Microstructure Evolution in a GOES Thin Strip
Abstract
1. Introduction
2. Experiment
3. Results
3.1. Microstructural Characteristics of the GOES Thin Strip
3.2. Identification of Minor Phases
3.3. Crystallography of WA Lath Formation
4. Discussion
5. Conclusions
- The microstructure consisting of δ-ferrite was formed during the solidification of the thin strip. During the cooling of the strip, austenite formed in the two-phase (γ+δ) region, primarily with Widmanstätten morphology. WA nucleated directly on the high-angle δ-ferrite grain boundaries. Additionally, austenite films were formed along some δ-ferritic grain boundaries. Upon a drop in temperature, austenite decomposition occurred, producing two morphologically different products: needle-shaped formations inside the δ-ferrite grains, and thin films along the ferrite grain boundaries.
- In the two-phase (γ+δ) region, the intensive precipitation of fine particles of complex sulfides (Cr2CuS4) occurred. Heterogeneous sulfide nucleation occurred on the ferrite grain boundaries/subgrain boundaries, but also along the δ/γ interfaces.
- The WA lath growth into both adjacent δ-ferrite grains was associated with a local rotation of ferritic grain boundaries, leading to their zig-zag shape. The EBSD investigations proved that during the nucleation of austenite at the δ-ferrite grain boundary, the local rotation of the grain boundary facilitated the occurrence of the same K-S OR variant (or variant belonging to the same group G of the K-S OR) between the austenite nucleus and one δ-ferritic grain as the K-S OR variant that existed during the growth of the WA laths into the same δ-ferrite grain.
- In the initial stage of austenite decomposition, epitaxial ferrite formed. This was accompanied by a further carbon enrichment of the remaining austenite. Austenite decomposition subsequently occurred, producing pearlite, or a mixture of plate martensite and some retained austenite.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ge, S.; Isac, M.; Gutrie, R.I.L. Progress in Strip Casting Technologies for Steel; Technical Developments. ISIJ Int. 2013, 53, 729–742. [Google Scholar] [CrossRef]
- Maleki, A.; Taherizadeh, A.; Hosseini, N. Twin Roll Casting of Steels: An Overview. ISIJ Int. 2017, 57, 1–14. [Google Scholar] [CrossRef]
- Liu, H.T.; Yao, S.J.; Sun, Y.; Gao, F.; Song, H.Y.; Liu, G.H.; Li, L.; Geng, D.Q.; Liu, Z.Y.; Wang, G.D. Evolution of microstructure, texture and inhibitor along the processing route for grain-oriented electrical steels using strip casting. Mater. Charact. 2015, 106, 273–282. [Google Scholar] [CrossRef]
- Günther, K.; Abbruzzese, G.; Fortunati, S.; Ligi, G. Recent technology development in the production of grain oriented electrical steel. Steel Res. Int. 2005, 76, 413–421. [Google Scholar] [CrossRef]
- Fang, F.; Yang, J.; Zhang, Y.; Wang, Y.; Zhang, X.; Yuan, G.; Misra, R.D.K.; Wang, G. Microstructure and magnetic properties of ultra-thin grain-oriented silicon steel: Conventional process versus strip casting. J. Magn. Magn. Mater. 2021, 535, 168087. [Google Scholar] [CrossRef]
- Song, H.Y.; Lu, H.H.; Liu, H.T.; Li, H.Z.; Geng, D.Q.; Misra, R.D.K.; Liu, Z.Y.; Wang, G.D. Microstructure and Texture of Strip Cast Grain-oriented Silicon Steel after Symmetrical Asymmetrical Hot Rolling. Steel Res. Int. 2014, 85, 1477–1482. [Google Scholar] [CrossRef]
- Song, H.Y.; Liu, H.T.; Lu, H.H.; An, L.Z.; Zhang, B.G.; Liu, W.Q.; Cao, G.M.; Cheng-Gang, L.; Liu, Z.Y.; Wang, G.D. Fabrication of grain-oriented silicon steel by a novel way: Strip casting process. Mater. Lett. 2014, 137, 475–478. [Google Scholar] [CrossRef]
- Song, H.Y.; Liu, H.T.; Lu, H.H.; Li, H.Z.; Liu, W.Q.; Zhang, X.M.; Wang, G.D. Effect of hot rolling reduction on microstructure, texture and ductility of strip-cast grain-oriented silicon steel with different solidification structures. Mater. Sci. Eng. A 2014, 605, 260–269. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.B.; Zhang, Y.X.; Fang, F.; Lu, X.; Liu, H.T.; Wang, G.D. Development of microstructure and texture in strip casting grain oriented silicon steel. J. Magn. Magn. Mater. 2015, 379, 161–166. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Fang, F.; Lu, X.; Yuan, G.; Wang, G. Secondary Recrystallization Behavior in Fe-3%Si Grain-oriented Silicon Steel Produced by Twin-roll Casting and Simplified Secondary Annealing. Metals 2020, 10, 660. [Google Scholar] [CrossRef]
- Fang, F.; Hou, D.W.; Zhang, Y.X.; Wang, Y.; Yuan, G.; Zhang, X.M.; Misra, R.D.K.; Guo, Z.H.; Wang, G.D. Improvement of texture and magnetic properties of strip-cast grain-oriented electrical steel by trace Bi addition. J. Mater. Sci. 2021, 56, 11988–12000. [Google Scholar] [CrossRef]
