# Calculation of Durability and Fatigue Life Parameters of Structural Alloys Using a Multilevel Model of Acoustic Emission Pulse Flow

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Temperature–Time Dependence of Strength

#### 1.2. Energy Activation of Destruction

#### 1.3. Structurally Sensitive Parameter $\gamma $

## 2. Materials and Methods

#### 2.1. The Evaluation of Durability Parameters

#### 2.2. Acoustic Emission

#### 2.3. Multilevel Model of Acoustic Emission Pulse Flow

- The process of breaking bonds, from the point of view of the authors, is decisive in destruction and retains its kinetics during structural rearrangements under uniform loading, which compete with acts of destruction in the field of AE signals [9];
- The activity of acoustic emission for structural steels during plastic deformation is characterized by low values, and the process itself is relatively “quiet” [65];
- From the point of view of the kinetic concept of strength, the accumulation of damage through the formation, accretion, and further growth of microcracks is a continuous process throughout most of the life and at multiple levels simultaneously—it starts to occur at low stresses due to the nature of the thermal fluctuation of the rupture of bonds at the tops of cracks [23];
- From the point of view of applying the approach to real objects, plastic deformation at diagnostic loading is unacceptable—the elastic deformation stage is taken as the determining stage for AE diagnostics.

- Kinetic—approximation of the time dependence of cumulative AE parameters by homogeneous destruction (determination of the linear section of the AE dependence in semi-logarithmic coordinates) (Table 1);
- Statistical—taking into account the stabilization of the values of amplitude, frequency, and pause distributions of AE in a temporary area of homogeneous fracture;
- A sign of elastic deformation—the accumulation of micro-damage corresponding to homogeneous destruction which occurs before the beginning of structural rearrangements during plastic deformation in the upper region of direct elastic deformation.

#### 2.4. Experimental Data

^{−6}s

^{−1}in a solution of 0.5 M H2SO4 with galvanostatic polarization applied with a cathodic current density of 5 mA/cm

^{2}, AE was monitored together with the registration of the total acoustic emission count. The moment of crack initiation corresponded to a stress of 1079 MPa. The data are shown in Figure 5a,b.

^{−4}s

^{−1}at room temperature. During the tensile test, the AE was converted by the AE sensors into an electrical signal; then, the signal was amplified by a constant rate of 40 dB and passed through a bandpass filter from 10 kHz to 2 MHz. For the analysis, in addition to cumulative counting (Figure 5e,f) of the AE, the RMS voltage, peak amplitude, and incrementation time of the AE signals were also selected.

^{−5}s

^{−1}.

^{−1}. The test temperature was room temperature.

^{−3}s

^{−1}. Acoustic emission correlated well with the volume of plastically deformed material in steel, and the size of the plastic zone was estimated during the fracture toughness test. In addition, the acoustic signal was used to determine the beginning of the formation of a stable crack.

^{−2}s

^{−1}. The AE results showed that the intensity of the signals increased with an increase in the content of the Al–5Ti–1B ligature, which was associated with the combined effect of dislocation movement and grain grinding.

## 3. Results

#### 3.1. Numerical Simulation

#### 3.2. Fatigue Life Calculation

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A

**Figure A1.**S–N Curve—Inconel 625 (Temperature—300 K; frequency—10 Hz; R = 0.1) [45].

**Figure A2.**S–N Curve—Steel D2 (Temperature—293 K; frequency—23 Hz; R = 0.75) [99].

**Figure A4.**S–N Curve—Ti-15V-3.0Cr-3.0Al-3.0Sn (Temperature—298 K; frequency—20 Hz). Source—Base Total material.

**Figure A5.**S–N Curve—Steel AISI 304SS (Temperature—293; frequency—50 Hz; R = 1.5) [100].

**Figure A6.**S–N Curve—Steel AISI 1080 (Temperature—293 K; frequency—30 Hz; R = −1) [101].

**Figure A7.**S–N Curve—Steel AISI 1060 (Temperature—293 K; frequency—30 Hz; R = −1) [102].

**Figure A8.**S–N Curve—A516 Grade 70 Steel (Accepted as an analogue of SA333) (Temperature—293 K; frequency—30 Hz). Source—Base Total Material.

