The Effect of Economic Vulnerability on the Participation in Development Programs and the Socio-Economic Well-Being of Low-Income Households
Abstract
:1. Introduction
2. Literature Review
2.1. Theoretical Background
2.2. Economic Vulnerability, and Participation
2.3. Economic Vulnerability and Household Income
2.4. Economic Vulnerability and Micro-Enterprise Income
2.5. Economic Vulnerability and Micro-Enterprise Asset Net Worth
3. Research Methodology
3.1. Sample Size
3.2. Operational Definitions
3.3. Control Variables
3.4. Data Analysis
4. Summary of Findings
4.1. Demographic Characteristics
4.2. Descriptive Analysis
4.3. Partial Correlation
4.4. Economic Vulnerability and Participation in Development Programs
4.5. Economic Vulnerability and Household Income
4.6. Economic Vulnerability and Micro-Enterprise Income
4.7. Economic Vulnerability and Micro-Enterprise Assets
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Heltberg, R.; Oviedo, A. M; Talukdar, F. What do household surveys really tell us about risk, shock and risk management in the developing world? J. Dev. Stud. 2015, 51, 209–225. [Google Scholar]
- Al-Mamun, A.; Mazumder, M. N. H. Impacts of micro-credit on income, poverty and economic vulnerability in Peninsular Malaysia. Dev. Pract. 2015, 25, 333–346. [Google Scholar] [CrossRef]
- Nair, S; Sagaran, S. Poverty in Malaysia: Need for a paradigm shift. Inst. Econ. 2015, 7, 95–123. [Google Scholar]
- Zarina, M. N.; Kamil, A. A. Sustaining the livelihood of single mother through wealth creation and savings opportunities: A long road ahead. Int. J. Trade, Econ. Financ. 2012, 3, 126–131. [Google Scholar] [CrossRef]
- Manaf, N.A.; Ibrahim, K. Poverty reduction for sustainable development: Malaysia’s evidence-based solutions. Glob. J. Soc. Sci. Stud. 2017, 3, 29–42. [Google Scholar] [CrossRef]
- Al-Mamun, A.; Abdul Wahab, S.; Malarvizhi, C. A.; Mariapun, S. Examining the critical factors affecting the repayment of micro-credit provided by Amanah Ikhtiar Malaysia. Int. Bus. Res. 2011, 4, 93–102. [Google Scholar]
- Rahman, M.T.; Khan, H.T. The effectiveness of the microcredit programme in Bangladesh. Local Econ. 2013, 28, 85–98. [Google Scholar] [CrossRef]
- Terano, R.; Mohamed, Z.; Jusri, J. H. H. Effectiveness of microcredit program and determinants of income among small business entrepreneurs in Malaysia. J. Glob. Entrep. Res. 2015, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Al-Mamun, A.; Adaikalam, J.; Mazumder, M. N. H. Examining the effect of Amanah Ikhtiar Malaysia’s micro-credit program on microenterprise assets in rural Malaysia. Asian Soc. Sci. 2012, 8, 272–280. [Google Scholar]
- Dunn, E. Impact of microcredit on clients in Bosnia and Herzegovina. Available online: https://www.microfinancegateway.org/sites/default/files/mfg-en-paper-impact-of-microcredit-on-clients-in-bosnia-and-herzegovina-2005.pdf (accessed on 11 February 2017).
- Islam, T. Microcredit and Poverty Alleviation; Ashgate Publishing Company: Hampshire, UK, 2007. [Google Scholar]
- Al-Mamun, A.; Mazumder, M. N. H.; Malarvizhi, C. A. Measuring the effect of Amanah Ikhtiar Malaysia’s micro-credit programme on economic vulnerability among hardcore poor households. Prog. Dev. Stud. 2014, 14, 49–59. [Google Scholar] [CrossRef]
- Feeny, S.; McDonald, L. Vulnerability to multidimensional poverty: Findings from households in Melanesia. J. Dev. Stud. 2015, 52, 447–464. [Google Scholar] [CrossRef]
- EPU; Malaysia. Economic Planning Unit Malaysia. Available online: http://www.epu.gov.my/en (accessed on 11 February 2017).
