Electro-Chemical Actuation of Nanoporous Metal Materials Induced by Surface Stress
Abstract
1. Introduction
2. The Actuation Mechanism of Nanoporous Metals
3. Preparation Methods of Nanoporous Metals
4. Experimental Strategies
4.1. Contact Method: In Situ Dilatometry Measurement
4.2. Contact Method: Mechanical Strain Gauge
4.3. Non-Contact Method: Wafer Bending Monitored by Laser Deflection
5. Actuation Properties of Nanoporous Metals
5.1. Electrochemical Actuation with Noble Metals
5.2. Electrochemical Actuation of Non-Noble Metals
5.3. Chemical Actuation
5.4. Physical Adsorption-Induced Actuation
5.5. Electrolyte-Free Actuation
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, H.; Gao, X.; Ren, K.; Liu, J.; Qiao, L.; Liu, M.; Chen, W.; He, Y.; Dong, S.; Xu, Z.; et al. Review on Piezoelectric Actuators Based on High-Performance Piezoelectric Materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 3057–3069. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Ma, X.; Wang, S.; Xue, S. Least-squares method for laminated beams with distributed braided piezoelectric composite actuators. J. Intell. Mater. Syst. Struct. 2020, 31, 2165–2176. [Google Scholar] [CrossRef]
- Shao, L.H.; Zhao, B.; Zhang, Q.; Xing, Y.; Zhang, K. 4D printing composite with electrically controlled local deformation. Extrem. Mech. Lett. 2020, 39, 100793. [Google Scholar] [CrossRef]
- Aziz, S.; Martinez, J.; Foroughi, J.; Spinks, G.; Jager, E. Artificial Muscles from Hybrid Carbon Nanotube-Polypyrrole-Coated Twisted and Coiled Yarns. Macromol. Mater. Eng. 2020, 305, 2000421. [Google Scholar] [CrossRef]
- Song, W.; Zhang, Q.; Xu, H.; Sun, J.; Yuan, K.; Shao, L.; Li, J. Ultrafast Dynamics and Energy Relaxation for Nanoporous Gold Materials: Lower Porosity and Faster Energy Exchange. J. Phys. Chem. C 2020, 124, 6356–6363. [Google Scholar] [CrossRef]
- Cheng, C.; Luhrs, L. Robust Metallic Actuators Based on Nanoporous Gold Rapidly Dealloyed from Gold-Nickel Precursors. Adv. Funct. Mater. 2021, 31, 2107241. [Google Scholar] [CrossRef]
- Li, H.; Lu, A.; Wang, S. Facile fabrication of free-standing nanoporous CuAg structures for high-performance non-enzymatic glucose sensing by dealloying glassy precursors. J. Alloys Compd. 2022, 921, 165995. [Google Scholar] [CrossRef]
- Cheng, C.; Luehrs, L.; Krekeler, T.; Ritter, M.; Weissmueller, J. Semiordered Hierarchical Metallic Network for Fast and Large Charge-Induced Strain. Nano Lett. 2017, 17, 4774–4780. [Google Scholar] [CrossRef]
- Li, M.; Zhang, T.; Lyu, Y.; Liu, Y.; Luo, J. Large strain response in lanthanide-doped potassium sodium niobate-based piezoceramics. Ceram. Int. 2023, 49, 5209–5216. [Google Scholar] [CrossRef]
- Bruno, B.; Fahmy, A.; Stuermer, M.; Wallrabe, U.; Wapler, M. Properties of piezoceramic materials in high electric field actuator applications. Smart Mater. Struct. 2019, 28, 015029. [Google Scholar] [CrossRef]
- Liu, N.; Liu, Z.; Gong, X.; Huang, X.; Xiong, C. Study on Temperature Characteristics of Ceramic Materials for Piezoelectric Actuators and Model Modification. J. Northwestern Polytech. Univ. 2019, 37, 1011–1017. [Google Scholar] [CrossRef]
- Moretti, M.; Silva, E. Topology optimization of piezoelectric bi-material actuators with velocity feedback control. Front. Mech. Eng. 2019, 14, 190–200. [Google Scholar] [CrossRef]
- Cheng, C.; Grant, P.; Luehrs, L. Electrochemical Mechanics of Metal Thin Films: Charge-Induced Reversible Surface Stress for Actuation. Adv. Electron. Mater. 2020, 6, 1900364. [Google Scholar] [CrossRef]
