Seeing Green: The Re-discovery of Plants and Nature’s Wisdom
Abstract
:1. Sensing the World through Historical Deviations
We have to remember that what we observe is not nature in itself, but nature exposed to our method of questioning.—Theoretical physicist and philosopher Werner Heisenberg [1]
Aristotelian False Premises on the Enlightened Behavior of Plants: The Case of Phototropism
Be like the flower, turn your faces to the sun.—Poet, artist and writer Kahlil Gibran (1883–1931)
“And large fields of Vegetables are able to maintain their verdure at the bottome and shady part of the Sea; yet the greatest number are not content without the actual rayes of the Sunne, but bend, incline and follow them; as large lists of solisequious or Sun-following plants”[7], p. 106
2. A Plant’s Perspective of the World, and What It Has to Say about It!
2.1. A Plant’s-Eye View of the World
Think about this: plants see you.—From What a plant knows by Daniel Chamovitz [18]
2.2. Chemical Conversations
What’s in a name? that which we call a rose by any other name would smell as sweet.—From Romeo and Juliet by William Shakespeare (1564–1616)
2.3. A Philharmonic Orchestra in the Woods
“O Tiger-lily,” said Alice, addressing herself to one that was waving gracefully about in the wind, “I wish you could talk!”“We can talk,” said the Tiger-lily: “when there's anybody worth talking to.”Alice was so astonished that she could not speak for a minute: it quite seemed to take her breath away. At length, as the Tiger-lily only went on waving about, she spoke again, in a timid voice—almost in a whisper. “And can all the flowers talk?”“As well as you can,” said the Tiger-lily. “And a great deal louder.”—From Through the Looking Glass by Lewis Carroll (1832–1898)
3. Taking Plants Seriously: Lessons on the Nature of All Things
With its glorious nonhuman past and its uncertain but provocative future, this life, our life, is embedded now, as it always has been, in the rest of Earth’s sentient symphony.—From What is life? by Lynn Margulis and Dorion Sagan [49]
Acknowledgments
References and Notes
- Heisenberg, W. Physics and Philosophy: The Revolution in Modern Science; Harper & Row: New York, NY, USA, 1958. [Google Scholar]
- Clark, G.B.; Thompson, G., Jr.; Roux, S.J. Signal transduction mechanisms in plants: An overview. Curr. Sci. 2001, 80, 170–177. [Google Scholar]
- Damascenus, N. Nicolaus Damascenus de Plantis: Five Translations; Drossaart Lulofs, H.J., Poortman, E.L.J., Eds.; North-Holland: New York, NY, USA, 1989. [Google Scholar]
- Shemp, J. Plants in Plato’s Timaeus. Class. Q. 1947, 41, 53–60. [Google Scholar]
- McKeon, R. Introduction to Aristotle; The Modern Library: New York, NY, USA, 1947. [Google Scholar]
- Hall, M. Plants as Persons: A Philosophical Botany; SUNY Press: Albany, NY, USA, 2011. [Google Scholar]
- Browne, T. The Garden of Cyrus. In The Works of Sir Thomas Browne: Miscellany Tracts, Repertorium, Miscellaneous Writings; Keynes, G., Ed.; Faber and Gwyer: London, UK, 1931; Volume 4. [Google Scholar]
- de Candolle, A.P. Physiologie Végétale; Béchet: Paris, France, 1832. [Google Scholar]
- Dutrochet, H. Recherches Anatomiques et Physiologiques sur la Structure Intime des Animaux et des Végétaux et sur Leur Motilité; J.-B. Bailliére: Paris, France, 1824. [Google Scholar]