- Claessens, S.; Tzioumis, K. Measuring firms’ access to finance. In Proceedings of the Access to Finance: Building Inclusive Financial Systems, Washington, DC, USA, 30–31 May 2006. [Google Scholar]
- Khandker, S. R. Mico-credit Program Evaluation: A Critical Review. IDS Bull. 1998, 29, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Gurses, D. Microfinance and poverty reduction in Turkey. Perspect. Glob. Dev. Technol. 2009, 8, 90–110. [Google Scholar] [CrossRef]
- Husain, A. M. M.; Mallick, D. Conclusion and Policy Implications. In Poverty Alleviation and Empowerment, 2nd ed.; Husain, A.M.M., Ed.; BRAC: Bangladesh, South Africa, 1988; pp. 173–183. [Google Scholar]
- Morduch, J. Does Microfinance Really Help the Poor? New Evidence from Flagship Programs in Bangladesh; Working Paper 198; Princeton University: New Jersey, USA, 1998. [Google Scholar]
- Montgomery, R.; Bhattacharya, D.; Hulme, D. Credit for the poor in Bangladesh: The BRAC rural development programme and the government Thana resources development and employment programme. Financ. against Poverty 1996, 2, 94–176. [Google Scholar]
- Kwon, J.; Hetling, A. Moving in and out of welfare and work: The influence of regional socioeconomic circumstances on economic disconnection among low-income single mothers. Econ. Dev. Q. 2017, 31, 326–341. [Google Scholar] [CrossRef]
- Samer, S.; Majid, I.; Rizal, S.; Muhamad, M. R.; Rashid, N. The impacts of microfinance on poverty reduction: Empirical evidence from Malaysian perspective. Procedia-Soc. Behav. Sci. 2015, 195, 721–728. [Google Scholar] [CrossRef]
- AIM-Amanah Ikhtiar Malaysia. Amanah Ikhtiar Malaysia Program. Available online: http://aim.gov.my/khidmat/skim-pembiayaan-ikhtiar-spi (accessed on 4 October 2018).
- Panda, D. K. Assessing the impacts of participation in women self-help group-based microfinance: Non-experimental evidences from rural households in India. Int. J. Rural Manag. 2009, 5, 197–215. [Google Scholar] [CrossRef]
- Al-Mamun, A.; Malarvizhi, C. A.; Hossain, S.; Tan, S. H. Examining the effect of microcredit on poverty in Malaysia. ASEAN Econ. Bull. 2012, 29, 15–28. [Google Scholar] [CrossRef]
- Hossain, M. Credit for Alleviation of Rural Poverty: The Grameen Bank in Bangladesh; International Food Policy Research Institute: Washington, DC, USA, 1988. [Google Scholar]
- Sutoro, A. D. KUPEDES Development Impacts Survey: Briefing Booklet; Planning, Research and Development Department: BRI, Indonesia, 1990.
- Barnes, C.; Assets and the impact of Microenterprise Finance Programs. Assessing the Impacts of Microenterprise Services, Washington DC: Management System International. Available online: http://www.microfinancegateway.org/gm/document-1.9.28636/28008_file_13.pdf (accessed on 31 March 2018).
