Experimental and Numerical Process Design for Press Partitioning of the New Q&P Steel 37SiB6
Abstract
:1. Introduction
2. Materials and Methods
2.1. The New Low-Alloy Q&P Steel 37SiB6
2.2. Determination of Phase Transformation Temperatures and Experimental Heat Treatments
2.3. Microstructural Characterization
2.4. Characterization of the Tensile Properties
2.5. Simulation Model for Press Partitioning
3. Results and Discussion
3.1. Initial Microstructure
3.2. Transformation Temperatures and Heat-Treated Conditions
3.3. Microstructure of Heat-Treated Conditions and Retained Austenite Fractions
3.4. Tensile Properties at Room Temperature
3.5. Numerical Process Design for Press Partitioning
4. Summary and Conclusions
- 37SiB6 steel is suitable for Q&P heat treatment. A significant increase in strength and ductility can be achieved by Q&P.
- The most favorable combination of strength and ductility was achieved after 60 s of partitioning at 250 °C.
- Q&P heat treatment in the die is possible due to the short partitioning times.
- Die temperatures >175 °C must be used so that the part does not cool below the Mf temperature.
- Part geometry and various contact locations with the die prior to quenching play only a minor role. The die temperature is the dominant factor in achieving partitioning in the press hardening process.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tekkaya, A.E.; Ben Khalifa, N.; Grzancic, G.; Hölker, R. Forming of Lightweight Metal Components: Need for New Technologies. Procedia Eng. 2014, 81, 28–37. [Google Scholar] [CrossRef] [Green Version]
- George, R.; Bardelcik, A.; Worswick, M.J. Hot Forming of Boron Steels Using Heated and Cooled Tooling for Tailored Properties. J. Mater. Process Technol. 2012, 212, 2386–2399. [Google Scholar] [CrossRef]
- Neugebauer, R.; Schieck, F.; Polster, S.; Mosel, A.; Rautenstrauch, A.; Schönherr, J.; Pierschel, N. Press Hardening—An Innovative and Challenging Technology. Arch. Civ. Mech. Eng. 2012, 12, 113–118. [Google Scholar] [CrossRef]
- Grydin, O.; Andreiev, A.; Holzweißig, M.J.; Rüsing, C.J.; Duschik, K.; Frolov, Y.; Schaper, M. Short Austenitization Treatment with Subsequent Press Hardening: Correlation between Process Parameters, Microstructure and Mechanical Properties. Mater. Sci. Eng. A 2019, 749, 176–195. [Google Scholar] [CrossRef]
- Yang, H.; Sun, Y.; Tan, C.; Zhao, X.; Chen, B.; Song, X.; Guo, W.; Feng, J. Influence of Al–Si Coating on Microstructure and Mechanical Properties of Fiber Laser Welded and Then Press-Hardened 22MnB5 Steel. Mater. Sci. Eng. A 2020, 794, 139918. [Google Scholar] [CrossRef]
- Karbasian, H.; Tekkaya, A.E. A Review on Hot Stamping. J. Mater. Process Technol. 2010, 210, 2103–2118. [Google Scholar] [CrossRef]
- Jian, B.; Wang, L.; Mohrbacher, H.; Lu, H.Z.; Wang, W.J. Development of Niobium Alloyed Press Hardening Steel with Improved Properties for Crash Performance. Adv. Mat. Res. 2015, 1063, 7–20. [Google Scholar] [CrossRef]
- Guo, W.; Wan, Z.; Peng, P.; Jia, Q.; Zou, G.; Peng, Y. Microstructure and Mechanical Properties of Fiber Laser Welded QP980 Steel. J. Mater. Process Technol. 2018, 256, 229–238. [Google Scholar] [CrossRef]
- Hatscher, A. Design and Potential Analysis of a New Ultra High Strength Steel (1900 MPa) with Q&P Processes for Car Body Applications. In Proceedings of the 7th International Conference on Hot Sheet Metal Forming of High Performance Steel (CHS2), Luleå, Sweden, 2–5 June 2019. [Google Scholar]
- Davies, G. Materials for Automobile Bodies, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2012; ISBN 978-0-08-096979-4. [Google Scholar]
- Winter, S.; Werner, M.; Haase, R.; Psyk, V.; Fritsch, S.; Böhme, M.; Wagner, M.F.-X. Processing Q&P Steels by Hot-Metal Gas Forming: Influence of Local Cooling Rates on the Properties and Microstructure of a 3rd Generation AHSS. J. Mater. Process Technol. 2021, 293, 117070. [Google Scholar] [CrossRef]
- Speer, J.; Matlock, D.K.; De Cooman, B.C.; Schroth, J.G. Carbon Partitioning into Austenite after Martensite Transformation. Acta Mater. 2003, 51, 2611–2622. [Google Scholar] [CrossRef]
- Clarke, A.J.; Speer, J.G.; Miller, M.K.; Hackenberg, R.E.; Edmonds, D.V.; Matlock, D.K.; Rizzo, F.C.; Clarke, K.D.; De Moor, E. Carbon Partitioning to Austenite from Martensite or Bainite during the Quench and Partition (Q&P) Process: A Critical Assessment. Acta Mater. 2008, 56, 16–22. [Google Scholar] [CrossRef]
