Analysis of the Behavior of As and Pb during the Pretreatments Applied to a Jarosite Residue for the Recovery of Gold and Silver
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Yang, H.; Zhang, G.; Kang, J.; Wang, C. Comprehensive recovery and recycle of jarosite residues from zinc hydrometallurgy. Adv. Chem. Eng. 2020, 3, 100023. [Google Scholar] [CrossRef]
- Kyle, J.; Breuer, P.; Bunney, K.; Pleysier, R.; May, P. Review of trace toxic elements (Pb, Cd, Hg, As, Sb, Bi, Se, Te) and their deportment in gold processing. Part 1: Mineralogy, aqueous chemistry, and toxicity. Hydrometallurgy 2011, 107, 91–100. [Google Scholar] [CrossRef]
- Shamsollahi, Z.; Partovinia, A. Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review. J. Environ. Manag. 2019, 246, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Grabas, K. Removal of heavy metal ions from an electroplating effluent and the clarified water of the “Kowary” Tailing Pond (Jelenia Gora District, Lower Silesia). Ochr. Srodowiska 2009, 31, 49–54. [Google Scholar]
- Abu, R.; Zabin, S. Removal efficiency of Pb, Cd, Cu and Zn from polluted water using dithiocarbamate ligands. J. Taibah Univ. Sci. 2017, 11, 57–65. [Google Scholar] [CrossRef]
- Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev. 2018, 356, 147–164. [Google Scholar] [CrossRef]
- Malik, L.; Bashir, A.; Qureashi, A.; Pandith, A. Detection and removal of heavy metal ions: A review. Environ. Chem. Lett. 2019, 17, 1495–1521. [Google Scholar] [CrossRef]
- Pohl, A. Removal of Heavy Metal Ions from Water and Wastewaters by Sulfur-Containing Precipitation Agents. Water Air Soil Pollut. 2020, 231, 1–17. [Google Scholar] [CrossRef]
- Marsden, J.; House, I. The Chemistry of Gold Extraction, 2nd ed.; Society for Mining, Metallurgy, and Exploration Inc.: Englewood, CO, USA, 2005; pp. 233–240. [Google Scholar]
- Kuyucak, N.; Akcil, A. Cyanide and removal options from effluents in gold mining and metallurgical processes. Miner. Eng. 2013, 50, 13–29. [Google Scholar] [CrossRef]
- Xiang, P.; Ma, B.; Zeng, P.; Wang, C.; Wang, L.; Zhang, Y.; Wang, S.; Wang, Q. Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals. Int. J. Miner. Metall. Mater. 2017, 24, 1217–1227. [Google Scholar] [CrossRef]
- Reyes, I.; Patiño, F.; Flores, M.; Pandiyan, T.; Cruz, R.; Gutiérrez, E.; Reyes, M.; Flores, V. Dissolution rates of jarosite-type compounds in H2SO4 medium: A kinetic analysis and its importance on the recovery of metal values from hydrometallurgical wastes. Hydrometallurgy 2017, 167, 16–29. [Google Scholar] [CrossRef]
- Fleming, C. Hydrometallurgy of precious metals recovery. Hydrometallurgy 1992, 30, 127–162. [Google Scholar] [CrossRef]
- Calla, D.; Nava, F.; Fuentes, J. Acid decomposition and thiourea leaching of silver from hazardous jarosite residues: Effect of some cations on the stability of the thiourea system. J. Hazard. Mater. 2016, 317, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Gupta, M.; Sharma, S. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminum industry waste. Water Res. 2001, 35, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- Karimi, P.; Abdollahi, H.; Amini, A.; Noaparast, M.; Shafaei, S.; Habashi, F. Cyanidation of gold ores containing copper, silver, lead, arsenic and antimony. Int. J. Miner. Process. 2010, 95, 68–77. [Google Scholar] [CrossRef]
- Acheampong, M.; Meulepas, R.; Lens, P. Removal of heavy metals and cyanide from gold mine wastewater. J. Chem. Technol. Biotechnol. 2010, 85, 590–613. [Google Scholar] [CrossRef]
