Fe-6.5 wt%Si Powder Cores with Low Core Loss by Optimizing Particle Size Distribution
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure of the Powders and Cores
3.2. Magnetic Performance of the Fe-6.5 wt%Si SMPCs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shokrollahi, H.; Janghorban, K. Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 2007, 189, 1–12. [Google Scholar] [CrossRef]
- Kim, Y.B.; Jang, D.H.; Seok, H.K.; Kim, K.Y. Fabrication of Fe–Si–B based amorphous powder cores by cold pressing and their magnetic properties. Mater. Sci. Eng. A. 2007, 449, 389–393. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Bitoh, T.; Hono, K.; Makino, A.; Inoue, A. Microstructure and properties of nanocrystalline Fe-Zr-Nb-B soft magnetic alloys with low magnetostriction. Acta Mater. 2001, 49, 4069–4077. [Google Scholar] [CrossRef]
- Zhong, X.; Liu, Y.; Li, J.; Wang, Y. Structure and magnetic properties of FeSiAl-based soft magnetic composite with AlN and Al2O3 insulating layer prepared by selective nitridation and oxidation. J. Magn. Magn. Mater. 2012, 324, 2631–2636. [Google Scholar] [CrossRef]
- Lauda, M.; Füzer, J.; Kollár, P.; Strečková, M.; Bureš, R.; Kováč, J.; Baťková, M.; Baťko, I. Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic composites. J. Magn. Magn. Mater. 2016, 411, 12–17. [Google Scholar] [CrossRef]
- Fan, X.A.; Wu, Z.Y.; Li, G.Q.; Wang, J.; Xiang, Z.D.; Gan, Z.H. High resistivity and low core loss of intergranular insulated Fe–6.5 wt.%Si/SiO2 composite compacts. Mater. Des. 2016, 89, 1251–1258. [Google Scholar] [CrossRef]
- Luo, Z.; Fan, X.a.; Hu, W.; Luo, F.; Wang, J.; Wu, Z.; Liu, X.; Li, G.; Li, Y. Formation mechanism and enhanced magnetic properties of Fe–Si/Fe2SiO4 soft magnetic composites transformed from Fe-6.5 wt%Si/α-Fe2O3 core-shell composites. J. Alloys Compd. 2020, 817. [Google Scholar] [CrossRef]
- Liu, D.; Liu, X.; Wang, J.; Mao, X.; Xu, X.; Fan, X.a. The influence of Fe nanoparticles on microstructure and magnetic properties of Fe-6.5 wt%Si soft magnetic composites. J Alloys Compd. 2020, 835. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, Y.; Zhou, B.; Chi, Q.; Chang, L.; Gong, M.; Huang, J.; Pan, Y.; He, A.; Li, J. Poly-para-xylylene enhanced Fe-based amorphous powder cores with improved soft magnetic properties via chemical vapor deposition. Mater. Des. 2020, 191, 108650. [Google Scholar] [CrossRef]
- Zhou, B.; Dong, Y.; Liu, L.; Chang, L.; Bi, F.; Wang, X. Enhanced soft magnetic properties of the Fe-based amorphous powder cores with novel TiO2 insulation coating layer. J. Magn. Magn. Mater. 2019, 474, 1–8. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, L.; Chen, Y.; Chen, F.; Qu, X.; Xie, C.; Zhang, L. Magnetic properties of iron-based soft magnetic composites prepared by utilizing polyimide insulating layer. J. Magn. Magn. Mater. 2019, 486, 165287. [Google Scholar] [CrossRef]
- Zhou, B.; Dong, Y.; Liu, L.; Chi, Q.; Zhang, Y.; Chang, L.; Bi, F.; Wang, X. The core-shell structured Fe-based amorphous magnetic powder cores with excellent magnetic properties. Adv. Powder Technol. 2019, 30, 1504–1512. [Google Scholar] [CrossRef]