- Jirková, H.; Mašek, B.; Wagner, M.F.-X.; Langmajerová, D.; Kučerová, L.; Treml, R.; Kiener, D. Influence of Metastable Retained Austenite on Macro and Micromechanical Properties of Steel Processed by the Q&P Process. J. Alloys Compd. 2014, 615, 163–168. [Google Scholar] [CrossRef]
- Liehr, A.; Wegener, T.; Degener, S.; Bolender, A.; Möller, N.; Niendorf, T. Experimental Analysis of the Stability of Retained Austenite in a Low-Alloy 42CrSi Steel after Different Quenching and Partitioning Heat Treatments. Adv. Eng. Mater. 2023, 2300380, 1–16. [Google Scholar] [CrossRef]
- Frint, P.; Kaiser, T.; Mehner, T.; Bruder, E.; Scholze, M.; Mašek, B.; Lampke, T.; Wagner, M.F.-X. Strain-Rate Sensitive Ductility in a Low-Alloy Carbon Steel after Quenching and Partitioning Treatment. Sci. Rep. 2019, 9, 17023. [Google Scholar] [CrossRef] [Green Version]
- Jirková, H.; Opatová, K.; Jeníček, Š.; Kučerová, L. Combination of Press-Hardening and Isothermal Holding in the Treatment of High-Strength Steels. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 723, p. 012012. [Google Scholar] [CrossRef]
- Tan, X.; Lu, W.; Guo, N.; Song, B.; Rao, X.; Xu, Y.; Guo, S. Effect of Tempering and Partitioning (T&P) Treatment on Microstructure and Mechanical Properties of a Low-Carbon Low-Alloy Quenched and Dynamically Partitioned (Q-DP) Steel. Mater. Sci. Eng. A 2023, 872, 144968. [Google Scholar] [CrossRef]
- Tkachev, E.; Borisov, S.; Belyakov, A.; Kniaziuk, T.; Vagina, O.; Gaidar, S.; Kaibyshev, R. Effect of Quenching and Tempering on Structure and Mechanical Properties of a Low-Alloy 0.25C Steel. Mater. Sci. Eng. A 2023, 868, 144757. [Google Scholar] [CrossRef]
- Tkachev, E.; Borisov, S.; Borisova, Y.; Kniaziuk, T.; Gaidar, S.; Kaibyshev, R. Strength–Toughness of a Low-Alloy 0.25C Steel Treated by Q& P Processing. Materials 2023, 16, 3851. [Google Scholar] [CrossRef]
- Mishnev, R.; Borisova, Y.; Gaidar, S.; Kniaziuk, T.; Vagina, O.; Kaibyshev, R. Q&P Response of a Medium Carbon Low Alloy Steel. Metals 2023, 13, 689. [Google Scholar] [CrossRef]
- Speer, J.G.; De Moor, E.; Findley, K.O.; Matlock, D.K.; De Cooman, B.C.; Edmonds, D. V Analysis of Microstructure Evolution in Quenching and Partitioning Automotive Sheet Steel. Metall. Mater. Trans. A 2011, 42, 3591–3601. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Li, Y.; Chen, S.; Tan, S.; Ding, Y.; Chen, J. Research on Q&P Hot Stamping Process Integrated with Fractional Cooling Strategy. Procedia Eng. 2017, 207, 705–710. [Google Scholar] [CrossRef]
- Frohn-Sörensen, P.; Mašek, B.; Wagner, M.F.-X.; Rubešová, K.; Khalaj, O.; Engel, B. Flexible Manufacturing Chain with Integrated Incremental Bending and Q-P Heat Treatment for on-Demand Production of AHSS Safety Parts. J. Mater. Process Technol. 2020, 275, 116312. [Google Scholar] [CrossRef]
- Jiao, X.; Wang, D.; Yang, J.; Liu, Z.; Liu, G. Microstructure Analysis on Enhancing Mechanical Properties at 750 °C and Room Temperature of Ti-22Al-24Nb-0.5Mo Alloy Tubes Fabricated by Hot Gas Forming. J. Alloys Compd. 2019, 789, 639–646. [Google Scholar] [CrossRef]
- Mašek, B.; Vorel, I.; Jirková, H.; Kurka, P. Combination of International High Pressure Forming and Q-P Process for Production of Hollow Products from Ahs Steel. Adv. Mat. Res. 2015, 1127, 9–15. [Google Scholar] [CrossRef]
- Jirková, H.; Jeníček, Š.; Kučerová, L.; Kurka, P. High-Strength Steel Components Produced by Hot Metal Gas Forming. Mater. Sci. Technol. 2021, 37, 693–701. [Google Scholar] [CrossRef]
- Votava, F.; Jirková, H.; Kučerová, L.; Jeníček, Š. Study of Transition Areas in Press-Hardened Steels in a Combined Tool for Hot and Cold Forming. Materials 2023, 16, 442. [Google Scholar] [CrossRef]
- Diekmann, U.; Becker, P.; Dlouhy, J.; Novy, Z.; Hatscher, A. Development and Characterization of New Low Alloyed Ultra-High Strength Steel for Structural Body Components. In Proceedings of the 6th International Conference on Steels in Cars and Trucks, Milan, Italy, 21 June 2022. [Google Scholar]
- ASTM A1033-04; Standard Practice for Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations. ASTM International: West Conshohocken, PA, USA, 2018.