- Tan, F.; Zhao, L.; Liu, B.; Fang, Q.; Li, J. Improving catalytic efficiency via tailoring macroscopic elasticity of nanoporous materials. J. Mater. Sci. 2022, 57, 8648–8657. [Google Scholar] [CrossRef]
- Zhao, C.; Yao, X.; Yang, H.; Jiao, X.; Wang, L. Hierarchical porous carbon nanofibers with lithiophilic metal oxide crystalline grains for long-life Li metal anodes. Compos. Commun. 2021, 26, 100789. [Google Scholar] [CrossRef]
- Hermann, J.; Abdelrahman, A.; Jacob, T.; Kibler, L. Potential-dependent reconstruction kinetics probed by HER on Au(111) electrodes. Electrochim. Acta 2020, 347, 136287. [Google Scholar] [CrossRef]
- Pan, S.; Yu, X.; Long, X.; Chang, C.; Yang, Z. Ultrafine rhodium selenides enable efficient oxygen reduction reaction catalysis. Sustain. Energy Fuels 2021, 5, 6197–6201. [Google Scholar] [CrossRef]
- Jin, H.; Weissmueller, J. Bulk Nanoporous Metal for Actuation. Adv. Eng. Mater. 2010, 12, 714–723. [Google Scholar] [CrossRef]
- Detsi, E.; Onck, P.; De Hosson, J. Metallic Muscles at Work: High Rate Actuation in Nanoporous Gold/Polyaniline Composites. Acs Nano 2013, 7, 4299–4306. [Google Scholar] [CrossRef] [PubMed]
- Grunder, Y.; Lucas, C. Potential-induced structural deformation at electrode surfaces. Curr. Opin. Electrochem. 2020, 19, 168–174. [Google Scholar] [CrossRef]
- Zhang, Y.; Ngan, A. Multi-scale, multi-physics modeling of electrochemical actuation of Ni nanohoneycomb in water. Comput. Mater. Sci. 2017, 128, 109–120. [Google Scholar] [CrossRef]
- Lafouresse, M.; Bertocci, U.; Beauchamp, C.; Stafford, G. Simultaneous Electrochemical and Mechanical Impedance Spectroscopy Using Cantilever Curvature. J. Electrochem. Soc. 2012, 159, H816–H822. [Google Scholar] [CrossRef]
- Viswanath, R.; Weissmueller, J. Electrocapillary coupling coefficients for hydrogen electrosorption on palladium. Acta Mater. 2013, 61, 6301–6309. [Google Scholar] [CrossRef]
- Li, J.; Markmann, J.; Weissmuller, J.; Mameka, N. Nanoporous gold-polypyrrole hybrid electrochemical actuators with tunable elasticity. Acta Mater. 2021, 212, 116852. [Google Scholar] [CrossRef]
- Deng, Q.; Gopal, V.; Weissmueller, J. Less Noble or More Noble: How Strain Affects the Binding of Oxygen on Gold. Angew. Chem. Int. Ed. 2015, 54, 12981–12985. [Google Scholar] [CrossRef]
- Weissmuller, J.; Kramer, D. Balance of force at curved solid metal-liquid electrolyte interfaces. Langmuir 2005, 21, 4592–4603. [Google Scholar] [CrossRef]
- Weissmuuller, J. Electrocapillarity of Solids and its Impact on Heterogeneous Catalysis. In Electrocatalysis. Theoretical Foundations and Model Experiments; Alkire, R.C., Kibler, L., Kolb, D.M., Lipkowski, J., Eds.; Wiley VCH: Weinheim, Germany, 2013; Chapter 5; pp. 163–220. [Google Scholar]
- Deng, Q.; Gosslar, D.; Smetanin, M.; Weissmueller, J. Electrocapillary coupling at rough surfaces. Phys. Chem. Chem. Phys. 2015, 17, 11725–11731. [Google Scholar] [CrossRef]
- Smetanin, M.; Deng, Q.; Weissmueller, J. Dynamic electro-chemo-mechanical analysis during cyclic voltammetry. Phys. Chem. Chem. Phys. 2011, 13, 17313–17322. [Google Scholar] [CrossRef]
- Deng, Q.; Smetanin, M.; Weissmueller, J. Mechanical modulation of reaction rates in electrocatalysis. J. Catal. 2014, 309, 351–361. [Google Scholar] [CrossRef]
- Deng, Q.; Weissmueller, J. Electrocapillary Coupling during Electrosorption. Langmuir 2014, 30, 10522–10530. [Google Scholar] [CrossRef]