- Song, H.Y.; Liu, H.T.; Wang, G.D.; Jonas, J.J. Formation of Widmanstätten Austenite in Strip Cast Grain Oriented Silicon Steel. Metall. Mater. Trans. A 2017, 48A, 1959–1968. [Google Scholar] [CrossRef]
- Vodárek, V.; Reip, C.P.; Volodarskaja, A. Microstructure Evolution in Belt-Casted Strip of Grain Oriented Electrical Steel. Key Eng. Mater. 2019, 810, 82–88. [Google Scholar] [CrossRef]
- Vodárek, V.; Reip, C.P.; Smetana, B.; Volodarskaja, A. Formation and Decomposition of Widmanstätten Austenite in GOES Belt-casted Strips. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Beijing, China, 19–22 August 2019; Volume 668, p. 012016. [Google Scholar] [CrossRef]
- Khan, W.N.; Mahajan, S.; Chhibber, R. Investigations on reformed austenite in the microstructure of dissimilar super duplex/pipeline steel weld. Mater. Lett. 2021, 285, 129109. [Google Scholar] [CrossRef]
- Ohmori, Y.; Nakai, K.; Ohtsubo, H.; Isshiki, Y. Mechanism of Widmanstätten Austenite Formation in/Duplex Steels. ISIJ Int. 1995, 35, 969–975. [Google Scholar] [CrossRef]
- Ameyama, K.; Weatherly, G.C.; Aust, K.T. A Study of Grain Boundary Nucleated Widmanstätten Precipitates in a Two-Phase Stainless Steel. Acta Metall. Mater. 1992, 40, 1835–1846. [Google Scholar] [CrossRef]
- Shek, C.H.; Dong, C.; Lai, J.K.L.; Wong, K.W. Early-Stage Widmanstätten Growth on the Phase in Duplex Steel. Metall. Mater. Trans. A 2000, 31A, 15–19. [Google Scholar] [CrossRef]
- Spitzer, K.H.; Rüppel, F.; Viščorová, R.; Scholz, R.; Kroos, J.; Flaxa, V. Direct strip casting (DSC)—An option for the production of new steel grades. Steel Res. 2016, 74, 724–731. [Google Scholar] [CrossRef]
- Vodárek, V.; Volodarskaja, A.; Miklušová, Š.; Holešinský, J.; Žáček, O. Precipitation reactions in a Copper-Bearing GOES. Procedia Mater. Sci. 2016, 12, 77–82. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H.; Honeycombe, R.W.K. Steels: Microstructure and Properties, 4th ed.; Butterworths—Heinemann: Oxford, UK, 2017; ISBN 978-0-08-100270-4. [Google Scholar]
- Pearson, W.B. A Handbook of Lattice Spacings and Structures of Metals and Alloys; Pergamon Press: London, UK, 1958; ISBN 978-1-4832-1318-7. [Google Scholar]
- Takayama, N.; Miyamoto, G.; Furuhara, T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel. Acta Mater. 2012, 60, 2387–2396. [Google Scholar] [CrossRef]
- Morito, S.; Tanaka, H.; Konishi, R.; Furuhara, T.; Maki, T. The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 2003, 51, 1789–1799. [Google Scholar] [CrossRef]
- Zin, J.; Hillert, M.; Borgenstam, A. Morphology of Proeutectoid Ferrite. Metall. Mater. Trans. A 2017, 48A, 1425–1443. [Google Scholar] [CrossRef]
- Cheng, L.; Wan, X.L.; Wu, K.M. Three-dimensional morphology of grain boundary Widmanstätten ferrite in a low carbon low alloy steel. Mater. Charact. 2010, 61, 192–197. [Google Scholar] [CrossRef]
- Pereloma, E.; Edmonds, D.V. Phase Transformations in Steels. Volume 1: Fundamentals and Diffusion Controlled Transformations; Woodhead Publishing Limited: Cambridge, UK, 2012; ISBN 978-0-85709-610-4. [Google Scholar]
- Bhadeshia, H.K.D.H. Physical Metallurgy of Steels. In Physical Metallurgy, 5th ed.; Laughlin, D.E., Hono, K., Eds.; Elsevier Science and Technology: London, UK, 2014; Volume 3, pp. 2157–2214. ISBN 978-0-444-53770-6. [Google Scholar]
C | S | Mn | Si | Cr | Al | Cu |
---|---|---|---|---|---|---|
0.034 | 0.024 | 0.06 | 2.81 | 0.20 | 0.002 | 0.15 |
No. | S | Cr | Mn | Fe | Cu |
---|---|---|---|---|---|
1 | 43.3 | 33.3 | 9.3 | 7.5 | 6.6 |
2 | 43.6 | 32.4 | 13.6 | 4.5 | 5.9 |
3 | 42.1 | 34.0 | 13.5 | 3.4 | 7.1 |
AVE | 43.0 | 33.2 | 12.1 | 5.1 | 6.5 |
STD | 0.8 | 0.5 | 3.0 | 2.9 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volodarskaja, A.; Hradečný, K.; Palupčíková, R.; Váňová, P.; Vodárek, V. Microstructure Evolution in a GOES Thin Strip. Metals 2023, 13, 51. https://doi.org/10.3390/met13010051
Volodarskaja A, Hradečný K, Palupčíková R, Váňová P, Vodárek V. Microstructure Evolution in a GOES Thin Strip. Metals. 2023; 13(1):51. https://doi.org/10.3390/met13010051
Chicago/Turabian StyleVolodarskaja, Anastasia, Kryštof Hradečný, Renáta Palupčíková, Petra Váňová, and Vlastimil Vodárek. 2023. "Microstructure Evolution in a GOES Thin Strip" Metals 13, no. 1: 51. https://doi.org/10.3390/met13010051
APA StyleVolodarskaja, A., Hradečný, K., Palupčíková, R., Váňová, P., & Vodárek, V. (2023). Microstructure Evolution in a GOES Thin Strip. Metals, 13(1), 51. https://doi.org/10.3390/met13010051