.; Wang, Y.; Gao, H.; Gómez-Herrero, J.; Ares, P.; Zamora, F.; Zhu, Z.; Zeng, H. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem. Soc. Rev. 2018, 47, 982–1021. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Zhang, D.; Zhang, H.; Shao, H.; Ni, G.; Zhu, Y.; Zhu, H. The conflicting role of buckled structure in phonon transport of 2D group-IV and group-V materials. Nanoscale 2017, 9, 7397–7407. [Google Scholar] [CrossRef]
- Nie, Y.; Rahman, M.; Wang, D.; Wang, C.; Guo, G. Strain induced topological phase transitions in monolayer honeycomb structures of group-V binary compounds. Sci. Rep. 2015, 5, 17980. [Google Scholar] [CrossRef]
- Xiao, C.; Wang, F.; Yang, S.A.; Lu, Y.; Feng, Y.; Zhang, S. Elemental ferroelectricity and antiferroelectricity in Group-V monolayer. Adv. Funct. Mater. 2018, 28, 1707383. [Google Scholar] [CrossRef]
- Rehman, M.U.; Hua, C.; Lu, Y. Topology and ferroelectricity in group-V monolayers. Chin. Phys. B 2020, 29, 057304. [Google Scholar] [CrossRef]
- Zhou, J.; Cai, T.Y.; Ju, S. Unusual strain dependence of quasiparticle electronic structure, exciton, and optical properties in blue phosphorene. Phys. Rev. Appl. 2021, 15, 024045. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, Z. Strain effects on the electronic and optical properties of blue phosphorene. Front. Chem. 2022, 10, 951870. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, S.; Yun, F.; Zhang, X.; Li, Q. Achieving indirect-to-direct band gap transition and enhanced photocatalytic performance in blue phosphorene through doping and strain. Int. J. Quantum Chem. 2020, 120, e26230. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, Z.; Li, Y.; Chen, Z.; Zeng, H. Atomically thin arsenene and antimonene: Semimetal–semiconductor and indirect–direct band-gap transitions. Angew. Chem. Int. Ed. 2015, 54, 3112–3115. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Q.; Meng, R.; Jiang, J.; Liang, Q.; Tan, C.; Sun, X. The electronic and optical properties of novel germanene and antimonene heterostructures. J. Mater. Chem. C 2016, 4, 5434–5441. [Google Scholar] [CrossRef]
- Pizzi, G.; Gibertini, M.; Dib, E.; Marzari, N.; Iannaccone, G.; Fiori, G. Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat. Commun. 2016, 7, 12585. [Google Scholar] [CrossRef]
- Wu, X.; Shao, Y.; Liu, H.; Feng, Z. Two-dimensional antimonene for transistor applications. Adv. Mater. 2017, 29, 1605407. [Google Scholar] [CrossRef]
- Lei, T.; Liu, C.; Zhao, J.L.; Li, J.M.; Li, Y.P.; Wang, J.O.; Wu, R.; Qian, H.-J.; Wang, H.-Q.; Ibrahim, K. Electronic structure of antimonene grown on Sb2Te3 (111) and Bi2Te3 substrates. J. Appl. Phys. 2016, 119, 015302. [Google Scholar] [CrossRef]
- Fortin-Deschênes, M.; Waller, O.; Menteş, T.O.; Locatelli, A.; Mukherjee, S.; Genuzio, F.; Levesque, P.L.; Hébert, A.; Martel, R.; Moutanabbir, O. Synthesis of antimonene on germanium. Nano Lett. 2017, 17, 4970–4975. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, Z.L.; Cheng, C.; Wu, X.; Liu, H.; Liu, C.; Wang, J.O.; Zhu, S.Y.; Wang, Y.Q.; Shi, D.X.; et al. Epitaxial growth of flat antimonene monolayer: A new honeycomb analogue of graphene. Nano Lett. 2018, 18, 2133–2139. [Google Scholar] [CrossRef]
- Niu, T.; Zhou, W.; Zhou, D.; Hu, X.; Zhang, S.; Zhang, K.; Zhou, M.; Fuchs, H.; Zeng, H. Modulating epitaxial atomic structure of antimonene through interface design. Adv. Mater. 2019, 31, 1902606. [Google Scholar] [CrossRef]
- Jałochowski, M.; Krawiec, M. Antimonene on Pb quantum wells. 2D Mater. 2019, 6, 045028. [Google Scholar] [CrossRef]
- Yakovkin, I.N.; Petrova, N.V. DFT study of honeycomb Sb layers on the Ag(111) surface. Surf. Sci. 2022, 726, 122177. [Google Scholar] [CrossRef]
