Effects of Positions and Angulations of Titanium Dental Implants in Biomechanical Performances in the All-on-Four Treatment: 3D Numerical and Strain Gauge Methods
Abstract
1. Introduction
2. Materials and Methods
2.1. Features of Bone Sample and Implantation Designs
2.2. 3D FE Modeling
2.3. In Vitro Experimental Tests
3. Results
3.1. Loading with and without a CE
3.2. Implanted Positions and Angulation Types of Anterior Implants
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Allen, P.; McMillan, A. A longitudinal study of quality of life outcomes in older adults requesting implant prostheses and complete removable dentures. Clin. Oral Implant. Res. 2003, 14, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Turkyilmaz, I.; Company, A.M.; McGlumphy, E.A. Should edentulous patients be constrained to removable complete dentures? The use of dental implants to improve the quality of life for edentulous patients. Gerodontology 2010, 27, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Bilhan, H.; Erdogan, O.; Ergin, S.; Celik, M.; Ates, G.; Geckili, O. Complication rates and patient satisfaction with removable dentures. J. Adv. Prosthodont. 2012, 4, 109–115. [Google Scholar] [CrossRef]
- Malo, P.; Rangert, B.; Nobre, M. “All-on-Four” Immediate-Function Concept with Brånemark System® Implants for Completely Edentulous Mandibles: A Retrospective Clinical Study. Clin. Implant Dent. Relat. Res. 2003, 5 (Suppl. 1), 2–9. [Google Scholar] [CrossRef] [PubMed]
- Jensen, O.T.; Adams, M.W.; Cottam, J.R.; Parel, S.M.; Phillips, W.R., III. The All-on-4 shelf: Maxilla. J. Oral Maxillofac. Surg. 2010, 68, 2520–2527. [Google Scholar] [CrossRef] [PubMed]
- Jensen, O.T.; Adams, M.W.; Cottam, J.R.; Parel, S.M.; Phillips, W.R., III. The all on 4 shelf: Mandible. J. Oral Maxillofac. Surg. 2011, 69, 175–181. [Google Scholar] [CrossRef]
- Babbush, C.A.; Kanawati, A.; Kotsakis, G.A.; Hinrichs, J.E. Patient-related and financial outcomes analysis of conventional full-arch rehabilitation versus the All-on-4 concept: A cohort study. Implant. Dent. 2014, 23, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Shimamura, I.; Sakurai, K. Influence of number and inclination angle of implants on stress distribution in mandibular cortical bone with All-on-4 Concept. J. Prosthodont. Res. 2010, 54, 179–184. [Google Scholar] [CrossRef]
- Kim, K.-S.; Kim, Y.-L.; Bae, J.-M.; Cho, H.-W. Biomechanical comparison of axial and tilted implants for mandibular full-arch fixed prostheses. Int. J. Oral Maxillofac. Implant. 2011, 26, 976–984. [Google Scholar]
- Baggi, L.; Pastore, S.; Di Girolamo, M.; Vairo, G. Implant-bone load transfer mechanisms in complete-arch prostheses supported by four implants: A three-dimensional finite element approach. J. Prosthet. Dent. 2013, 109, 9–21. [Google Scholar] [CrossRef]