- Krejcie, R. V.; Morgan, D. W. Determining sample size for research activities. Educ. Psychol. Meas. 1970, 30, 607–610. [Google Scholar] [CrossRef]
- Wang, J. S.; Ssewamala, F. M.; Neilands, T. B.; Bermudez, L. G.; Garfinkel, I.; Waldfogel, J.; Brooks-Gunn, J.; You, J. Effect of financial incentives on saving outcomes and material well-being: Evidence from a randomized controlled trial in Uganda. J. Policy Anal. Manag. 2018, 37, 1–28. [Google Scholar] [CrossRef]
- Islam, D.; Sayeed, J.; Hossain, N. On determinants of poverty and inequality in Bangladesh. J. Poverty 2017, 21, 352–371. [Google Scholar] [CrossRef]
- Fisher, M.; Weber, B. A. Does economic vulnerability depend on place of residence? Asset poverty across metropolitan and nonmetropolitan areas. Rev. Reg. Stud. 2014, 34, 137. [Google Scholar]
n | % | n | % | ||
---|---|---|---|---|---|
Gender | Firm Established | ||||
Male | 224 | 49.8 | 1 to 5 Years | 52 | 11.6 |
Female | 226 | 50.2 | 6 to 10 Years | 192 | 42.7 |
Total | 450 | 100.0 | 11 to 15 Years | 144 | 32.0 |
16 to 20 Years | 60 | 13.3 | |||
Age | 21 Years and Above | 2 | 0.4 | ||
Up to 30 Years Old | 21 | 4.7 | Total | 450 | 100.0 |
31 Years Old–40 Years Old | 64 | 14.2 | |||
41 Years Old–50 Years Old | 200 | 44.4 | Types of Firm | ||
51 Years Old–60 Years Old | 125 | 27.8 | Manufacturing | 52 | 11.6 |
61 Years Old and Above | 40 | 8.9 | Retailing | 80 | 17.8 |
Total | 450 | 100.0 | Service | 266 | 59.1 |
Livestock | 17 | 3.8 | |||
Marital Status | Wholesaling | 2 | 0.4 | ||
Married | 423 | 94.0 | Fishing | 33 | 7.3 |
Single | 22 | 4.9 | Total | 450 | 100.0 |
Divorced | 1 | 0.2 | |||
Widowed | 4 | 0.9 | |||
Total | 450 | 100.0 |
Minimum | Maximum | Mean | Std. Dev. | |
---|---|---|---|---|
Economic Vulnerability | 0.14 | 3.75 | 0.6743 | 0.586 |
Number of Years (Years) | 1 | 22 | 10.87 | 4.433 |
Total Amount of Economic Loan Received (RM) | 0 | 16 | 5.50 | 2.774 |
Total Number of Training Hours (Hours) | 0 | 180 | 40.47 | 22.877 |
Total Amount of Economic Loan Received (RM) | 1000 | 95,000 | 21,454.44 | 11,167.23 |
Average Monthly Household Income (RM) | 100 | 3583 | 1834.75 | 865.742 |
Average Monthly Micro-Enterprise Income (RM) | 66.67 | 3333.33 | 1604.31 | 812.377 |
Net Worth of Micro-Enterprise Assets (RM) | 2000 | 50,000 | 29,295.63 | 12,282.23 |
Respondents Age (Years) | 19 | 77 | 48.31 | 9.619 |
Education (Number of Years in School) (Years) | 0 | 15 | 5.82 | 3.560 |
Eco. Vulnerability | N | Mean | Std. Dev. | Sig. | |
---|---|---|---|---|---|
Number of Years of Participation | EV up to 0.30 | 86 | 9.20 | 3.217 | 0.000 |
EV between 0.31 to 0.60 | 221 | 10.04 | 4.319 | ||
EV between 0.61 to 0.90 | 43 | 12.09 | 5.028 | ||
EV more than 0.90 | 100 | 13.63 | 3.972 | ||