- von Wiesner, J. Die heliotropischen erscheinungen im pflanzenreiche: Eine physiologische monographie; Kaiserlich-königlichen Hof- und Staatsdruckerei: Wien, Germany, 1878. [Google Scholar]
- Darwin, C. The Power of Movement in Plants; John Murray Publishers: London, UK, 1880. [Google Scholar]
- Went, F.W. Die Erklarung des phototropischen krummungsverlaufs. Recueil des Travaux Botaniques Neerlandais 1928, 25, 483–489. [Google Scholar]
- Smith, H. Phytochromes and light signal perception by plants—An emerging synthesis. Nature 2000, 407, 585–591. [Google Scholar]
- Whyte, R.O.; Oljhovikov, M.A. Photoperiodism in the plant kingdom. Nature 1939, 143, 301–302. [Google Scholar] [CrossRef]
- Tomescu, A.M.F. Evolutionary gems of the plant world shine just as brightly. Nature 2009, 457, 596. [Google Scholar]
- Wandersee, J.H.; Schussler, E.E. A model of plant blindness. In Poster and paper presented at the 3rd Annual Associates Meeting of the 15 Laboratory; Louisiana State University: Baton Rouge, LA, USA, 1998. [Google Scholar]
- Wandersee, J.H.; Schussler, E.E. Preventing plant blindness. Am. Biol. Teach. 1999, 61, 82–86. [Google Scholar] [CrossRef]
- Chamowitz, D. What a Plant Knows: A Field Guide to the Senses of Your Garden—and beyond; Farrar, Straus & Giroux: Oxford, UK, 2012. [Google Scholar]
- Ballaré, C.L.; Sánchez, R.A.; Scopel, A.L.; Casal, J.J.; Ghersa, C.M. Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Environ. 1987, 10, 551–557. [Google Scholar]
- Smith, H. Physiological and ecological function within the phytochrome family. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1995, 46, 289–315. [Google Scholar] [CrossRef]
- Willmer, P.; Stanley, D.A.; Steijven, K.; Matthews, I.M.; Nuttman, C.V. Bidirectional flower color and shape changes allow a second opportunity for pollination. Curr. Biol. 2009, 19, 919–923. [Google Scholar] [CrossRef]
- Eisikowitch, D.; Rotem, R. Flower orientation and color change in Quisqualis indica and their possible role in pollinator partitioning. Botan. Gaz. 1987, 148, 175–179. [Google Scholar]
- Cooney, L.J.; Van Klink, J.W.; Hughes, N.M.; Perry, N.B.; Schaefer, H.M.; Menzies, I.J.; Gould, K.S. Red leaf margins indicate increased polygodial content and function as visual signals to reduce herbivory in Pseudowintera colorata. New Phytol. 2012, 194, 488–497. [Google Scholar] [CrossRef]
- Ruxton, G.D.; Sherratt, T.N.; Speed, M.P. Avoiding Attack: The Evolutionary Ecology of cRypsis, Warning Signals and Mimicry; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Lev-Yadun, S. Aposematic (warning) coloration in plants. In Plant–environment interactions. From Sensory Plant Biology to Active Plant Behavior; Baluska, F, Ed.; Springer-Verlag: Berlin, Germany, 2009; pp. 167–202. [Google Scholar]
- Pellmyr, O.; Tang, W.; Groth, I.; Bergstrom, G.; Thien, L.B. Cycad cone and angiosperm floral volatiles: Inferences for the evolution of insect pollination. Biochem. Syst. Ecol. 1991, 19, 623–627. [Google Scholar] [CrossRef]
- Heil, M.; Karban, R. Explaining evolution of plant communication by airborne signals. Trends Ecol. Evol. 2010, 25, 137–144. [Google Scholar] [CrossRef]
- Mahall, B.E.; Callaway, R.M. Root communication among desert shrubs. P. Natl. Acad. Sci. USA 1991, 88, 874–876. [Google Scholar] [CrossRef]
- Mahall, B.E.; Callaway, R.M. Root communication mechanisms and intracommunity distributions of two Mojave Desert shrubs. Ecology 1992, 73, 2145–2151. [Google Scholar] [CrossRef]