- Peixoto, H.E.; Camati, P.R.; Faot, F.; Sotto-Maior, B.S.; Martinez, E.F.; Peruzzo, D.C. Rehabilitation of the atrophic mandible with short implants in different positions: A finite elements study. Mater. Sci. Eng. C 2017, 80, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, A.; Postaire, M.; Lipinski, P. Biomechanical study of mandible bone supporting a four-implant retained bridge: Finite element analysis of the influence of bone anisotropy and foodstuff position. Med. Eng. Phys. 2009, 31, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Del Fabbro, M.; Ceresoli, V. The fate of marginal bone around axial vs. tilted implants: A systematic review. Eur. J. Oral Implantol. 2014, 7 (Suppl. 2), 171–189. [Google Scholar]
- De Souza Batista, V.E.; Junior, J.F.S.; De Faria Almeida, D.A.; De Toledo Piza Lopes, L.F.; Verri, F.R.; Pellizzer, E.P. The effect of offset implant configuration on bone stress distribution: A systematic review. J. Prosthodont. 2015, 24, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Shimura, Y.; Sato, Y.; Kitagawa, N.; Omori, M. Biomechanical effects of offset placement of dental implants in the edentulous posterior mandible. Int. J. Implant. Dent. 2016, 2, 17. [Google Scholar] [CrossRef]
- Hussein, M.O.; Rabie, M.E. Three-dimensional nonlinear contact finite element analysis of mandibular All-on-4 design. J. Oral Implantol. 2015, 41, e12–e18. [Google Scholar] [CrossRef]
- Wong, R.; Tideman, H.; Merkx, M.; Jansen, J.; Goh, S.; Liao, K. Review of biomechanical models used in studying the biomechanics of reconstructed mandibles. Int. J. Oral Maxillofac. Surg. 2011, 40, 393–400. [Google Scholar] [CrossRef]
- Rangan, V.; Raghuveer, H.; Rayapati, D.; Shobha, E.; Prashanth, N.; Sharma, R. The influence of stress distribution in four different fixation systems used in treatment of mandibular angle fractures—A three-dimensional finite element analysis. Oral Surg. 2013, 6, 186–192. [Google Scholar] [CrossRef]
- Huang, H.-L.; Chang, C.-H.; Hsu, J.-T.; Faligatter, A.M.; Ko, C.-C. Comparison of implant body designs and threaded designs of dental implants: A 3-dimensional finite element analysis. Int. J. Oral Maxillofac. Implant. 2007, 22, 551–562. [Google Scholar]
- Naini, R.B.; Nokar, S.; Borghei, H.; Alikhasi, M. Tilted or parallel implant placement in the completely edentulous mandible? A three-dimensional finite element analysis. Int. J. Oral Maxillofac. Implant. 2011, 26, 776–781. [Google Scholar]
- Ozan, O.; Kurtulmus-Yilmaz, S. Biomechanical Comparison of Different Implant Inclinations and Cantilever Lengths in All-on-4 Treatment Concept by Three-Dimensional Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2018, 33, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Gümrükçü, Z.; Korkmaz, Y.T. Influence of implant number, length, and tilting degree on stress distribution in atrophic maxilla: A finite element study. Med. Biol. Eng. Comput. 2018, 56, 979–989. [Google Scholar] [CrossRef] [PubMed]
- Tiossi, R.; Gomes, É.A.; Faria, A.C.L.; Rodrigues, R.C.S.; Ribeiro, R.F. Biomechanical behavior of titanium and zirconia frameworks for implant-supported full-arch fixed dental prosthesis. Clin. Implant Dent. Relat. Res. 2017, 19, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Isidor, F. Influence of forces on peri-implant bone. Clin. Oral Implant. Res. 2006, 17, 8–18. [Google Scholar] [CrossRef]
- Kan, J.P.; Judge, R.B.; Palamara, J.E. In vitro bone strain analysis of implant following occlusal overload. Clin. Oral Implant. Res. 2014, 25, e73–e82. [Google Scholar] [CrossRef]