Total | 450 | 10.87 | 4.433 | ||
Number of Training Programs Attended | EV up to 0.30 | 86 | 5.90 | 2.000 | |
EV between 0.31 to 0.60 | 221 | 6.03 | 2.646 | 0.000 | |
EV between 0.61 to 0.90 | 43 | 4.65 | 2.759 | ||
EV more than 0.90 | 100 | 4.38 | 3.215 | ||
Total | 450 | 5.50 | 2.774 | ||
Number of Hours of Training Programs | EV up to 0.30 | 86 | 43.24 | 18.978 | |
EV between 0.31 to 0.60 | 221 | 42.24 | 20.683 | 0.005 | |
EV between 0.61 to 0.90 | 43 | 42.37 | 25.630 | ||
EV more than 0.90 | 100 | 33.33 | 27.717 | ||
Total | 450 | 40.47 | 22.877 | ||
Total amount of Economic Loan | EV up to 0.30 | 86 | 25,482.56 | 10,056.443 | |
EV between 0.31 to 0.60 | 221 | 23,770.14 | 11,405.769 | 0.000 | |
EV between 0.61 to 0.90 | 43 | 16,465.12 | 7578.600 | ||
EV more than 0.90 | 100 | 15,018.00 | 9304.700 | ||
Total | 450 | 21,454.44 | 11,167.236 | ||
Average Monthly Household Income | EV up to 0.30 | 86 | 2360.85 | 603.224 | |
EV between 0.31 to 0.60 | 221 | 1850.27 | 649.558 | 0.000 | |
EV between 0.61 to 0.90 | 43 | 2360.52 | 1046.771 | ||
EV more than 0.90 | 100 | 1121.92 | 900.050 | ||
Total | 450 | 1834.75 | 865.742 | ||
Average Monthly Micro-Enterprise Income | EV up to 0.30 | 86 | 2078.4884 | 600.565 | |
EV between 0.31 to 0.60 | 221 | 1619.7210 | 611.188 | 0.000 | |
EV between 0.61 to 0.90 | 43 | 2074.6124 | 1030.838 | ||
EV more than 0.90 | 100 | 960.2500 | 831.631 | ||
Total | 450 | 1604.3148 | 812.377 | ||
Net Worth of Micro-Enterprise Assets | EV up to 0.30 | 86 | 4,3046.51 | 5587.606 | |
EV between 0.31 to 0.60 | 221 | 31,453.77 | 9662.879 | 0.000 | |
EV between 0.61 to 0.90 | 43 | 21,383.58 | 10,183.051 | ||
EV more than 0.90 | 100 | 16,102.54 | 5312.533 | ||
Total | 450 | 29,295.63 | 12,282.232 |
Variables | EV | Years | Training | Hours | Loan | HHI | MEI | MEA | |
---|---|---|---|---|---|---|---|---|---|
EV | Correlation | 1.000 | |||||||
Sig. (1-tailed) | |||||||||
Year | Correlation | 0.132 | 1.000 | ||||||
Sig. (1-tailed) | 0.003 | ||||||||
Training | Correlation | −0.093 | 0.157 | 1.000 | |||||
Sig. (1-tailed) | 0.025 | 0.000 | |||||||
Hours | Correlation | −0.169 | 0.178 | 0.783 | 1.000 | ||||
Sig. (1-tailed) | 0.000 | 0.000 | 0.000 | ||||||
Loan | Correlation | −0.200 | −0.059 | 0.300 | 0.267 | 1.000 | |||
Sig. (1-tailed) | 0.000 | 0.108 | 0.000 | 0.000 | |||||
HHI | Correlation | −0.618 | 0.030 | 0.033 | 0.138 | 0.203 | 1.000 | ||
Sig. (1-tailed) | 0.000 | 0.264 | 0.245 | 0.002 | 0.000 | ||||
MEI | Correlation | −0.595 | 0.029 | 0.019 | 0.113 | 0.191 | 0.983 | 1.000 | |
Sig. (1-tailed) | 0.000 | 0.269 | 0.343 | 0.009 | 0.000 | 0.000 | |||
MEA | Correlation | −0.604 | −0.102 | 0.067 | 0.081 | 0.199 | 0.333 | 0.334 | 1.000 |