- Trewavas, A. Aspects of Plant Intelligence. Ann. Bot. 2003, 92, 1–20. [Google Scholar] [CrossRef]
- Baluška, F.; Mancuso, S. Plant neurobiology as a paradigm shift not only in the plant sciences. Plant Signal. Behav. 2007, 2, 205–207. [Google Scholar] [CrossRef]
- Paré, P.W.; Tumlinson, J.H. Plant volatiles as a defense against insect herbivores. Plant Physiol. 1999, 121, 325–331. [Google Scholar] [CrossRef]
- Karban, R.; Baldwin, I.T.; Baxter, K.J.; Laue, G.; Felton, G.W. Communication between plants: Induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 2000, 125, 66–71. [Google Scholar] [CrossRef]
- Heil, M.; Ton, J. Long-distance signalling in plant defence. Trends Plant Sci. 2008, 13, 264–272. [Google Scholar] [CrossRef]
- Dicke, M. Behavioural and community ecology of plants that cry for help. Plant Cell Environ. 2009, 32, 654–665. [Google Scholar] [CrossRef]
- Tarroux, E.; DesRochers, A. Effects of natural root grafting on growth response of jack pine (Pinus Banksiana; Pinaceae). Am. J. Bot. 2011, 98, 967–974. [Google Scholar] [CrossRef]
- Whitfield, J. Underground networking. Nature 2007, 449, 136–138. [Google Scholar] [CrossRef]
- Dudley, S.A.; File, A.L. Kin recognition in an annual plant. Biol. Lett. 2007, 3, 435–438. [Google Scholar] [CrossRef]
- Murphy, G.P.; Dudley, S.A. Kin recognition: Competition and cooperation in Impatiens (Balsaminaceae). Am. J. Bot. 2009, 96, 1990–1996. [Google Scholar] [CrossRef]
- Karban, R.; Shiojiri, K.; Ishizaki, S.; Wetzel, W.C.; Evans, R.Y. Kin recognition affects plant communication and defence. Proc. R. Soc. B 2013, 280. [Google Scholar] [CrossRef]
- Proctor, M.; Yeo, P.; Lack, A. The Natural History of Pollination; Timber Press: Portland, OR, USA, 1996. [Google Scholar]
- Gagliano, M. Green symphonies: A call for studies on acoustic communication in plants. Behav. Ecol. 2012. [Google Scholar] [CrossRef]
- Gagliano, M.; Mancuso, S.; Robert, D. Towards understanding plant bioacoustics. Trends Plant Sci. 2012, 17, 323–325. [Google Scholar] [CrossRef]
- Ciszak, M.; Comparini, D.; Mazzolai, B.; Baluska, F.; Arecchi, F.T.; Vicsek, T.; Mancuso, S. Swarming behavior in plant roots. PLoS ONE 2012, 7, e29759. [Google Scholar]
- Gagliano, M.; Renton, M.; Duvdevani, N.; Timmins, M.; Mancuso, S. Acoustic and magnetic communication in plants: Is it possible? Plant Signal. Behav. 2012, 7, 1346–1348. [Google Scholar] [CrossRef]
- Pokorný, J. Conditions for coherent vibrations in the cytoskeleton. Bioelectrochem. Bioenerg. 1999, 48, 267–271. [Google Scholar] [CrossRef]
- Pokorný, J.; Jelínek, F.; Trkal, V.; Lamprecht, I.; Hölzel, R. Vibrations in microtubules. J. Biol. Phys. 1997, 23, 171–179. [Google Scholar] [CrossRef]
- Collini, E.; Wong, C.Y.; Wilk, K.E.; Curmi, P.M.G.; Brumer, P.; Scholes, G.D. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 2010, 463, 644–647. [Google Scholar]
- Margulis, L.; Sagan, D. What is life? University of California Press: Berkeley, CA, USA, 2000. [Google Scholar]
- Valiente-Banuet, A.; Rumebe, A.V.; Verdú, M; Callaway, R.M. Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages. P. Natl. Acad. Sci. USA 2006, 103, 16812–16817. [Google Scholar] [CrossRef]
- Brooker, R.W. Plant–Plant interactions and environmental change. New Phytol. 2006, 171, 271–284. [Google Scholar] [CrossRef]
- Callaway, R.M. Positive Interactions and Interdependence in Plant Communities; Springer: Dordrecht, The Neatherlands, 2007. [Google Scholar]