- Miyata, T.; Kobayashi, Y.; Araki, H.; Ohto, T.; Shin, K. The influence of controlled occlusal overload on peri-implant tissue. Part 3: A histologic study in monkeys. Int. J. Oral Maxillofac. Implant. 2000, 15, 425–431. [Google Scholar]
- Fu, J.-H.; Hsu, Y.-T.; Wang, H.-L. Identifying occlusal overload and how to deal with it to avoid marginal bone loss around implants. Eur. J. Oral Implantol. 2012, 5, S91–S103. [Google Scholar]
- Kozlovsky, A.; Tal, H.; Laufer, B.Z.; Leshem, R.; Rohrer, M.D.; Weinreb, M.; Artzi, Z. Impact of implant overloading on the peri-implant bone in inflamed and non-inflamed peri-implant mucosa. Clin. Oral Implant. Res. 2007, 18, 601–610. [Google Scholar] [CrossRef]
- Malhotra, A.; Padmanabhan, T.; Mohamed, K.; Natarajan, S.; Elavia, U. Load transfer in tilted implants with varying cantilever lengths in an all-on-four situation. Aust. Dent. J. 2012, 57, 440–445. [Google Scholar] [CrossRef]
- Li, X.; Cao, Z.; Qiu, X.; Tang, Z.; Gong, L.; Wang, D. Does matching relation exist between the length and the tilting angle of terminal implants in the all-on-four protocol? stress distributions by 3D finite element analysis. J. Adv. Prosthodont. 2015, 7, 240–248. [Google Scholar] [CrossRef]
- Gümrükçü, Z.; Korkmaz, Y.T.; Korkmaz, F.M. Biomechanical evaluation of implant-supported prosthesis with various tilting implant angles and bone types in atrophic maxilla: A finite element study. Comput. Biol. Med. 2017, 86, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Horita, S.; Sugiura, T.; Yamamoto, K.; Murakami, K.; Imai, Y.; Kirita, T. Biomechanical analysis of immediately loaded implants according to the “All-on-Four” concept. J. Prosthodont. Res. 2017, 61, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.T.; Fuh, L.J.; Tu, M.G.; Li, Y.F.; Chen, K.T.; Huang, H.L. The effects of cortical bone thickness and trabecular bone strength on noninvasive measures of the implant primary stability using synthetic bone models. Clin. Implant Dent. Relat. Res. 2013, 15, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Chrcanovic, B.R.; Albrektsson, T.; Wennerberg, A. Tilted versus axially placed dental implants: A meta-analysis. J. Dent. 2015, 43, 149–170. [Google Scholar] [CrossRef] [PubMed]
- Monje, A.; Chan, H.-L.; Suarez, F.; Galindo-Moreno, P.; Wang, H.-L. Marginal bone loss around tilted implants in comparison to straight implants: A meta-analysis. Int. J. Oral Maxillofac. Implant. 2012, 27, 1576–1583. [Google Scholar]
- Francetti, L.; Romeo, D.; Corbella, S.; Taschieri, S.; Del Fabbro, M. Bone level changes around axial and tilted implants in full-arch fixed immediate restorations. Interim results of a prospective study. Clin. Implant Dent. Relat Res. 2012, 14, 646–654. [Google Scholar] [CrossRef]
- Barnea, E.; Tal, H.; Nissan, J.; Tarrasch, R.; Peleg, M.; Kolerman, R. The use of tilted implant for posterior atrophic maxilla. Clin. Implant Dent. Relat. Res. 2016, 18, 788–800. [Google Scholar] [CrossRef]