- Shapiro, A.B. Using LS-Dyna for Hot Stamping; DYNAmore GmbH: Salzburg, Austria, 2009. [Google Scholar]
- Hora, P. Numisheet 2008, 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, Interlaken, Switzerland, 1–5 September 2008. Available online: https://www.tib.eu/en/search/id/TIBKAT%3A584527977/Numisheet-2008-International-Conference-and-Workshop/ (accessed on 1 June 2023).
- Härtel, S.; Awiszus, B.; Graf, M.; Nitsche, A.; Böhme, M.; Wagner, M.F.-X.; Jirkova, H.; Masek, B. Influence of Austenite Grain Size on Mechanical Properties after Quench and Partitioning Treatment of a 42SiCr Steel. Metals 2019, 9, 577. [Google Scholar] [CrossRef] [Green Version]
- De Moor, E.; Lacroix, S.; Clarke, A.J.; Penning, J.; Speer, J.G. Effect of Retained Austenite Stabilized via Quench and Partitioning on the Strain Hardening of Martensitic Steels. Metall. Mater. Trans. A 2008, 39, 2586–2595. [Google Scholar] [CrossRef]
- Tan, X.; Xu, Y.; Yang, X.; Wu, D. Microstructure–Properties Relationship in a One-Step Quenched and Partitioned Steel. Mater. Sci. Eng. A 2014, 589, 101–111. [Google Scholar] [CrossRef]
- Tan, X.; Lu, W.; Rao, X. Effect of Ultra-Fast Heating on Microstructure and Mechanical Properties of Cold-Rolled Low-Carbon Low-Alloy Q&P Steels with Different Austenitizing Temperature. Mater. Charact. 2022, 191, 112086. [Google Scholar] [CrossRef]
Element | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | Nb | Ti | Al | B | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Content in wt.% | 0.36 | 1.57 | 0.87 | 0.006 | 0.011 | 0.212 | 0.018 | 0.004 | 0.02 | 0.029 | 0.009 | 0.036 | 0.0024 | 0.056 | bal. |
Austenitizing Temperature | Ac1 in °C | Ac3 in °C | Ms in °C | Mf in °C |
---|---|---|---|---|
900 °C | 815 | 890 | 365 | 198 |
950 °C | 812 | 895 | 358 | 183 |
1000 °C | 809 | 899 | 353 | 163 |
derived parameters | austenitizing temperature | partitioning temperature | ||
950 °C | 250 °C |
Heat Treatment Condition | Ferrite Resp. Martensite Content in wt.% | Austenite Content in wt.% |
---|---|---|
Initial | ~99 | <1 |
Water-quenched | 99.7 | 0.3 |
Q&P 250 °C 60 s | 97.9 | 2.1 |
Q&P 250 °C 300 s | 94.2 | 5.8 |
Q&P 250 °C 600 s | 93.7 | 6.3 |
Die Temperature in °C | A in °C | B in °C | C in °C | D in °C | E in °C |
---|---|---|---|---|---|
50 | 771 | 690 | 772 | 772 | 755 |
100 | 771 | 703 | 772 | 772 | 756 |
150 | 771 | 709 | 772 | 772 | 757 |
200 | 771 | 712 | 772 | 772 | 759 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Illgen, C.; Winter, S.; Haase, R.; Böhme, M.; Reiser, N.; Hatscher, A.; Psyk, V.; Kräusel, V.; Wagner, M.F.-X. Experimental and Numerical Process Design for Press Partitioning of the New Q&P Steel 37SiB6. Metals 2023, 13, 1346. https://doi.org/10.3390/met13081346
Illgen C, Winter S, Haase R, Böhme M, Reiser N, Hatscher A, Psyk V, Kräusel V, Wagner MF-X. Experimental and Numerical Process Design for Press Partitioning of the New Q&P Steel 37SiB6. Metals. 2023; 13(8):1346. https://doi.org/10.3390/met13081346
Chicago/Turabian StyleIllgen, Christian, Sven Winter, Rico Haase, Marcus Böhme, Nadja Reiser, Ansgar Hatscher, Verena Psyk, Verena Kräusel, and Martin F.-X. Wagner. 2023. "Experimental and Numerical Process Design for Press Partitioning of the New Q&P Steel 37SiB6" Metals 13, no. 8: 1346. https://doi.org/10.3390/met13081346
APA StyleIllgen, C., Winter, S., Haase, R., Böhme, M., Reiser, N., Hatscher, A., Psyk, V., Kräusel, V., & Wagner, M. F.-X. (2023). Experimental and Numerical Process Design for Press Partitioning of the New Q&P Steel 37SiB6. Metals, 13(8), 1346. https://doi.org/10.3390/met13081346