**Figure A9.**S–N Curve—Steel AISI 304LN (Temperature—293 K; frequency—30 Hz). Source—Base Total Material.

**Figure A10.**S–N Curve—Steel AISI 304L (Temperature—700 K; frequency—40 Hz; R = −1) [103].

**Figure A11.**S–N Curve—Steel 09G2S (Temperature—293 K; frequency—0.6 Hz) [104].

**Figure A12.**S–N Curve—Steel C55 (accepted as an analogue) (Temperature—293 K; frequency—30 Hz) [105].

**Figure A13.**S–N Curve—Steel AISI 316LN (Temperature—293 K; frequency—10 Hz; R = 0.1) [106].

**Figure A14.**S–N Curve—4330V (accepted as an analogue) (Temperature—293 K; frequency—50 Hz) [107].

**Figure A15.**S–N Curve—Al 7075 alloy (Temperature—293 K; frequency—60 Hz) [107].

**Figure A16.**S–N Curve—Steel S355JR (accepted as an analogue) (Temperature—293 K; frequency—30 Hz) [105].

**Figure A17.**S–N Curve—Steel M250 (Temperature—293 K; frequency—60 Hz) [108].

**Figure A18.**S–N Curve—GJS-400-15 (Temperature—293 K; frequency—20 Hz) [109].

**Figure A19.**S–N Curve—Al 5052 alloy (Temperature—293 K; frequency—4 Hz). Source—Base Total Material.

## References

- Dzhemilev, E.R.; Shammazov, I.A.; Sidorkin, D.I.; Mastobaev, B.N.; Gumerov, A.K. Developing technology and device for the main pipelines repair with cutting out their defective sections. Neft. Khozyaystvo Oil Ind.
**2022**, 10, 78–82. [Google Scholar] [CrossRef] - Bolobov, V.; Martynenko, Y.V.; Voronov, V.; Latipov, I.; Popov, G. Improvement of the Liquefied Natural Gas Vapor Utilization System Using a Gas Ejector. Inventions
**2022**, 7, 14. [Google Scholar] [CrossRef] - Samigullin, G.; Lyagova, A. Determination of the limiting sizes of crack-like defects in a wall of steel vertical tanks. Neft. khozyaystvo Oil Ind.
**2017**, 104–107. [Google Scholar] [CrossRef] - Lyubchik, A.N. Way remote magnitometrichesky control of the technical condition of the main pipelines. J. Min. Inst.
**2012**, 195, 268. [Google Scholar] - Zhurkov, S.N. Kinetic concept of the strength of solids. Int. J. Fract.
**1984**, 26, 295–307. [Google Scholar] [CrossRef] - Krul, L.P.; Matusevich, Y.I.; Prokopchuk, N.R. Mechanical properties of graft copolymers of polyethylene and acrylonitrile obtained by the inhibited graft polymerization method. J. Polym. Sci. Part C Polym. Lett.
**1984**, 22, 611–615. [Google Scholar] [CrossRef] - Halimov, A.G.; Zainullin, R.S.; Halimov, A.A. Technical Diagnostics and Resource Assessment of Devices; USPTU: Ufa, Russia, 2001. [Google Scholar]
- Elizavetin, M.A. Improving the Reliability of Machines. Technological Foundations for Improving the Reliability of Machines, 2nd ed.; Mechanical Engineering: Moscow, Russia, 1973; p. 431. [Google Scholar]
- Grigorev, E.; Nosov, V. Improving Quality Control Methods to Test Strengthening Technologies: A Multilevel Model of Acoustic Pulse Flow. Appl. Sci.
**2022**, 12, 4549. [Google Scholar] [CrossRef] - Korshunov, A.I.; Novikov, S.A. Influence of the scale effect on endurance parameters. Strength Mater.
**1990**, 22, 1003–1006. [Google Scholar] [CrossRef] - Morris, D.G. Strengthening Mechanisms in Nanocrystalline Metals. Nanostructured Metals and Alloys; Elsevier: Amsterdam, The Netherlands, 2011; pp. 299–328. ISBN 9781845696702. [Google Scholar]
- Regel’, V.R. Kinetic theory of strength as a scientific basis for predicting the lifetime of polymers under load. Polym. Mech.
**1973**, 7, 82–93. [Google Scholar] [CrossRef] - Grabar, I.G. Thermoactivation analysis of the failure of bcc- and fcc-metals and the concept of interrelation of fatigue curve parameters. Strength Mater.
**1989**, 21, 1511–1515. [Google Scholar] [CrossRef] - Zhurkov, S.; Regel, V.; Sanfirova, T. Effect of active additives on the time-temperature dependence of polymer strength. Polym. Sci. USSR
**1965**, 7, 1486–1491. [Google Scholar] [CrossRef] - Petrov, M.G. Investigation of the longevity of materials on the basis of the kinetic concept of fracture. J. Appl. Mech. Tech. Phys.
**2021**, 62, 145–156. [Google Scholar] [CrossRef] - Troyansky, E.A. Increasing the Durability of Elements of Boiler Equipment; Energoatomizdat: Moscow, Russia, 1986. [Google Scholar]
- Valishin, A.A.; Kartashov, E.M. On the temperature factor of activation energy of fracture. Vysokomolekularnye Soedineniya. Ser. A Ser. B Ser. C Kratkie Soobshcheniya
**1993**, 35, 45–51. [Google Scholar] - Stepanov, V.A. Deformation and fracture of polymers. Polym. Mech.
**1976**, 11, 83–93. [Google Scholar] [CrossRef] - Nosov, V.V. Acoustic-emission quality control of plastically deformed blanks. Russ. J. Nondestruct. Test.
**2017**, 53, 368–377. [Google Scholar] [CrossRef] - Stepanov, V.A.; Bershtein, V.A.; Peschanskaya, N.N. Kinetics of the deformation of polymers. Polym. Mech.
**1981**, 16, 395–399. [Google Scholar] [CrossRef] - Petrov, M.G.; Ravikovich, A.I. Deformation and Failure of Aluminum Alloys from the Standpoint of the Kinetic Concept of Strength. J. Appl. Mech. Tech. Phys.
**2004**, 45, 124–132. [Google Scholar] [CrossRef] - Nassif, N.S.; Ibatullin, I.D.; Kremlev, V.I.; Barynkin, V.E. Kinetics of fatigue failure of hard alloys. Aerosp. Mech. Eng.
**2006**, 5, 240–244. [Google Scholar] - Regel, V.R.; Leksovskii, A.M.; Sakiev, S.N. The kinetics of the thermofluctuation-Induced micro- and macrocrack growth in plastic metals. Int. J. Fract.
**1975**, 11, 841–850. [Google Scholar] [CrossRef] - Stepanov, V.A.; Shpeizman, V.V.; Zhoga, L.V. The kinetics of brittle failure in solids and the possibility of predicting failure for static and cyclic loading. Mater. Sci.
**1979**, 15, 110–115. [Google Scholar] [CrossRef] - Fedorov, V.V.; Romashov, R.V. Investigation of damage kinetics and patterns of fatigue destruction of metals. Mech. Fatigue Met. Mater. VI Int. Colloq. Kiev.
**1983**, 87–97. [Google Scholar] - Stepanov, W.A.; Peschanskaya, N.N.; Shpeizman, V.V.; Nikonov, G.A. Longevity of solids at complex loading. Int. J. Fract.
**1975**, 11, 851–867. [Google Scholar] [CrossRef] - Ivanov, V.S. Quantitative Fractography: Fatigue Failure; Metallurgy: Chelyabinsk, Russia, 1988. [Google Scholar]
- Iost, A. Temperature dependence of stage II fatigue crack growth rate. Eng. Fract. Mech.