- Brooker, R.W.; Maestre, F.T.; Callaway, R.M.; Lortie, C.L.; Cavieres, L.A.; Kunstler, G.; Liancourt, P.; Tielbörger, K.; Travis, J.M.J.; Anthelme, F.; et al. Facilitation in plant communities: The past, the present, and the future. J. Ecol. 2008, 96, 18–34. [Google Scholar]
- Callaway, R.M. Positive interactions among plants. Bot. Rev. 1995, 61, 306–349. [Google Scholar] [CrossRef]
- Bruno, J.F.; Stachowicz, J.J.; Bertness, M.D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 2003, 18, 119–125. [Google Scholar] [CrossRef]
- Plath, M.; Mody, K.; Potvin, C.; Dorn, S. Do multipurpose companion trees affect high value timber trees in a silvopastoral plantation system? Agroforest. Syst. 2011, 81, 79–92. [Google Scholar] [CrossRef]
- Fustec, J.; Lesuffleur, F.; Mahieu, S.; Cliquet, J.-B. Nitrogen rhizodeposition of legumes. A review. Agron. Sustain. Dev. 2010, 30, 57–66. [Google Scholar] [CrossRef]
- Liphadzi, K.B.; Reinhardt, C.F. Using companion plants to assist Pinus patula establishment on former agricultural lands. S. Afr. J. Bot. 2006, 72, 403–408. [Google Scholar] [CrossRef]
- Morley, K.; Finch, S.; Collier, R.H. Companion planting—Behaviour of the cabbage root fly on host plants and non-host plants. Entomol. Exp. Appl. 2005, 117, 15–25. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef]
- Casanova-Katny, M.A.; Torres-Mellado, G.; Palfner, G.; Cavieres, L. The best for the guest: High Andean nurse cushions of Azorella madreporica enhance arbuscular mycorrhizal status in associated plant species. Mycorrhiza 2011, 21, 613–622. [Google Scholar] [CrossRef]
- Montesinos-Navarro, A.; Segarra-Moragues, J.G.; Valiente-Banuet, A.; Verdú, M. Plant facilitation occurs between species differing in their associated arbuscular mycorrhizal fungi. New Phytol. 2012, 196, 835–844. [Google Scholar] [CrossRef] [Green Version]
- Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 1967, 14, 225–193. [Google Scholar] [CrossRef]
- Maynard-Smith, J.; Szathmáry, E. The Major Transitions in Evolution; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Strassmann, J.E.; Queller, D.C.; Avise, J.C.; Ayala, F.J. In the light of evolution V: Cooperation and conflict. P. Natl. Acad. Sci. USA 2011, 108, 10787–10791. [Google Scholar]
- Niklas, K.J.; Newman, S.A. The origin of multicellular organisms. Evol. Dev. 2013, 15, 41–52. [Google Scholar] [CrossRef]
- Bateson, P. The biological evolution of cooperation and trust. In Trust: Making and Breaking Cooperative Relations; Gambetta, D., Ed.; Blackwell: Oxford, UK, 1998; pp. 14–30. [Google Scholar]
- Sahney, S.; Benton, M.J.; Ferry, P.A. Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. Biol. Lett. 2010, 6, 544–547. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gagliano, M. Seeing Green: The Re-discovery of Plants and Nature’s Wisdom. Societies 2013, 3, 147-157. https://doi.org/10.3390/soc3010147
Gagliano M. Seeing Green: The Re-discovery of Plants and Nature’s Wisdom. Societies. 2013; 3(1):147-157. https://doi.org/10.3390/soc3010147
Chicago/Turabian StyleGagliano, Monica. 2013. "Seeing Green: The Re-discovery of Plants and Nature’s Wisdom" Societies 3, no. 1: 147-157. https://doi.org/10.3390/soc3010147
APA StyleGagliano, M. (2013). Seeing Green: The Re-discovery of Plants and Nature’s Wisdom. Societies, 3(1), 147-157. https://doi.org/10.3390/soc3010147