- Tahoon, M.; Siddeeg, S.; Salsaiari, N.; Mnif, W.; Rebah, F. Effective Heavy Metals Removal from Water Using Nanomaterials: A Review. Processes 2020, 8, 645. [Google Scholar] [CrossRef]
- Parga, J.; Valdés, J.; Valenzuela, J.; Gonzalez, G.; Pérez, L.; Cepeda, T.F. New Approach for Lead, Zinc and Copper Ions Elimination in Cyanidation Process to Improve the Quality of the Precipitate. Mater. Sci. Appl. 2015, 6, 117–129. [Google Scholar] [CrossRef][Green Version]
- Liu, Q.; Leslie, M.; Moe, B.; Hongquan, Z.; Douglas, D.; Kneteman, N.; Le, C. Metabolism of a Phenylarsenical in Human Hepatic Cells and Identification of a New Arsenic Metabolite. Environ. Sci. 2018, 52, 1386–1392. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, T.; Sun, D.; Wu, M.; Zhang, Z. Changes of RNA N6 methyladenosine in the hormesis effect induced by arsenite on human keratinocyte cells. Toxicol. In Vitro 2019, 56, 84–92. [Google Scholar] [CrossRef]
- Sabir, S.; Hamid, M.; Fiayyaz, A.; Saleem, U.; Hassan, M.; Rehman, K. Role of cadmium and arsenic as endocrine disruptors in the metabolism of carbohydrates: Inserting the association into perspectives. Biomed. Pharmacother. 2019, 114, 108802. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.; Santos, A.; Silva, C.; Chakmeng, J. Arsenic contamination assessment in Brazil—Past, present, and future concerns: A historical and critical review. Sci. Total Environ. 2020, 730, 138217. [Google Scholar] [CrossRef]
- Garza, M.; Carrillo, F.; Picazo, N.; Soria, M.; Almaguer, I.; Cháidez, J. Effects of pretreatment and leaching medium on the extraction efficiency of Au and Ag from a chalcopyrite leaching by-product. Dyna 2021, 88, 119–126. [Google Scholar] [CrossRef]
- Picazo, N.; Carrillo, F.; Luévanos, A.; Soria, M.; Almaguer, I. S° and jarosite behavior during recovery of values from the direct leaching residue of sphalerite using cyanide and glycine. J. Min. Metall. B Metall. 2021, 57, 349–358. [Google Scholar] [CrossRef]
- Haver, F.; Wong, M. Recovery of Copper, iron, and Sulfur from Chalcopyrite Goncentrate using a Ferric Chloride Leach. J. Met. 1971, 23, 25–29. [Google Scholar]
- Hamberg, R.; Alakangas, L.; Maurice, C. Release of arsenic from cyanidation tailings. Miner. Eng. 2016, 93, 57–64. [Google Scholar] [CrossRef]
- Yin, W.; Huang, L.; Pedersen, E.; Frandsen, C.; Hansen, H. Glycine buffered synthesis of layered iron (II)-iron (III) hydroxides (green rusts). J. Colloid Interface Sci. 2017, 497, 429–438. [Google Scholar] [CrossRef]
- Wang, X.; Qin, W.; Jiao, F.; Yang, C.; Cui, Y.; Li, W.; Zhang, Z.; Song, H. Mineralogy and pretreatment of a refractory gold in Zambia. Minerals 2019, 9, 406. [Google Scholar] [CrossRef]
- Mesa, S.; Lapidus, G. Pretreatment of a refractory arsenopyritic gold ore using hydroxyl ion. Hydrometallurgy 2015, 153, 106–113. [Google Scholar] [CrossRef]
- Darban, A.; Aazami, M.; Meléndez, A.; Abdollahy, M.; Gonzalez, I. Electrochemical study of orpiment (As2S3) dissolution in a NaOH solution. Hydrometallurgy 2011, 105, 296–303. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, H.; Abashina, T.; Vainshtein, M. Review on arsenic removal from sulfide minerals: An emphasis on enargite and arsenopyrite. Miner. Eng. 2021, 72, 107133. [Google Scholar] [CrossRef]
- Craw, D.; Falconer, D.; Younson, J. Environmental arsenopyrite stability and dissolution: Theory, experiment, and field observations. Chem. Geol. 2003, 199, 71–82. [Google Scholar] [CrossRef]