**1993**, 45, 741–750. [Google Scholar] [CrossRef] - Botvina, L. On Correlation of Various Approaches for Description of Kinetic Processes. Int. J. Fract.
**1999**, 99, 131–141. [Google Scholar] [CrossRef] - Betekhtin, V.I. Temperature-Time Dependence of the Strength of Metals. In Strength and Reliability of Metals and Alloys; Leningrad House of Scientific and Technical Propaganda: Saint-Petersburg, Russia, 1965; pp. 74–79. [Google Scholar]
- Yang, S.M.; Kang, H.Y.; Kim, H.S.; Song, J.H.; Park, J.M. Influence of Loading Speed on Tensile Strength Characteristics of High Tensile Steel; Chonbuk National University: Chonju, Republic of Korea, 1999. [Google Scholar]
- Kartashov, M. Decrease in durability of brittle solids in cyclic tests. Sov. Phys. J.
**1981**, 24, 479–483. [Google Scholar] [CrossRef] - Bugai, N.V.; Berezina, T.V.; Trunin, I.I. Efficiency and Durability of the Metal of Power Equipment; Energoatomizdat: Moscow, Russia, 1994; 272p. [Google Scholar]
- Bershtein, V.A.; Emel’Yanov, Y.A.; Stepanov, V.A. Effect of a static load on the processes of mechanical relaxation in brittle materials and polymers. Polym. Mech.
**1981**, 17, 6–12. [Google Scholar] [CrossRef] - Kats, M.S.; Regel, V.R. Estimation of activation parameters for materials in sclerometric tests. J. Mater. Sci.
**1980**, 15, 997–1000. [Google Scholar] [CrossRef] - Kats, M.S.; Regel, V.R.; Boyarskaya, Y.S.; Boyarskaya, S. Kinetic Nature of the Process of Microindentation into Alkali Halide Crystals. Cryst. Res. Technol.
**1974**, 9, 1389–1398. [Google Scholar] [CrossRef] - Shkolnik, I.E.; Hiziroglu, H.R. An Analogy for Estimation of Dielectric and Mechanical Strength of Insulators at Elevated Temperature. In Proceedings of the 2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Cancun, Mexico, 16–19 October 2011; IEEE: Piscataway, NJ, USA, 2011. ISBN 9781457709852. [Google Scholar]
- Xiao, T.; Ren, Y.; Liao, K. A Kinetic Model for Time-Dependent Fracture of Carbon Nanotubes. Nano Lett.
**2004**, 4, 1139–1142. [Google Scholar] [CrossRef] - Shin, S.C.; Yang, S.M.; Yu, H.S.; Kang, H.Y.; Kim, C.W. Fatigue Life of Multi-Lap Welding of Automotives Steel Sheet by QSTS. Adv. Mater. Res.
**2008**, 33-37, 151–156. [Google Scholar] [CrossRef] - Sin, S.R.; Yang, S.M.; Yu, H.S.; Kim, C.W.; Kang, H.Y. Fatigue Analysis of Multi-Lap Spot Welding of High Strength Steel by Quasi Static Tensile-Shear Test. Key Eng. Mater.
**2007**, 345-346, 251–254. [Google Scholar] [CrossRef] - Campbell, J.D.; Ferguson, W.G. The temperature and strain-rate dependence of the shear strength of mild steel. Philos. Mag.
**1970**, 21, 63–82. [Google Scholar] [CrossRef] - Park, J.-E.; Yang, S.-M.; Han, J.-H.; Yu, H.-S. Creep-Fatigue Life Design with Various Stress and Temperature Conditions on the Basis of Lethargy Coefficient. Trans. Korean Soc. Mech. Eng. A
**2011**, 35, 157–162. [Google Scholar] [CrossRef] [Green Version] - Malkin, A.Y. Methods for Measuring the Mechanical Properties of Polymers; Chemistry: Moscow, Russia, 1978; 330p. [Google Scholar]
- Special Metals. Inconel Alloy 625. Creep and Rupture Strength. 2006. Available online: http://specialmetals.ir/images/technical_info/nickel-base-alloy/inconel-alloy_622_625.pdf (accessed on 4 November 2022).
- Lee, S.; Kim, H.; Park, S.; Choi, Y. Fatigue Variability of Alloy 625 Thin-Tube Brazed Specimens. Metals
**2021**, 11, 1162. [Google Scholar] [CrossRef] - Freeds, A.D.; Leonov, A.I. The Bailey criterion: Statistical derivation and applications to interpretations of durability tests and chemical kinetics. Math. Phys.
**2002**, 53, 160–166. [Google Scholar] - Song, J.H.; Noh, H.G.; Yu, H.S.; Kang, H.Y.; Yang, S.M. Estimation of fatigue life by lethargy coefficient using molecular dynamic simulation. Int. J. Automot. Technol.
**2004**, 5, 215–219. [Google Scholar] - Hur, S.H.; Doh, J.; Yoo, Y.; Kim, S.; Lee, J. Stress-life prediction of 25 °C polypropylene materials based on calibration of Zhurkov fatigue life model. Fatigue Fract. Eng. Mater. Struct.
**2020**, 43, 1784–1799. [Google Scholar] [CrossRef] - Moghanlou, M.R.; Khonsari, M.M. On the kinetic formulation of fracture fatigue entropy of metals. Fatigue Fract. Eng. Mater. Struct.
**2021**, 45, 565–577. [Google Scholar] [CrossRef] - Babak, V.P.; Filonenko, S.F. Models of acoustic emission signals. Proc. Natl. Aviat. Univ.
**1998**, 1, 54–65. [Google Scholar] [CrossRef] - Ivanov, S.L.; Fokin, A.S.; Potapenko, V.S.; Podkhalyuzin, S.P. Monitoring of condition, forecastingand increasing of residual resource of transmission and supported bearings of tubular furnaces. J. Min. Inst.
**2011**, 192, 111. [Google Scholar] - Chai, M.; Duan, Q.; Hou, X.; Zhang, Z.; Li, L. Fracture Toughness Evaluation of 316LN Stainless Steel and Weld Using Acoustic Emission Technique. ISIJ Int.
**2016**, 56, 875–882. [Google Scholar] [CrossRef] [Green Version] - Leksovskii, A.M.; Baskin, B.L.; Yakushev, P.N. Some aspects of the damage kinetics at static loading of a heterogeneous solid under the conditions of constrained deformation. Tech. Phys.