- Weissmueller, J.; Viswanath, R.; Kibler, L.; Kolb, D. Impact of surface mechanics on the reactivity of electrodes. Phys. Chem. Chem. Phys. 2011, 13, 2114–2117. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.; Zhang, C.; Tan, F.; Zhang, Z. High-performance, low-cost nanoporous alloy actuators by one-step dealloying of Al-Ni-Cu precursors. Intermetallics 2022, 145, 107537. [Google Scholar] [CrossRef]
- Danko, M.; Kronekova, Z.; Krupa, I.; Tkac, J.; Matus, P.; Kasak, P. Exchange Counterion in Polycationic Hydrogels: Tunability of Hydrophobicity, Water State, and Floating Capability for a Floating pH Device. Gels 2021, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Xing, Y.; Zhou, F.; Li, X.; Chen, Y.; Shao, L. The Mechanical Characteristics of Monolithic Nanoporous Copper and Its Composites. Adv. Eng. Mater. 2018, 20, 1800574. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, Y.; Yao, R.; Wan, W.; Ge, X.; Zhang, W.; Wen, Z.; Lang, X.; Zheng, W.; Jiang, Q. Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting. Nat. Commun. 2020, 11, 2940. [Google Scholar] [CrossRef]
- Wang, C.; Kim, J.; Tang, J.; Kim, M.; Lim, H.; Malgras, V.; You, J.; Xu, Q.; Li, J.; Yamauchi, Y. New Strategies for Novel MOF-Derived Carbon Materials Based on Nanoarchitectures. Chem 2020, 6, 19–40. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, N.; Xu, Q.; Yu, J. Nanopore-Supported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquid-Phase Chemical Hydrogen Storage Materials. Adv. Mater. 2020, 32, 2001818. [Google Scholar] [CrossRef]
- Yao, Z.; Sanchez-Lengeling, B.; Bobbitt, N.; Bucior, B.; Kumar, S.; Collins, S.; Burns, T.; Woo, T.; Farha, O.; Snurr, R.; et al. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat. Mach. Intell. 2021, 3, 76–86. [Google Scholar] [CrossRef]
- Li, D.; Zhu, Y.; Wang, H.; Ding, Y. Nanoporous gold as an active low temperature catalyst toward CO oxidation in hydrogen-rich stream. Sci. Rep. 2013, 3, 3015. [Google Scholar] [CrossRef]
- Li, H.; Mo, R.; Li, R.; Fan, M.; Lu, Y. Experimental study on drop penetration and wetting characteristics of sintered copper powders with nanostructures. Heat Mass Transf. 2020, 56, 2883–2891. [Google Scholar] [CrossRef]
- Li, Z.; Lu, X. Nanoindentation for mechanical behaviour characterization of nanoporous silver fabricated through dealloying. Bull. Mater. Sci. 2021, 44, 149. [Google Scholar] [CrossRef]
- Galimzyanov, B.; Nikiforov, G.; Mokshin, A. Effect of Ultrafast Cooling on Pore Formation in Amorphous Titanium Nickelide. Acta Phys. Pol. A 2020, 137, 1149–1152. [Google Scholar] [CrossRef]
- Hyun, J.I.; Noh, H.S.; Kong, K.; Kim, W.T.; Kim, D.H. Formation of different types nanoporous composite structure by dealloying of Ag and Ni containing Al-Cu-Ti base amorphous precursor alloys. Mater. Charact. 2021, 175, 111093. [Google Scholar] [CrossRef]
- Hui, L.; Yongquan, H.; Lili, W.; Yanming, G.; Kaichen, H.; Xi, L.; Kexin, T.; Xiufang, L.; Hailing, Y. Facile Synthesis of Nanoporous Amorphous Silica on Silicon Substrate. J. Nanomater. 2020, 2020, 3514764. [Google Scholar] [CrossRef]
- Yu, J.; Ding, Y.; Xu, C.; Inoue, A. Nanoporous metals by dealloying multicomponent metallic glasses. Chem. Mater. 2008, 20, 4548–4550. [Google Scholar] [CrossRef]
- Hakamada, M.; Mabuchi, M. Preparation of nano-porous Ni and Ni-Cu by dealloying of rolled Ni-Mn and Ni-Cu-Mn alloys. J. Alloys Compd. 2009, 485, 583–587. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, Z.; Li, Z.; Fujita, T. Surface Defects Improved SERS Activity of Nanoporous Gold Prepared by Electrochemical Dealloying. Nanomaterials 2023, 13, 187. [Google Scholar] [CrossRef]