Treatment | Stage | S/L (%) | T (K) | pH | T (h) | Chemical Reagents |
---|---|---|---|---|---|---|
Alkaline hydrothermal treatment (DLR-AH) | 1 | 10 | 323 | 1 | 1.5 | 1M NaOH |
Oxidizing alkaline hydrothermal treatment (DLR—AHO) | 1 | 10 | 323 | 1 | 1.5 | 1M NaOH, Na2S2O8 0.1 M |
Desulfurization and oxidizing alkaline hydrothermal treatment (DLR-DAHO) | 1 * | |||||
2 | 10 | 323 | 1 | 1.5 | 1M NaOH, Na2S2O8 0.1 M | |
Cyanidation | 1 | 10 | 298 | 11 | 24 | Cyanide 0.06 M |
Cyanidation with glycine | 1 | 10 | 323 | 11 | 24 | Glycine 0.06 M, H2O2 = 1% |
Group | Mineral | Formula | Weight (%) |
---|---|---|---|
Sulfides | Sphalerite | ZnS | 8.68 |
Galena | PbS | 0.74 | |
Pyrite | FeS2_ | 1.12 | |
arsenopyrite | FeAsS | 0.52 | |
Ganges and other oxides species | Natrojarosite | NaFe3(SO4)2 (OH)6 | 51.82 |
Sulfur | S° | 22.2 | |
Others | - | 16.12 |
Sample | As (%) | Pb (%) | Fe (%) | S° (%) * |
---|---|---|---|---|
DLR | 0.22 | 0.67 | 17.94 | 35 |
DLR-AH | 0.27 | 0.78 | 20.34 | 24.40 |
DLR-AHO | 0.20 | 0.82 | 20.19 | 22.32 |
DLR-D | 0.28 | 0.78 | 25.75 | 14.35 |
DLR-DAHO | 0.24 | 0.70 | 22.25 | 12.19 |
Sample | Liquid | |||
---|---|---|---|---|
As (mg/L) | Pb (mg/L) | Fe (mg/L) | S° (mg/L) | |
DLR-CN | 34.08 | 99.12 | 12,171.62 | 16,412.5 |
DLR-CN-GLY | 61.4 | 144.2 | 13,035.8 | 7162.5 |
Sample | Liquid | |||
---|---|---|---|---|
As (mg/L) | Pb (mg/L) | Fe (mg/L) | S° (mg/L) * | |
DLR-AH | 18.86 | 10.04 | 12,782.5 | 44,019.2 |
DLR-AH-CN | 0 | 0 | 83,770.03 | 20,426 |
DLR-AH-CN-GLY | 83.35 | 213.63 | 23,565.2 | 35,180.96 |
Sample | Liquid | |||
---|---|---|---|---|
As (mg/L) | Pb (mg/L) | Fe (mg/L) | S° (mg/L) | |
DLR-AHO | 59.66 | 0 | 4998.75 | 19,338.8 |
DLR-AHO-CN | 27.57 | 106.78 | 17,438.93 | 22,207.68 |
DLR-AHO-CN-GLY | 11.68 | 66.75 | 18,017.81 | 23,865.37 |
Sample | Liquid | |||
---|---|---|---|---|
As (mg/L) | Pb (mg/L) | Fe (mg/L) | S° (mg/L) * | |
DLR-D | 0 | 23.62 | 6048.31 | 31,971.41 |
DLR-DAHO | 138.8 | 0 | 0 | 7644.9 |
DLR-DAHO-CN | 266.66 | 308.8 | 37,740.96 | 7904.63 |
DLR-DAHO-CN-GLY | 140.29 | 312.72 | 35,732.66 | 12,484.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picazo-Rodríguez, N.G.; Soria-Aguilar, M.d.J.; Chaidez, J.; Flores, M.; Almaguer-Guzmán, I.; Carrillo-Pedroza, F.R. Analysis of the Behavior of As and Pb during the Pretreatments Applied to a Jarosite Residue for the Recovery of Gold and Silver. Metals 2023, 13, 138. https://doi.org/10.3390/met13010138
Picazo-Rodríguez NG, Soria-Aguilar MdJ, Chaidez J, Flores M, Almaguer-Guzmán I, Carrillo-Pedroza FR. Analysis of the Behavior of As and Pb during the Pretreatments Applied to a Jarosite Residue for the Recovery of Gold and Silver. Metals. 2023; 13(1):138. https://doi.org/10.3390/met13010138
Chicago/Turabian StylePicazo-Rodríguez, Nallely G., Ma. de Jesus Soria-Aguilar, Josue Chaidez, Manuel Flores, Isaias Almaguer-Guzmán, and Francisco Raul Carrillo-Pedroza. 2023. "Analysis of the Behavior of As and Pb during the Pretreatments Applied to a Jarosite Residue for the Recovery of Gold and Silver" Metals 13, no. 1: 138. https://doi.org/10.3390/met13010138
APA StylePicazo-Rodríguez, N. G., Soria-Aguilar, M. d. J., Chaidez, J., Flores, M., Almaguer-Guzmán, I., & Carrillo-Pedroza, F. R. (2023). Analysis of the Behavior of As and Pb during the Pretreatments Applied to a Jarosite Residue for the Recovery of Gold and Silver. Metals, 13(1), 138. https://doi.org/10.3390/met13010138