**2015**, 60, 1887–1889. [Google Scholar] [CrossRef] - Botvina, L.R.; Tyutin, M.R.; Bolotnikov, A.I.; Petersen, T.B. Effect of Preliminary Cycling on the Acoustic Emission Characteristics of Structural 15Kh2GMF Steel. Russ. Met. (Metally)
**2021**, 2021, 32–41. [Google Scholar] [CrossRef] - Roy, H.; Parida, N.; Sivaprasad, S.; Tarafder, S.; Ray, K. Acoustic emissions during fracture toughness tests of steels exhibiting varying ductility. Mater. Sci. Eng. A
**2008**, 486, 562–571. [Google Scholar] [CrossRef] - Botvina, L.; Tyutin, M.; Sinev, I.; Bolotnikov, A. The effect of preliminary cyclic loading on acoustic emission parameters and damage of structural steels. Procedia Struct. Integr.
**2020**, 28, 2118–2125. [Google Scholar] [CrossRef] - Botvina, L.R.; Tyutin, M.R. New acoustic parameter characterizing loading history effects. Eng. Fract. Mech.
**2019**, 210, 358–366. [Google Scholar] [CrossRef] - Barile, C.; Casavola, C.; Pappalettera, G.; Kannan, V.P. Novel method of utilizing Acoustic Emission Parameters for Damage Characterization in Innovative Materials. Procedia Struct. Integr.
**2019**, 24, 636–650. [Google Scholar] [CrossRef] - Williams, R.S. Modeling of Elastoplastic Fracture Behavior Using Acoustic Emission Methods. J. Met.
**1979**, 31, 21–25. [Google Scholar] [CrossRef] - Vetrone, J.; Obregon, J.E.; Indacochea, E.J.; Ozevin, D. The characterization of deformation stage of metals using acoustic emission combined with nonlinear ultrasonics. Measurement
**2021**, 178, 109407. [Google Scholar] [CrossRef] - Mostafavi, S.; Fotouhi, M.; Motasemi, A.; Ahmadi, M.; Sindi, C.T. Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel. J. Mater. Eng. Perform.
**2012**, 21, 2106–2116. [Google Scholar] [CrossRef] - Shan, D.; Nayeb-Hashemi, H. Fatigue-life prediction of SiC particulate reinforced aluminum alloy 6061 matrix composite using AE stress delay concept. J. Mater. Sci.
**1999**, 34, 3263–3273. [Google Scholar] [CrossRef] - Fang, D.; Bercovits, A. Acoustic emission during the tensile deformation of Incoloy 901 superalloy. J. Mater. Sci.
**1995**, 30, 3552–3560. [Google Scholar] [CrossRef] - Tyutin, M.R.; Botvina, L.R.; Petersen, T.B. Tensile damage evolution of structural steels with different structure. Procedia Struct. Integr.
**2020**, 28, 2148–2156. [Google Scholar] [CrossRef] - Venkataraman, B.; Mukhopadhyay, C.; Raj, B. Effect of variation of strain rate on thermal and acoustic emission during tensile deformation of nuclear grade AISI type 316 stainless steel. Mater. Sci. Technol.
**2004**, 20, 1310–1316. [Google Scholar] [CrossRef] - Han, K.S.; Oh, K.H. Acoustic Emission as a Tool of Fatigue Assessment. Key Eng. Mater.
**2006**, 306-308, 271–278. [Google Scholar] [CrossRef] - Kotoul, M.; Bílek, Z. Acoustic emission during deformation and crack loading in structural steels. Int. J. Press. Vessel. Pip.
**1990**, 44, 291–307. [Google Scholar] [CrossRef] - Clark, G.; Corderoy, D.J.H.; Ringshall, N.W.; Knott, J.F. Acoustic emissions associated with fracture processes in structural steels. Met. Sci.
**1981**, 15, 481–491. [Google Scholar] [CrossRef] - Li, S.; Yu, Q.; Pu, J.; Chen, F. Study on mechanical properties and acoustic emission characteristics of metallic materials under the action of combined tension and torsion. Eng. Fract. Mech.
**2018**, 200, 451–464. [Google Scholar] [CrossRef] - Martelo, D.; Sampath, D.; Monici, A.; Morana, R.; Akid, R. Correlative analysis of digital imaging, acoustic emission, and fracture surface topography on hydrogen assisted cracking in Ni-alloy 625+. Eng. Fract. Mech.
**2019**, 221, 106678. [Google Scholar] [CrossRef] - Sindi, C.T.; Najafabadi, M.A.; Ebrahimian, S.A. Fracture Toughness Determination of Heat Treated AISI D2 Tool Steel Using AE Technique. ISIJ Int.
**2011**, 51, 305–3122. [Google Scholar] [CrossRef] [Green Version] - Lee, H.-S.; Yoon, J.-H.; Park, J.-S.; Yi, Y.-M. A study on failure characteristic of spherical pressure vessel. J. Mater. Process. Technol.
**2005**, 164–165, 882–888. [Google Scholar] [CrossRef] - Sahoo, S.; Jha, B.B.; Sahoo, T.K. Acoustic emission study of deformation behaviour of sensitised 304 stainless steel. Mater. Sci. Technol.
**2014**, 30, 1336–1342. [Google Scholar] [CrossRef] - Dahmene, F.; Laksimi, A.; Hariri, S.; Hervé, C.; Jaubert, L.; Cherfaoui, M.; Mouftiez, A. Acoustic wave propagation in austenitic stainless steel AISI 304L: Application examples. Int. J. Press. Vessel. Pip.
**2012**, 92, 77–83. [Google Scholar] [CrossRef] - Penkin, A.G.; Terentyev, V.F.; Roshchupkin, V.V.; Pokrasin, M.A. Diagnostics of fracture mechanisms of structural steels by acoustic emission. Inorg. Mater. Appl. Res.
**2016**, 7, 525–530. [Google Scholar] [CrossRef] - Botvina, L.R.; Tyutin, M.R.; Perminova, Y.S.; Utkin, A.V. Dynamic Fracture Toughness of High-Strength 5KhN3MA Steel. Russ. Met. (Metally)
**2021**, 2021, 1051–1059. [Google Scholar] [CrossRef] - Lugo, M.; Jordon, J.B.; Horstemeyer, M.F.; Tschopp, M.A.; Harris, J.; Gokhale, A.M. Quantification of damage evolution in a 7075 aluminum alloy using an acoustic emission technique. Mater. Sci. Eng. A
**2011**, 528, 6708–6714. [Google Scholar] [CrossRef] - Wuriti, G.S.; Chattopadhyaya, S.; Krolczyk, G. Comparison of Acoustic Emission Data Acquired During Tensile Deformation of Maraging Steel M250 Welded Specimens. Arch. Acoust.
**2020**, 45, 221–231. [Google Scholar] - Palaev, A.G.; Nosov, V.V.; Krasnikov, A.A. Simulating distribution of temperature fields and stresses in welded joint using ANSYS. Sci. Technol. Oil Oil Prod. Pipeline Transp.
**2022**, 12, 461–470. [Google Scholar] [CrossRef] - Kietov, V.; Henschel, S.; Krüger, L. AE analysis of damage processes in cast iron and high-strength steel at different temperatures and loading rates. Eng. Fract. Mech.
**2019**, 210, 320–341. [Google Scholar] [CrossRef] - Pattnaik, A.B.; Das, S.; Jha, B.B.; Prasanth, N. Effect of Al–5Ti–1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al5052 aluminium alloy. J. Mater. Res. Technol.