Sig. (1-tailed) | 0.000 | 0.016 | 0.079 | 0.043 | 0.000 | 0.000 | 0.000 |
Unst. Beta | Std. Error | Stan. Beta | Sig. | VIF | Stan. Beta | Sig. | |
---|---|---|---|---|---|---|---|
DV: Number of Years (Participation) (N = 450) (r2 = 0.232; F test p-value = 0.000; KS p-value = 0.000) | N = 295 (r2 = 0.654; F test p-value = 0.000, KS p-value = 0.200) | ||||||
(Constant) | 1.895 | 1.305 | 0.147 | 0.001 | |||
EV | 1.078 | 0.383 | 0.143 | 0.005 | 1.486 | 0.214 | 0.000 |
Age | 0.158 | 0.024 | 0.342 | 0.000 | 1.542 | 0.627 | 0.000 |
Gender | 0.864 | 0.431 | 0.098 | 0.045 | 1.366 | 0.040 | 0.321 |
Marital Status | 0.514 | 0.877 | 0.027 | 0.558 | 1.234 | 0.136 | 0.002 |
Education | –0.047 | 0.058 | –0.038 | 0.413 | 1.252 | 0.135 | 0.001 |
DV: Number of Training Programs Attended (N = 450) (r2 = 0.117; F test p-value = 0.000; KS p-value = 0.000) | N = 142 (r2 = 0.898; F test p-value = 0.000, KS p-value = 0.057) | ||||||
(Constant) | 8.646 | 0.875 | 0.000 | 0.000 | |||
EV | −0.505 | 0.257 | −0.107 | 0.050 | 1.486 | −0.724 | 0.000 |
Age | −0.042 | 0.016 | −0.146 | 0.009 | 1.542 | –0.347 | 0.000 |
Gender | –1.075 | 0.289 | –0.194 | 0.000 | 1.366 | 0.001 | 0.981 |
Marital Status | –0.095 | 0.588 | –0.008 | 0.871 | 1.234 | 0.003 | 0.927 |
Education | –0.024 | 0.039 | –0.030 | 0.545 | 1.252 | –0.236 | 0.000 |
DV: Number of Hours of Training Programs (N = 450) (r2 = 0.079; F test p-value = 0.000, KS p-value = 0.000) | N = 86 (r2 = 0.940; F test p-value = 0.000, KS p-value = 0.200) | ||||||
(Constant) | 51.394 | 7.371 | 0.000 | 0.000 | |||
EV | –7.822 | 2.164 | –0.201 | 0.000 | 1.486 | –0.481 | 0.000 |
Age | –0.113 | 0.135 | –0.047 | 0.403 | 1.542 | –0.048 | 0.214 |
Gender | –0.421 | 2.433 | –0.009 | 0.863 | 1.366 | 0.305 | 0.000 |
Marital Status | –5.425 | 4.955 | −0.055 | 0.274 | 1.234 | –0.378 | 0.000 |
Education | 0.878 | 0.327 | 0.137 | 0.008 | 1.252 | 0.654 | 0.000 |
DV: Total amount of Economic Loan Received (N = 450) (r2 = 0.160; F test p-value = 0.000, KS p-value = 0.000) | N = 283 (r2 = 0.461; F test p-value = 0.000, KS p-value = 0.095) | ||||||
(Constant) | 33,170.925 | 3435.506 | 0.000 | 0.000 | |||
EV | –4328.579 | 1008.550 | –0.228 | 0.000 | 1.486 | –0.515 | 0.000 |
Age | –72.102 | 62.703 | –0.062 | 0.251 | 1.542 | –0.268 | 0.000 |
Gender | –2895.877 | 1133.825 | –0.130 | 0.011 | 1.366 | 0.001 | 0.987 |
Marital Status | –5896.889 | 2309.164 | –0.123 | 0.011 | 1.234 | –0.132 | 0.006 |
Education | 289.243 | 152.611 | 0.092 | 0.059 | 1.252 | –0.108 | 0.030 |
Unst. Beta | Std. Error | Stan. Beta | Sig. | VIF | Stan. Beta | Sig. | |
---|---|---|---|---|---|---|---|
DV: Average Monthly Household Income (N = 450) (r2 = 0.413; F test p-value = 0.000, KS p-value = 0.000) | N = 308 (r2 = 0.413; F test p-value = 0.000, KS p-value = 0.000) | ||||||