- Qin, C.; Zheng, D.; Hu, Q.; Zhang, X.; Wang, Z.; Li, Y.; Zhu, J.; Ou, J.Z.; Yang, C.; Wang, Y. Flexible integrated metallic glass-based sandwich electrodes for high-performance wearable all-solid-state supercapacitors. Appl. Mater. Today 2020, 19, 100539. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, F.; Wei, D.; Han, J.; Xia, Y.; Jiang, J.; Zhong, M.; Hirata, A.; Watanabe, K.; Karma, A. Vapor phase dealloying kinetics of MnZn alloys. Acta Mater. 2021, 212, 116916. [Google Scholar] [CrossRef]
- Pinna, A.; Pia, G.; Casula, M.F.; Delogu, F.; Sogne, E.; Falqui, A.; Pilia, L. Fabrication of Nanoporous Al by Vapor-Phase Dealloying: Morphology Features, Mechanical Properties and Model Predictions. Appl. Sci. 2021, 11, 6639. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Yang, W.; Qin, J.; Bai, Q.; Zhang, Z. Vapor phase dealloying-driven synthesis of bulk nanoporous cobalt with a face-centered cubic structure. CrystEngComm 2021, 23, 6526–6532. [Google Scholar] [CrossRef]
- Gao, C.; Yan, P.; Tang, Z.; Liu, S. Study on preparation and technology of nanoporous platinum based metal materials by dealloying method. Int. J. Nanotechnol. 2022, 19, 623–638. [Google Scholar] [CrossRef]
- Yamada, S. Nanoporous Cu Prepared through Dealloying by Selectively Etching an Alkaline Metal with Saline. ACS Appl. Nano Mater. 2023, 6, 7229–7233. [Google Scholar] [CrossRef]
- Wang, Y.; He, C.; Xing, W.; Li, F.; Tong, L.; Chen, Z.; Liao, X.; Steinhart, M. Nanoporous metal membranes with bicontinuous morphology from recyclable block-copolmer templates. Adv. Mater. 2010, 22, 2068–2072. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumia. Science 1995, 268, 1466–1468. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.C.; Dong, J.; Liu, M. Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater. 2003, 15, 1610–1614. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.Y.; Yang, C.; Xiao, X. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem. Commun. 2007, 9, 981–988. [Google Scholar] [CrossRef]
- Fujita, T.; Kanoko, Y.; Ito, Y.; Chen, L.; Hirata, A.; Kashani, H.; Iwatsu, O.; Chen, M. Nanoporous metal papers for scalable hierarchical electrode. Adv. Sci. 2015, 2, 1500086. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, W.; Chen, X.; Li, Z. Facile fabrication of nanoporous gold film electrodes. Electrochem. Commun. 2008, 10, 810–813. [Google Scholar] [CrossRef]
- Nishio, K.; Masuda, H. Anodization of gold in oxalate solution to form a nanoporous black film. Angew. Chem. 2011, 50, 1603–1607. [Google Scholar] [CrossRef]
- Li, J.; Markmann, J.; Mameka, N. Enhanced electrochemical actuation of nanoporous gold-polypyrrole hybrid under load. Appl. Phys. Lett. 2022, 121, 021901. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, H. Multilayer-structured gold/nanoporous gold composite for high performance linear actuation. Appl. Phys. Lett. 2014, 104, 101905. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, Q.; Zhang, Z. Dealloying-driven nanoporous palladium with superior electrochemical actuation performance. Nanoscale 2016, 8, 7287–7295. [Google Scholar] [CrossRef]
- Moyassari, E.; Roth, T.; Kuecher, S.; Chang, C.; Hou, S.; Spingler, F.; Jossen, A. The Role of Silicon in Silicon-Graphite Composite Electrodes Regarding Specific Capacity, Cycle Stability, and Expansion. J. Electrochem. Soc. 2022, 169, 010504. [Google Scholar] [CrossRef]
- Ye, X.; Liu, L.; Jin, H. Responsive nanoporous metals: Recoverable modulations on strength and shape by watering. Nanotechnology 2016, 27, 325501. [Google Scholar] [CrossRef]