**2015**, 4, 171–179. [Google Scholar] [CrossRef] [Green Version] - Nasonov, M.Y.; Lykov, Y.V.; Trong, D.D. The study of the resource and durability of metal structures of excavators after the expiration of the service life. Ugol
**2020**, 1127, 13–17. [Google Scholar] [CrossRef] - Bańdo, D.; Matachowski, F. Strength analysis of the reason of initiation of fatigue defects in winding drums. J. Min. Inst.
**2006**, 167, 204. [Google Scholar] - Gerasimenko, A.A.; Samigullin, G.K. Evaluation of Steel Vertical Tank Residual Life by a Metal Low-Cycle Fatigue Criterion Under Biaxial Loading Conditions. Chem. Pet. Eng.
**2016**, 52, 53–58. [Google Scholar] [CrossRef] - Lyagova, A. Simulation crack growth in the wall of cylindrical steel storage tank under complex stress state. Int. J. Appl. Eng. Res.
**2016**, 11, 6760–6766. [Google Scholar] - Hectors, K.; De Waele, W. Cumulative Damage and Life Prediction Models for High-Cycle Fatigue of Metals: A Review. Metals
**2021**, 11, 204. [Google Scholar] [CrossRef] - Rege, K.; Pavlou, D.G. A one-parameter nonlinear fatigue damage accumulation model. Int. J. Fatigue
**2017**, 98, 234–246. [Google Scholar] [CrossRef] - Shchipachev, A.M. Method for Determining Fatigue Limit Taking Into Account the Effect of a Surface Layer. Chem. Pet. Eng.
**2017**, 53, 340–346. [Google Scholar] [CrossRef] - Doh, J.; Lee, J. Bayesian estimation of the lethargy coefficient for probabilistic fatigue life model. J. Comput. Des. Eng.
**2017**, 5, 191–197. [Google Scholar] [CrossRef] - Regel’, V.R.; Leksovsky, A.M. A study of fatigue within the framework of the kinetic concept of fracture. Int. J. Fract. Mech.
**1967**, 3, 99–109. [Google Scholar] [CrossRef] - Mahmoudi, A.; Khonsari, M.M. Evaluation of fatigue in unidirectional and cross-ply laminated composites using a coupled entropy-kinetic concept. J. Compos. Mater.
**2022**, 56, 2443–2454. [Google Scholar] [CrossRef] - Mishnaevsky, L.; Brøndsted, P. Modeling of fatigue damage evolution on the basis of the kinetic concept of strength. Int. J. Fract.
**2007**, 144, 149–158. [Google Scholar] [CrossRef] - Geelen, B.B. Accurate solution for the modified Bessel faction of the first kind. Adv. Eng. Softw.
**1995**, 23, 105–109. [Google Scholar] [CrossRef] - Botvina, L.R.; Tyutin, M.R.; Levin, V.P.; Ioffe, A.V.; Perminova, Y.S.; Prosvirnin, D.V. Mechanical and Physical Properties, Fracture Mechanisms, and Residual Strength of 15Kh2GMF Steel for Oil Sucker Rods. Russ. Met. (Metally)
**2021**, 2021, 546–558. [Google Scholar] [CrossRef] - Botvina, L.R.; Tyutin, M.R.; Petersen, T.B.; Levin, V.P.; Soldatenkov, A.P.; Prosvirnin, D.V. Residual Strength, Microhardness, and Acoustic Properties of Low-Carbon Steel after Cyclic Loading. J. Mach. Manuf. Reliab.
**2018**, 47, 516–524. [Google Scholar] [CrossRef] - Botvina, L.R.; Kushnarenko, V.M.; Tyutin, M.R.; Levin, V.P.; Morozov, A.E.; Bolotnikov, A.I. Fracture Stages and Residual Strength of Pipe Steel after Long-Term Operation. Phys. Mesomech.
**2021**, 24, 475–485. [Google Scholar] [CrossRef] - Kireenko, O.F.; Leksovskii, A.M.; Regel, V.R. Role of heating in connection with the reduced life of cyclically stressed polymers. Polym. Mech.
**1972**, 4, 386–388. [Google Scholar] [CrossRef] - Stepanov, V.A.; Nikonov, Y.A.; Timoshenko, I.I. Influence of cyclic loading conditions on the life of materials. Strength Mater.
**1979**, 11, 575–577. [Google Scholar] [CrossRef] - de Jesus, A.M.; Ramos, G.F.; Gomes, V.M.; Marques, M.J.; de Figueiredo, M.A.; Marafona, J.D. Comparison between EDM and grinding machining on fatigue behaviour of AISI D2 tool steel. Int. J. Fatigue
**2020**, 139, 105742. [Google Scholar] [CrossRef] - Strzelecki, P.; Mazurkiewicz, A.; Musiał, J.; Tomaszewski, T.; Słomion, M. Fatigue Life for Different Stress Concentration Factors for Stainless Steel 1.4301. Materials
**2019**, 12, 3677. [Google Scholar] [CrossRef] [Green Version] - Querales, A.; Byrne, J.G. Improvement of fatigue life of 1080 steel by thermomechanical processing. Fatigue Fract. Eng. Mater. Struct.
**1979**, 1, 371–382. [Google Scholar] [CrossRef] - Maleki, E.; Farrahi, G.H.; Kashyzadeh, K.R.; Unal, O.; Gugaliano, M.; Bagherifard, S. Effects of Conventional and Severe Shot Peening on Residual Stress and Fatigue Strength of Steel AISI 1060 and Residual Stress Relaxation Due to Fatigue Loading: Experimental and Numerical Simulation. Met. Mater. Int.
**2020**, 27, 2575–2591. [Google Scholar] [CrossRef] - Boller, C.; Seeger, T. Materials Data for Cyclic Loading: Part C: High-Alloy Steels; Elsevier: Oxford, UK; New York, NY, USA; Tokyo, Japan, 1987. [Google Scholar]
- Lukin, E.S.; Ivanov, A.M. low-cycle fatigue of 09g2s steel strengthened by severe plastic deformation method. Fundam. Res.
**2015**, 11, 92–95. [Google Scholar] - Maschinenbau, F.K. (Ed.) Rechnerischer Festigkeitsnachweis Für Maschinenbauteile: Analytical Strength Assessment, 5th ed.; FKM-Guideline; VDMA: Frankfurt, Germany, 2003. [Google Scholar]
- Strizak, J.; Tian, H.; Liaw, P.; Mansur, L. Fatigue properties of type 316LN stainless steel in air and mercury. J. Nucl. Mater.
**2005**, 343, 134–144. [Google Scholar] [CrossRef] - Kazuaki, S. Databook on Fatigue Strength of Metallic Materials; JSMS, The Society of Materials Science: Kyoto, Japan; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Croccolo, D.; De Agostinis, M.; Fini, S.; Olmi, G.; Robusto, F.; Kostić, S.; Vranić, A.; Bogojević, N. Fatigue Response of As-Built DMLS Maraging Steel and Effects of Aging, Machining, and Peening Treatments. Metals
**2018**, 8, 505. [Google Scholar] [CrossRef] [Green Version] - Bergner, K.; Hesseler, J.; Bleicher, C. Fatigue analysis of cast iron components considering the influence of casting skin. Procedia Struct. Integr.
**2019**, 19, 140–149. [Google Scholar] [CrossRef]