- Shokrollahi, H.; Janghorban, K. The effect of compaction parameters and particle size on magnetic properties of iron-based alloys used in soft magnetic composites. Mater. Sci. Eng. B. 2006, 134, 41–43. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Mo, J.; Mao, X.; Fan, X.a.; Luo, Z. The influence of doping Ti on the microstructure and magnetic performances of Fe-6.5Si soft magnetic composites. J. Alloys. Compd. 2018, 766, 769–774. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Lei, C.; Mao, X.; Liu, D.; Fan, X.a.; Luo, Z.; Luo, F. Core loss reduction for Fe-6.5 wt%Si soft magnetic composites doped with Co element. J. Magn. Magn. Mater 2020, 502, 166553. [Google Scholar] [CrossRef]
- Taghvaei, A.H.; Shokrollahi, H.; Ghaffari, M.; Janghorban, K. Influence of particle size and compaction pressure on the magnetic properties of iron-phenolic soft magnetic composites. J. Phys. Chem Solids. 2010, 71, 7–11. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, P.; Han, S.J.; Tang, F.L.; Su, H.L.; Tong, X.C.; Zou, Z.Q.; Wu, Y.M.; Wu, Y.C.; Du, Y.W. Effects of Annealing Temperature and Compaction Pressure on Magnetic Properties of Fe–Si Powder Cores Fabricated by an Improved Bluing Method. J. Supercond. Novel Magn. 2017, 31, 1507–1513. [Google Scholar] [CrossRef]
- Abshinova, M.A.; Lopatin, A.V.; Kazantseva, N.E.; Vilčáková, J.; Sáha, P. Correlation between the microstructure and the electromagnetic properties of carbonyl iron filled polymer composites. Compos. Part A. 2007, 38, 2471–2485. [Google Scholar] [CrossRef]
- Jo Sunday, K.; Hanejko, F.G.; Taheri, M.L. Magnetic and microstructural properties of Fe3O4-coated Fe powder soft magnetic composites. J. Magn. Magn. Mater. 2017, 423, 164–170. [Google Scholar] [CrossRef]
- Bai, R.; Zhu, Z.; Zhao, H.; Mao, S.; Zhong, Q. The percolation effect and optimization of soft magnetic properties of FeSiAl magnetic powder cores. J. Magn. Magn. Mater. 2017, 433, 285–291. [Google Scholar] [CrossRef]
- Liu, H.J.; Su, H.L.; Geng, W.B.; Sun, Z.G.; Song, T.T.; Tong, X.C.; Zou, Z.Q.; Wu, Y.C.; Du, Y.W. Effect of Particle Size Distribution on the Magnetic Properties of Fe-Si-Al Powder Core. J. Supercond Novel Magn. 2015, 29, 463–468. [Google Scholar] [CrossRef]
- Taghvaei, A.H.; Shokrollahi, H.; Janghorban, K. Properties of iron-based soft magnetic composite with iron phosphate–silane insulation coating. J. Alloys Compd. 2009, 481, 681–686. [Google Scholar] [CrossRef]
- Silveyra, J.M.; Ferrara, E.; Huber, D.L.; Monson, T.C. Soft magnetic materials for a sustainable and electrified world. Science 2018, 362, eaao0195. [Google Scholar] [CrossRef] [PubMed]
- Hui, X.; He, K.Y.; Qiu, Y.Q.; Wang, Z.J.; Cheng, L.Z.; Dong, Y.D.; Xue, X.S. Investigation of the Magnetic Properties of Fe73.5Cu1Nb3Si13.5B9 Nanocrystalline Dust Core. J. Funct. Mater. 2000, 1, 42–45. [Google Scholar]