- Roschning, B.; Weissmueller, J. Stress-charge coupling coefficient for thin-film polypyrrole actuators—Investigation of capacitive ion exchange in the oxidized state. Electrochim. Acta 2019, 318, 504–512. [Google Scholar] [CrossRef]
- Weissmuller, J.; Viswanath, R.; Kramer, D.; Zimmer, P.; Wurschum, R.; Gleiter, H. Charge-induced reversible strain in a metal. Science 2003, 300, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ren, X. Large Piezoelectric Effect in Pb-Free Ceramics. Phys. Rev. Lett. 2009, 103, 257602. [Google Scholar] [CrossRef]
- Kramer, D.; Viswanath, R.; Weissmuller, J. Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett. 2004, 4, 793–796. [Google Scholar] [CrossRef]
- Jin, H.; Wang, X.; Parida, S.; Wang, K.; Seo, M.; Weissmueller, J. Nanoporous Au-Pt Alloys as Large Strain Electrochemical Actuators. Nano Lett. 2010, 10, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 2000, 287, 836–839. [Google Scholar] [CrossRef] [PubMed]
- Detsi, E.; Punzhin, S.; Rao, J.; Onck, P.; De Hosson, J. Enhanced Strain in Functional Nanoporous Gold with a Dual Microscopic Length Scale Structure. Acs Nano 2012, 6, 3734–3744. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.; Yu, B.; Bai, Q.; Zhang, Z. Potentiostatic Dealloying Fabrication and Electrochemical Actuation Performance of Bulk Nanoporous Palladium. Metals 2022, 12, 2153. [Google Scholar] [CrossRef]
- Hakamada, M.; Matsumura, S.; Mabuchi, M. Electrochemical actuation of nanoporous Ni in NaOH solution. Mater. Lett. 2012, 70, 132–134. [Google Scholar] [CrossRef]
- Bai, Q.; Wang, Y.; Zhang, J.; Ding, Y.; Peng, Z.; Zhang, Z. Hierarchically nanoporous nickel-based actuators with giant reversible strain and ultrahigh work density. J. Mater. Chem. C 2016, 4, 45–52. [Google Scholar] [CrossRef]
- Detsi, E.; Selles, M.; Onck, P.; De Hosson, J. Nanoporous silver as electrochemical actuator. Scr. Mater. 2013, 69, 195–198. [Google Scholar] [CrossRef]
- Biener, J.; Wittstock, A.; Zepeda-Ruiz, L.; Biener, M.; Zielasek, V.; Kramer, D.; Viswanath, R.; Weissmueller, J.; Baeumer, M.; Hamza, A. Surface-chemistry-driven actuation in nanoporous gold. Nat. Mater. 2009, 8, 47–51. [Google Scholar] [CrossRef]
- Detsi, E.; Chen, Z.; Vellinga, W.; Onck, P.; De Hosson, J. Actuating and Sensing Properties of Nanoporous Gold. J. Nanosci. Nanotechnol. 2012, 12, 4951–4955. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Kim, J.; Song, H.; Kim, S.; Jeon, M. Fast and Stable Ionic Electroactive Polymer Actuators with PEDOT:PSS/(Graphene-Ag-Nanowires) Nanocomposite Electrodes. Sensors 2018, 18, 3126. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Li, J.; Hao, J.; Wang, T.; Gu, J.; An, C.; Deng, Q.; Wang, Z.; Wu, S.; Zhao, L.; et al. Electro-Chemical Actuation of Nanoporous Metal Materials Induced by Surface Stress. Metals 2023, 13, 1198. https://doi.org/10.3390/met13071198
Zhao S, Li J, Hao J, Wang T, Gu J, An C, Deng Q, Wang Z, Wu S, Zhao L, et al. Electro-Chemical Actuation of Nanoporous Metal Materials Induced by Surface Stress. Metals. 2023; 13(7):1198. https://doi.org/10.3390/met13071198
Chicago/Turabian StyleZhao, Shuo, Jiaxiang Li, Jindong Hao, Tianyu Wang, Jie Gu, Cuihua An, Qibo Deng, Zhifeng Wang, Shuai Wu, Libin Zhao, and et al. 2023. "Electro-Chemical Actuation of Nanoporous Metal Materials Induced by Surface Stress" Metals 13, no. 7: 1198. https://doi.org/10.3390/met13071198
APA StyleZhao, S., Li, J., Hao, J., Wang, T., Gu, J., An, C., Deng, Q., Wang, Z., Wu, S., Zhao, L., & Hu, N. (2023). Electro-Chemical Actuation of Nanoporous Metal Materials Induced by Surface Stress. Metals, 13(7), 1198. https://doi.org/10.3390/met13071198