**Figure 2.**Graphical interpretation of the determination of the activation energy of the destruction of nickel alloy 625: (

**a**)—for creep processes; (

**b**)—for fatigue failure processes.

**Figure 5.**The total AE count and the logarithm of the total AE count over time: (

**a**) nickel alloy 625+; (

**c**) tool steel D2 (sample E3); (

**e**) AISI 304 steel with 24 h exposure; (

**g**) AISI 1060 steel; (

**i**) A572 steel of grade 50 with a deformation value of 0.072; (

**k**) M250 steel with hidden defects; (

**m**) vessels made of Ti–15V–3Al–3Cr–3Sn alloy; (

**b**,

**d**,

**f**,

**h**,

**j**,

**l**,

**n**)—corresponding loading schedules.

**Figure 6.**Correlation of the results of the calculation of the activation energy of fracture using a multilevel model of the AE pulse flow compared with: (

**a**)—data of fatigue curves of alloys; (

**b**)—Grabar’s formula for fatigue curves; (

**c**)—results of static tests of samples; (

**d**)—Moghanlou’s formula for fatigue tests.

**Figure 7.**(

**a**) Correlation between the actual destructive stress and that calculated by the multilevel AE model; (

**b**) correlation between the structural parameter $\gamma $ calculated from the multilevel AE model and the results of static tests.

**Figure 8.**The distribution of the structural parameter γ during homogeneous fracture: (

**a**)—Weibull distribution for D2 steel samples (red—C2 sample; blue—E3 sample); (

**b**)—logarithmically normal distribution for D2 steel samples (red—E3 sample; blue—C2 sample); (

**c**)—Weibull distribution for M520 steel samples; (

**d**)—logarithmically normal distribution for M520 steel samples (blue–inherent defect, red—weld seam without defect, and gray—weld seam with defect).

**Figure 10.**S–N curves for experimental materials with marked points of calculated fatigue life: (

**a**) steel 20 with pre-cycling at 390 MPa; (

**b**) steel 20 with pre-cycling at 330 MPa; (

**c**) 15X2GMF steel with pre-cycling at 800 MPa.

Stage | Destruction Phase | Diagnostic Features of the Destruction Phase |
---|---|---|

I | Delocalized, finely dispersed inhomogeneous | d^{2}ξ/dt^{2}< 0 at σ = 0; d^{2}lnξ/dt^{2} < 0 at σ = 0; dk_{ae}/dt < 0 (dP_{U} / dt < 0); ω_{2}/ω_{1} > 1, ω_{2}/ω_{0} > 1;σ _{3} > μ; ATD* = var |

I | Delocalized, finely dispersed homogeneous | d^{2}ξ/dt^{2}= 0 at σ = const; d^{2}lnξ/dt^{2} = 0 at σ = const; dk_{ae}/dt = 0; ω_{2}/ω_{1} < 1, ω_{2}/ω_{0} < 1;σ _{3} < μ; ATD = var |

I | Localized, finely dispersed inhomogeneous | d^{2}ξ/dt^{2}< 0 at σ = 0; d^{2}lnξ/dt^{2} < 0 at σ = 0;dk _{ae}/dt < 0 (dP_{U}/dt < 0); ω_{2}/ω_{1}>1, ω_{2}/ω_{0} > 1;σ _{3} > μ; ATD = invar |

I | Delocalized, finely dispersed inhomogeneous | d^{2}ξ/dt^{2}< 0 at σ = 0; d^{2}lnξ/dt^{2} < 0 at σ = 0; dk_{ae}/dt < 0 (dP_{U} / dt < 0); ω_{2}/ω_{1} > 1, ω_{2}/ω_{0} > 1;σ _{3} > μ; ATD* = var |

II | Crack formation and propagation | d^{2}ξ/dt^{2}> 0 at σ = const; d^{2}lnξ/dt^{2} > 0 at σ = const;dk _{ae}/dt > 0 (dP_{U}/dt < 0); ω_{1}/ω_{0} > 1, ω_{2}/ω_{0} > 1; σ_{3} > μ; ATD ≈ invar |

II | Ductile rupture | d^{2}ξ/dt^{2}< 0 at σ = const; d^{2}lnξ/dt^{2} < 0 at σ = const; dk_{ae}/dt < 0 (dP_{∆t}/dt < 0); ω_{1}/ω_{0} < 1, ω_{2}/ω_{0} < 1; σ_{3} < μ; ATD ≈ invar |

**Table 2.**Results of calculation of concentration-kinetic AE strength indicators, kinetic parameters, and activation energy of destruction.

№ | Material | ${\mathit{X}}_{\mathit{A}\mathit{E}},$ ${\mathbf{s}}^{-1}$ | ${\mathit{Y}}_{\mathit{A}\mathit{E}},$ $\mathbf{M}\mathbf{P}{\mathbf{a}}^{-1}$ | $\mathit{\gamma}$ | ${\mathit{P}}_{\mathit{f}},$ $\mathbf{M}\mathbf{P}\mathbf{a}$ | ${\mathit{\vartheta}}_{\mathit{s}},$ $\frac{\mathbf{M}\mathbf{P}\mathbf{a}}{\mathbf{s}}$ | $\mathit{T},$ $\mathbf{K}$ | ${\mathit{U}}_{0\mathit{A}\mathit{E}},$ $\frac{\mathbf{J}}{\mathbf{m}\mathbf{o}\mathbf{l}\mathbf{e}}$ | ${\mathit{U}}_{0\mathit{S}\mathit{N}}^{1},$ $\frac{\mathbf{J}}{\mathbf{m}\mathbf{o}\mathbf{l}\mathbf{e}}$ | ${\mathit{U}}_{0\mathit{S}\mathit{N}}^{2},$ $\frac{\mathbf{J}}{\mathbf{m}\mathbf{o}\mathbf{l}\mathbf{e}}$ | ${\mathit{U}}_{0\mathit{s}\mathit{t}},$ $\frac{\mathbf{J}}{\mathbf{m}\mathbf{o}\mathbf{l}\mathbf{e}}$ | ${\mathit{U}}_{0\mathit{S}\mathit{N}}^{3},$ $\frac{\mathbf{J}}{\mathbf{m}\mathbf{o}\mathbf{l}\mathbf{e}}$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |

1 | Ni alloy 625+ [69] | 0.000478 | 0.010304 | 4.45 × 10−23 | 1106 | 0.046 | 313 | 141,974 | 131,069 | 136,695 | 123,326 | |

2 | Tool steel D2 [60] | 0.007583 | 0.003936 | 1.59 × 10−23 | 685 | 1.926 | 293 | 104,990 | 118,288 | 126,203 | 101,779 | 114,182 |

3 | Tool steel D2 [60] | 0.023035 | 0.012704 | 5.14 × 10−23 | 551 | 1.813 | 293 | 114,688 | 118,288 | 99,110 | 114,092 | |

4 | Ti–15V–3Al–3Cr–3Sn [71] | 0.007166 | 0.018929 | 7.65 × 10−23 | 595 | 0.379 | 293 | 125,986 | 114,491 | 113,260 | 112,335 | 108,515 |

5 | Ti–15V–3Al–3Cr–3Sn [71] | 0.006134 | 0.013623 | 5.51 × 10−23 | 580 | 0.450 | 293 | 118,181 | 114,491 | 113,260 | 104,529 | 108,515 |

6 | Ti–6Al–4V [71] | 0.011777 | 0.012317 | 4.98 × 10−23 | 455 | 0.956 | 293 | 110,999 | 108,979 | 108,911 | 97,339 | 103,811 |

7 | AISI 304 [72] | 0.038531 | 0.010372 | 4.19 × 10−23 | 685 | 3.715 | 293 | 111,767 | 108,352 | 111,981 | 101,140 | |

8 | 0.032822 | 0.008835 | 3.57 × 10−23 | 685 | 3.715 | 293 | 109,594 | 108,352 | 101,335 | |||

9 | 0.028785 | 0.007749 | 3.13 × 10−23 | 685 | 3.715 | 293 | 108,101 | 108,352 | 101,495 | |||

10 | 0.026145 | 0.007038 | 2.85 × 10−23 | 685 | 3.715 | 293 | 107,149 | 108,352 | 101,612 | |||

11 | AISI 1060 [54] | 0.012092 | 0.006982 | 2.82 × 10−23 | 629 | 1.732 | 293 | 107,981 | 110,316 | 108,526 | 94,300 | 101,722 |

12 | AISI 1080 [54] | 0.027879 | 0.018437 | 7.45 × 10−23 | 254 | 1.512 | 293 | 106,657 | 108,352 | 111,158 | 92,984 | 102,152 |

13 | AISI 304LN [54] | 0.028509 | 0.009174 | 3.71 × 10−23 | 659 | 3,108 | 293 | 109,920 | 111,230 | 112,893 | 96,263 | 104,639 |

14 | SA333 [54] | 0.009124 | 0.0237 | 9.58 × 10−23 | 232 | 0.385 | 293 | 111,362 | 115,363 | 115,675 | 97,701 | 107,802 |

15 | AISI 304L [73] | 0.004308 | 0.003218 | 3.21 × 10−23 | 293 | 1.339 | 723 | 251,932 | 264,646 | 308,930 | 215,281 | 228,173 |

16 | 09Γ2C [74] | 0.110384 | 0.007903 | 3.20 × 10−23 | 464 | 13.967 | 293 | 100,833 | 105,078 | 112,620 | 98,555 | |

17 | 0.011341 | 0.008497 | 3.44 × 10−23 | 365 | 1.335 | 293 | 104,996 | 105,078 | 98,467 | |||

18 | K3 [74] | 0.117816 | 0.008235 | 3.33 × 10−23 | 712 | 14.306 | 293 | 106,022 | 105,596 | 106,966 | 98,827 | |

19 | 0.024145 | 0.015517 | 6.27 × 10−23 | 433 | 1.556 | 293 | 111,965 | 105,596 | 98,056 | |||

20 | AISI 316LN [51] | 0.003047 | 0.000329 | 1.33 × 10−24 | 889 | 9.264 | 293 | 101,357 | 117,953 | 120,460 | 115,817 | |

21 | 0.051016 | 0.006849 | 2.77 × 10−23 | 736 | 7.448 | 293 | 106,058 | 117,953 | 111,277 | |||

22 | 5XH3MA [75] | 0.079202 | 0.009542 | 3.86 × 10−23 | 1212 | 8.301 | 293 | 120,871 | 120,481 | 119,916 | 107,220 | 113,186 |

23 | 0.040355 | 0.012987 | 5.25 × 10−23 | 1165 | 3.107 | 293 | 131,194 | 120,481 | 117,543 | 114506 | ||

24 | 0.030321 | 0.009701 | 3.92 × 10−23 | 1167 | 3.125 | 293 | 122,617 | 120,481 | 108,966 | 113340 | ||

25 | Al Alloy 7075 [76] | 0.633642 | 0.011266 | 4.56 × 10−23 | 577 | 56.245 | 293 | 103,476 | 102,397 | 106,647 | 96021 | |

26 | High-strength low-alloy steel grade A572 мapки 50 (HSLA) [54] | 0.019052 | 0.002965 | 1.20 × 10−23 | 486 | 6.425 | 293 | 996,91 | 106,460 | 109,038 | 101256 | |

27 | 0.029453 | 0.004584 | 1.85 × 10−23 | 486 | 6,425 | 293 | 100,546 | 100725 | ||||

28 | 0.03203 | 0.004985 | 2.02 × 10−23 | 486 | 6.425 | 293 | 100,816 | 100,623 | ||||

29 | 0.036099 | 0.005619 | 2.27 × 10−23 | 486 | 6.425 | 293 | 101,274 | 100,478 | ||||

30 | 0.005005 | 0.000779 | 3.15 × 10−24 | 486 | 6.425 | 293 | 100,358 | 100,731 | ||||

31 | 0.03196 | 0.004975 | 2.01 × 10−23 | 486 | 6.425 | 293 | 100,809 | 100,626 | ||||