- Huang, Z.Q.; Chuang, F.C.; Hsu, C.H.; Liu, Y.T.; Chang, H.R.; Lin, H.; Bansil, A. Nontrivial topological electronic structures in a single Bi (111) bilayer on different substrates: A first-principles study. Phys. Rev. B—Condens. Matter Mater. Phys. 2013, 88, 165301. [Google Scholar] [CrossRef]
- Reis, F.; Li, G.; Dudy, L.; Bauernfeind, M.; Glass, S.; Hanke, W.; Thomale, R.; Schäfer, J.; Claessen, R. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science 2017, 357, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Radha, S.K.; Lambrecht, W.R.L. Topological band structure transitions and goniopolar transport in honeycomb antimonene as a function of buckling. Phys. Rev. B 2020, 101, 235111. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, X.; Li, L. Strain-driven band inversion and topological aspects in Antimonene. Sci. Rep. 2015, 5, 16108. [Google Scholar] [CrossRef] [PubMed]
- Lugovskoi, A.V.; Katsnelson, M.I.; Rudenko, A.N. Electron-phonon properties, structural stability, and superconductivity of doped antimonene. Phys. Rev. B 2019, 99, 064513. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [PubMed]
- Du, S.X.; Gao, H.J.; Seidel, C.; Tsetseris, L.; Ji, W.; Kopf, H.; Chi, L.F.; Fuchs, H.; Pennycook, S.J. Selective Nontemplated Adsorption of Organic Molecules on Nanofacets and the Role of Bonding Patterns. Phys. Rev. Lett. 2006, 97, 156105. [Google Scholar] [CrossRef] [PubMed]
- Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B—Condens. Matter Mater. Phys. 2008, 78, 134106. [Google Scholar] [CrossRef]
- Rudenko, A.N.; Katsnelson, M.I.; Roldán, R. Electronic properties of single-layer antimony: Tight-binding model, spin–orbit coupling, and the strength of effective Coulomb interactions. Phys. Rev. B 2017, 95, 081407. [Google Scholar] [CrossRef]
- Xiao, P.; Sheppard, D.; Rogal, J.; Henkelman, G. Solid-state dimer method for calculating solid-solid phase transitions. J. Chem. Phys. 2014, 140, 174104. [Google Scholar] [CrossRef]
- Sheppard, D.; Xiao, P.; Chemelewski, W.; Johnson, D.D.; Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 2012, 136, 074103. [Google Scholar] [CrossRef]
System | Structure | Charge | a (Å) | Buckling (Å) | Stability |
---|---|---|---|---|---|
Sb | buckled | 0 | 4.12 | 1.64 | stable |
0.24 | 4.68 | 1.33 | unstable | ||
0.31 | 4.84 | 1.24 | unstable | ||
Sb | flat | 0 | 5.03 | unstable | |
0.24 | 5.25 | stable | |||
0.31 | 5.31 | stable | |||
Exp [20] | 5.01 | ||||
Bi | buckled | 0 | 4.33 | 1.74 | stable |
0.22 | 4.90 | 1.42 | unstable | ||
0.31 | 5.09 | 1.30 | unstable | ||
Bi | flat | 0 | 5.27 | unstable | |
0.22 | 5.46 | stable | |||
0.29 | 5.53 | stable | |||
Exp [25] | 5.35 | ||||
PbTe | buckled | 0 | 4.33 | 1.69 | stable |
0.25 | 5.02 | 1.33 | unstable | ||
0.29 | 5.12 | 1.22 | unstable | ||
PbTe | flat | 0 | 5.33 | unstable | |
0.25 | 5.54 | stable | |||
0.30 | 5.59 | stable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-T.; Xu, Y.; Zhou, C. Charge-Induced Structural Stability and Electronic Property of Sb, Bi, and PbTe Monolayers. Metals 2024, 14, 1377. https://doi.org/10.3390/met14121377
Wang C-T, Xu Y, Zhou C. Charge-Induced Structural Stability and Electronic Property of Sb, Bi, and PbTe Monolayers. Metals. 2024; 14(12):1377. https://doi.org/10.3390/met14121377
Chicago/Turabian StyleWang, Chang-Tian, Yuanji Xu, and Chang Zhou. 2024. "Charge-Induced Structural Stability and Electronic Property of Sb, Bi, and PbTe Monolayers" Metals 14, no. 12: 1377. https://doi.org/10.3390/met14121377
APA StyleWang, C.-T., Xu, Y., & Zhou, C. (2024). Charge-Induced Structural Stability and Electronic Property of Sb, Bi, and PbTe Monolayers. Metals, 14(12), 1377. https://doi.org/10.3390/met14121377