(Constant) | 1428.335 | 222.775 | 0.000 | 0.000 | |||
EV | –1084.042 | 65.399 | –0.735 | 0.000 | 1.486 | –0.986 | 0.000 |
Age | 11.923 | 4.066 | 0.132 | 0.004 | 1.542 | 0.102 | 0.005 |
Gender | 596.085 | 73.523 | 0.345 | 0.000 | 1.366 | 0.262 | 0.000 |
Marital Status | –182.432 | 149.737 | –0.049 | 0.224 | 1.234 | –0.077 | 0.017 |
Education | 75.038 | 9.896 | 0.309 | 0.000 | 1.252 | 0.295 | 0.000 |
DV: Average Monthly Micro-Enterprise Income (N = 450) (r2 = 0.413; F test p-value = 0.000, KS p-value = 0.000) | N = 300 (r2= 0.413; F test p-value = 0.000, KS p-value = 0.000) | ||||||
(Constant) | 1185.389 | 214.747 | 0.000 | 0.000 | |||
EV | –984.132 | 63.042 | –0.711 | 0.000 | 1.486 | –1.015 | 0.000 |
Age | 12.473 | 3.919 | 0.148 | 0.002 | 1.542 | 0.137 | 0.000 |
Gender | 536.410 | 70.873 | 0.331 | 0.000 | 1.366 | 0.288 | 0.000 |
Marital Status | –189.560 | 144.341 | –0.055 | 0.190 | 1.234 | –0.037 | 0.272 |
Education | 67.299 | 9.539 | 0.295 | 0.000 | 1.252 | 0.303 | 0.000 |
DV: Net Worth of Micro-Enterprise Assets (N = 450) (r2 = 0.413; F test p-value = 0.000, SW p-value = 0.000) | N = 65 (r2 = 0.997; F test p-value = 0.00, SW p-value = 0.254) | ||||||
(Constant) | 35,300.278 | 3066.753 | 0.000 | 0.000 | |||
EV | –14,363.793 | 900.297 | –0.686 | 0.000 | 1.486 | –1.086 | 0.000 |
Age | 11.730 | 55.973 | 0.009 | 0.834 | 1.542 | –0.011 | 0.287 |
Gender | 2688.260 | 1012.125 | 0.110 | 0.008 | 1.366 | 0.182 | 0.000 |
Marital Status | 4386.011 | 2061.309 | 0.083 | 0.034 | 1.234 | 0.071 | 0.000 |
Education | –405.173 | 136.230 | –0.117 | 0.003 | 1.252 | –0.033 | 0.000 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustapa, W.N.b.W.; Al Mamun, A.; Ibrahim, M.D. The Effect of Economic Vulnerability on the Participation in Development Programs and the Socio-Economic Well-Being of Low-Income Households. Societies 2018, 8, 60. https://doi.org/10.3390/soc8030060
Mustapa WNbW, Al Mamun A, Ibrahim MD. The Effect of Economic Vulnerability on the Participation in Development Programs and the Socio-Economic Well-Being of Low-Income Households. Societies. 2018; 8(3):60. https://doi.org/10.3390/soc8030060
Chicago/Turabian StyleMustapa, Wan Nurulasiah binti Wan, Abdullah Al Mamun, and Mohamed Dahlan Ibrahim. 2018. "The Effect of Economic Vulnerability on the Participation in Development Programs and the Socio-Economic Well-Being of Low-Income Households" Societies 8, no. 3: 60. https://doi.org/10.3390/soc8030060
APA StyleMustapa, W. N. b. W., Al Mamun, A., & Ibrahim, M. D. (2018). The Effect of Economic Vulnerability on the Participation in Development Programs and the Socio-Economic Well-Being of Low-Income Households. Societies, 8(3), 60. https://doi.org/10.3390/soc8030060