32 | 0.045614 | 0.0071 | 2.87 × 10−23 | 486 | 6.425 | 293 | 102,457 | 100,193 | ||||

33 | 0.043259 | 0.0071 | 2.87 × 10−23 | 486 | 6.425 | 293 | 102,153 | 100,821 | ||||

34 | Steel M250 [77] | 0.002043 | 0.006605 | 2.67 × 10−23 | 1174 | 0.309 | 293 | 130,149 | 126,814 | 132,243 | 106,847 | 119,861 |

35 | 0.002333 | 0.006924 | 2.80 × 10−23 | 1915 | 0.337 | 293 | 133,581 | 126,814 | 132,243 | 119,930 | 119,803 | |

36 | 0.003785 | 0.010223 | 4.13 × 10−23 | 1681 | 0.370 | 293 | 141,961 | 126,814 | 132,243 | 128,310 | 118,910 | |

37 | Alloy GJS-400-15 [78] | 0.005369 | 0.035255 | 1.43 × 10−22 | 315 | 0.152 | 293 | 126,306 | 112,058 | 130,205 | 104,670 | |

38 | 0.004344 | 0.028838 | 1.01 × 10−22 | 324 | 0.151 | 253 | 105,804 | 112,058 | 130,205 | 105,934 | ||

39 | Al Alloy 5052 [79] | 0.010626 | 0.006312 | 2.55 × 10−23 | 114 | 1.684 | 293 | 100,369 | 111,851 | 112,002 | 106,418 |

Sample Number | ${\mathit{t}}_{1}$ | ${\mathit{t}}_{2}$ | Weibull | Logarithmically Normal | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|

$\mathit{k}$ | $\mathit{\lambda}$ | $\mathit{q}$ | ${\mathit{E}}_{\mathit{A}}$, % | ${\mathit{E}}_{\mathit{T}\mathit{f}},\mathit{\%}$ | ${\mathbf{\sigma}}_{\mathbf{z}}$ | $\mathsf{\mu}$ | ${\mathit{E}}_{\mathit{A}},\mathit{\%}$ | ${\mathit{E}}_{\mathit{T}\mathit{f}},\mathit{\%}$ | |||

Steel D2-1 | 38.2 | 76.5 | 3 | 36 | 0 | 17 | 25 | 0.47 | 3.05 | 13 | 24 |

Steel D2-2 | 144.1 | 219.9 | 3 | 27 | 15 | 11 | 36 | 0.29 | 3.12 | 9 | 41 |

Steel M250-1 | 3871 | 4641 | 3 | 12,5 | 0 | 6 | 39 | 0.35 | 2.3 | 5 | 38 |

Steel M250-2 | 4178 | 4345 | 3 | 18 | 0 | 4 | 51 | 0.35 | 2.7 | 4 | 55 |

Steel M250-3 | 4391 | 4688 | 3 | 12 | 7 | 3 | 50 | 0.15 | 2.7 | 4 | 30 |

Material | Spent Fatigue Life | ${\mathit{X}}_{\mathit{A}\mathit{E}},$ ${\mathbf{s}}^{-1}$ | ${\mathit{Y}}_{\mathit{A}\mathit{E}},$ $\mathbf{M}\mathbf{P}{\mathbf{a}}^{-1}$ | $\mathit{\gamma},$ $\frac{\mathbf{J}}{\mathbf{m}\mathbf{o}\mathbf{l}\mathbf{e}\mathit{\xb7}\mathbf{M}\mathbf{P}\mathbf{a}}$ | ${\mathit{U}}_{0},$ $\frac{\mathbf{J}}{\mathbf{m}\mathbf{o}\mathbf{l}\mathbf{e}}$ | ${\mathit{\sigma}}_{\mathit{m}\mathit{a}\mathit{x}},$ $\mathbf{M}\mathbf{P}\mathbf{a}$ | ${\mathit{N}}_{\mathit{f}},$ $\mathbf{c}\mathbf{y}\mathbf{c}\mathbf{l}\mathbf{e}$ |
---|---|---|---|---|---|---|---|

Steel 20 [96] | Initial | 0.01557 | 0.00924 | 22.507 | 107,160 | 390 | 3,377,507 |

0.3 | 0.01103 | 0.01295 | 31.543 | 109,893 | 2,889,932 | ||

0.5 | 0.01027 | 0.01206 | 29.373 | 109,215 | 2,988,131 | ||

0.7 | 0.00928 | 0.01090 | 26.563 | 108,357 | 3,133,187 | ||

Steel 20 [95] | Initial | 0.00674 | 0.00605 | 14.720 | 105,439 | 330 | 6,200,262 |

0.3 | 0.00250 | 0.00215 | 5.228 | 103,582 | 6,237,870 | ||

0.5 | 0.00293 | 0.00249 | 6.060 | 103,590 | 6,018,547 | ||

0.7 | 0.00123 | 0.00107 | 2.594 | 104,076 | 7,692,749 | ||

15Kh2GMF [94] | Initial | 0.00102 | 0.00152 | 3.693 | 107,336 | 800 | 23,019,230 |

0.7 | 0.00110 | 0.00169 | 4.121 | 107,615 | 23,697,629 | ||

Tensile strength sample | 0.00346 | 0.00468 | 11.397 | 112,452 | 26,313,080 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Perveitalov, O.G.; Nosov, V.V.; Borovkov, A.I.; Khanukhov, K.M.; Chetvertukhin, N.V.
Calculation of Durability and Fatigue Life Parameters of Structural Alloys Using a Multilevel Model of Acoustic Emission Pulse Flow. *Metals* **2023**, *13*, 4.
https://doi.org/10.3390/met13010004

**AMA Style**

Perveitalov OG, Nosov VV, Borovkov AI, Khanukhov KM, Chetvertukhin NV.
Calculation of Durability and Fatigue Life Parameters of Structural Alloys Using a Multilevel Model of Acoustic Emission Pulse Flow. *Metals*. 2023; 13(1):4.
https://doi.org/10.3390/met13010004

**Chicago/Turabian Style**

Perveitalov, Oleg G., Viktor V. Nosov, Alexey I. Borovkov, Khanukh M. Khanukhov, and Nikita V. Chetvertukhin.
2023. "Calculation of Durability and Fatigue Life Parameters of Structural Alloys Using a Multilevel Model of Acoustic Emission Pulse Flow" *Metals* 13, no. 1: 4.
https://doi.org/10.3390/met13010004