- Johnson, M.T.; Visser, E.G. A coherent model for the complex permeability in polycrystalline ferrites. IEEE Trans Magn. 1990, 26, 1987–1989. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Jin, H.J.; SHI, Y. General Properties of Low-frequency Power Losses in Fe-based Nanocrystalline Soft Magnetic Alloys. J. Mater. Sci. Technol. 2000, 16, 37–44. [Google Scholar]
- Yaghtin, M.; Taghvaei, A.H.; Hashemi, B.; Janghorban, K. Effect of heat treatment on magnetic properties of iron-based soft magnetic composites with Al2O3 insulation coating produced by sol–gel method. J. Alloys Compd. 2013, 581, 293–297. [Google Scholar] [CrossRef]
- Yang, B.; Li, X.; Guo, R.; Yu, R. Oxidation fabrication and enhanced soft magnetic properties for core-shell FeCo/CoFe2O4 micron-nano composites. Mater. Des. 2017, 121, 272–279. [Google Scholar] [CrossRef]
- Taghvaei, A.H.; Shokrollahi, H.; Janghorban, K.; Abiri, H. Eddy current and total power loss separation in theiron–phosphate–polyepoxy soft magnetic composites. Mater. Des. 2009, 30, 3989–3995. [Google Scholar] [CrossRef]
- Kollár, P.; Birčáková, Z.; Füzer, J.; Bureš, R.; Fáberová, M. Power loss separation in Fe-based composite materials. J. Magn. Magn. Mater. 2013, 327, 146–150. [Google Scholar] [CrossRef]
- Shen, T.D.; Harms, U.; Schwarz, R.B. Bulk Fe-Based Metallic Glass with Extremely Soft Ferromagnetic Properties. J. Metastable Nanocryst. Mater. 2002, 13, 441–446. [Google Scholar] [CrossRef]
- Zhou, M.M.; Han, Y.; Guan, W.W.; Han, S.J.; Meng, Q.S.; Xu, T.T.; Su, H.L.; Guo, X.; Zou, Z.Q.; Yang, F.Y.; et al. Magnetic properties and loss mechanism of Fe-6.5 wt%Si powder core insulated with magnetic Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 2019, 482, 148–154. [Google Scholar] [CrossRef]
Samples | Density (g/cm3) | μe @ 100 kHz | DC-Bias @ 100 Oe | Core Loss * (mW/cm3) |
---|---|---|---|---|
Fe-6.5%Si [15] | 6.918 | 103.36 | - | 781.03 |
Fe-6.5%Si [14] | 5.91 | 52.9 | 56% | - |
Fe-6.5%Si [8] | 5.28–6.01 | 57.2–75.6 | - | 1015.2–1446.8 |
Fe-6.5%Si [32] | 6.88 | 112.13 | - | 500 |
CSC ** | - | 60 | 73% | 700 |
MAGNETICS ** | - | 60 | 70% | 680 |
Sample 5 | 6.512 | 60 | 70% | 553 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Jiao, L.; Yang, Y.; Dong, Y.; Zhang, Y.; Chang, L.; Gong, M.; Li, J.; He, A.; Wang, X. Fe-6.5 wt%Si Powder Cores with Low Core Loss by Optimizing Particle Size Distribution. Metals 2020, 10, 1699. https://doi.org/10.3390/met10121699
Huang J, Jiao L, Yang Y, Dong Y, Zhang Y, Chang L, Gong M, Li J, He A, Wang X. Fe-6.5 wt%Si Powder Cores with Low Core Loss by Optimizing Particle Size Distribution. Metals. 2020; 10(12):1699. https://doi.org/10.3390/met10121699
Chicago/Turabian StyleHuang, JianJun, Lixin Jiao, Yu Yang, Yaqiang Dong, Yiqun Zhang, Liang Chang, Mengji Gong, Jiawei Li, Aina He, and Xinmin Wang. 2020. "Fe-6.5 wt%Si Powder Cores with Low Core Loss by Optimizing Particle Size Distribution" Metals 10, no. 12: 1699. https://doi.org/10.3390/met10121699
APA StyleHuang, J., Jiao, L., Yang, Y., Dong, Y., Zhang, Y., Chang, L., Gong, M., Li, J., He, A., & Wang, X. (2020). Fe-6.5 wt%Si Powder Cores with Low Core Loss by Optimizing Particle Size Distribution. Metals, 10(12), 1699. https://doi.org/10.3390/met10121699