- Koutouzis, T.; Wennström, J.L. Bone level changes at axial-and non-axial-positioned implants supporting fixed partial dentures. A 5-year retrospective longitudinal study. Clin. Oral Implant. Res. 2007, 18, 585–590. [Google Scholar] [CrossRef]
Material | Young’s Modulus E (MPa) | Poisson’s Ratio |
---|---|---|
Cortical bone | 14,800 | 0.3 |
Trabecular bone | 1480 | 0.3 |
Titanium (implant) | 110,000 | 0.35 |
Titanium alloy (framework) | 114,000 | 0.34 |
Trabecular bone | - | - |
Type | Loading without CE (MPa) | Loading with CE (MPa) |
---|---|---|
Model Typical | 24.61 | 38.43 |
Model P1 | 24.89 | 48.90 |
Model P2 | 23.74 | 36.53 |
Model P3 | 25.17 | 38.66 |
Type | Loading without CE (MPa) | Loading with CE (MPa) |
---|---|---|
Model Typical | 24.61 | 38.43 |
Model T1 | 24.52 | 37.44 |
Model T2 | 24.60 | 47.42 |
Model T3 | 24.60 | 39.03 |
Model T4 | 24.65 | 40.61 |
Model T5 | 24.80 | 38.80 |
Model T6 | 24.93 | 40.74 |
Type | Loading Style | Loading without CE | Loading with CE | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Implant Site | A | B | C | D | A | B | C | D | ||
Sample Typical | Microstrain, median | P_Max | 30.1 | 22.1 | 54.5 | 36.6 | 13.7 | 70.1 | 169.1 | 65.4 |
P_Min | −18.8 | −36.0 | −130.3 | −444.8 | −14.6 | −62.3 | −90.0 | −840.5 | ||
Microstrain, IQR | P_Max | 1.1 | 9.7 | 4.1 | 3.4 | 4.4 | 6.8 | 2.4 | 10.5 | |
P_Min | 2.0 | 4.0 | 6.2 | 13.2 | 3.1 | 4.4 | 4.1 | 7.8 | ||
Sample P2 | Microstrain, median | P_Max | 12.9 | 1.3 | −131.1 | −5.6 | 23.0 | 157.9 | 445.6 | 134.4 |
P_Min | −4.4 | −36.9 | −197.6 | −380.5 | −18.9 | −4.8 | −232.7 | −914.8 | ||
Microstrain, IQR | P_Max | 7.5 | 4.3 | 9.2 | 3.0 | 2.5 | 7.6 | 14.2 | 5.6 | |
P_Min | 8.2 | 5.8 | 3.4 | 9.6 | 3.6 | 4.3 | 10.6 | 26.1 | ||
Sample T2 | Microstrain, median | P_Max | 23.6 | 35.4 | 6.0 | 101.5 | 25.0 | 103.5 | 80.4 | 276.8 |
P_Min | −18.5 | −37.7 | −54.3 | −613.5 | −18.0 | −102.7 | −71.6 | −1030.6 | ||
Microstrain, IQR | P_Max | 4.8 | 2.8 | 4.7 | 3.4 | 2.3 | 2.0 | 10.2 | 40.2 | |
P_Min | 3.8 | 2.3 | 8.2 | 15.9 | 7.2 | 5.2 | 10.2 | 31.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, A.Y.-J.; Hsu, J.-T.; Fuh, L.-J.; Huang, H.-L. Effects of Positions and Angulations of Titanium Dental Implants in Biomechanical Performances in the All-on-Four Treatment: 3D Numerical and Strain Gauge Methods. Metals 2020, 10, 280. https://doi.org/10.3390/met10020280
Wu AY-J, Hsu J-T, Fuh L-J, Huang H-L. Effects of Positions and Angulations of Titanium Dental Implants in Biomechanical Performances in the All-on-Four Treatment: 3D Numerical and Strain Gauge Methods. Metals. 2020; 10(2):280. https://doi.org/10.3390/met10020280
Chicago/Turabian StyleWu, Aaron Yu-Jen, Jui-Ting Hsu, Lih-Jyh Fuh, and Heng-Li Huang. 2020. "Effects of Positions and Angulations of Titanium Dental Implants in Biomechanical Performances in the All-on-Four Treatment: 3D Numerical and Strain Gauge Methods" Metals 10, no. 2: 280. https://doi.org/10.3390/met10020280
APA StyleWu, A. Y.-J., Hsu, J.-T., Fuh, L.-J., & Huang, H.-L. (2020). Effects of Positions and Angulations of Titanium Dental Implants in Biomechanical Performances in the All-on-Four Treatment: 3D Numerical and Strain Gauge Methods. Metals, 10(2), 280. https://doi.org/10.3390/met10020280