Should I Stay or Should I Go? Mapping the Key Drivers of Skilled Migration Using Fuzzy Multi-Criteria Decision Methodology
Abstract
1. Introduction
2. Push and Pull Factors
2.1. Career-Related Factors
2.2. Education-Related Factors
2.3. Governance and Political Climate
2.4. Personal Motives
2.5. The Migration and MCDM Nexus
3. Methodology
3.1. Improved Fuzzy Step-Wise Weight Assessment Ratio Analysis (IF-SWARA)
3.2. Problem Statement
4. Results
5. Discussion
6. Conclusions, Limitations and Further Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sub-Criterion | Abbr. | Name of the Criterion |
---|---|---|
Career-related factors | C1 | Employment opportunities |
C2 | Workplace conditions | |
C3 | Salary policies | |
C4 | Side benefits | |
C5 | Research and development facilities | |
Education-related factors | E1 | Academic standards |
E2 | Academic networks | |
E3 | Scholarship and grants | |
E4 | Language skill advancement | |
E5 | Technology services for education | |
Governance and political climate | G1 | Economic climate of the country |
G2 | Country’s political dynamics | |
G3 | Limitation/affirmation of fundamental rights | |
G4 | Migrant integration programs | |
G5 | Social policies | |
G6 | Disaster reliance | |
Personal motives | P1 | Religious tolerance |
P2 | Desire to reside overseas | |
P3 | Living conditions | |
P4 | Cultural diversity | |
P5 | Network building chances | |
P6 | Identity expression |
References
- Bahar, D. Diasporas and Economic Development: A Review of the Evidence and Policy. Comp. Econ. Stud. 2020, 62, 200–214. [Google Scholar] [CrossRef]
- Sjaastad, L.A. The Costs and Returns of Human Migration. In Regional Economics; Palgrave Macmillan: London, UK, 1970; pp. 115–133. [Google Scholar] [CrossRef]
- Lee, E.S. A Theory of Migration. Demography 1966, 3, 47–57. [Google Scholar] [CrossRef]
- Docquier, F.; Rapoport, H. The Brain Drain. In New Palgrave Dictionary of Economics; Palgrave Macmillan: London, UK, 2006; pp. 536–540. [Google Scholar]
- Gibson, J.; McKenzie, D. Eight Questions about Brain Drain. J. Econ. Perspect. 2011, 25, 107–128. [Google Scholar] [CrossRef]
- Morano Foadi, S. Key Issues And Causes of the Italian Brain Drain. Innov. Eur. J. Soc. Sci. Res. 2006, 19, 209–223. [Google Scholar] [CrossRef]
- Beine, M.; Docquier, F.; Rapoport, H. Brain Drain and Economic Growth: Theory and Evidence. J. Dev. Econ. 2001, 64, 275–289. [Google Scholar] [CrossRef]
- Metin, F. Brain Drain from Türkiye: Register Evidence of Non-Returning Graduates. Res. Educ. Adm. Leadersh. 2023, 8, 373–419. [Google Scholar] [CrossRef]
- Skeldon, R. Population Mobility in Developing Countries: A Reinterpretation; Belhaven Press: London, UK, 1990. [Google Scholar]
- de Haas, H. Migration and Development: A Theoretical Perspective. Int. Migr. Rev. 2010, 44, 227–264. [Google Scholar] [CrossRef]
- Van Hear, N.; Bakewell, O.; Long, K. Push-Pull plus: Reconsidering the Drivers of Migration. J. Ethn. Migr. Stud. 2018, 44, 927–944. [Google Scholar] [CrossRef]
- Hoppe, A.; Fujishiro, K. Anticipated Job Benefits, Career Aspiration, and Generalized Self-Efficacy as Predictors for Migration Decision-Making. Int. J. Intercult. Relat. 2015, 47, 13–27. [Google Scholar] [CrossRef]
- Lawan Ngoma, A.; Wana Ismail, N. The Determinants of Brain Drain in Developing Countries. Int. J. Soc. Econ. 2013, 40, 744–754. [Google Scholar] [CrossRef]
- Docquier, F.; Rapoport, H. Globalization, Brain Drain, and Development. J. Econ. Lit. 2012, 50, 681–730. [Google Scholar] [CrossRef]
- Garcia Zea, D. Brain Drain in Venezuela: The Scope of the Human Capital Crisis. Hum. Resour. Dev. Int. 2020, 23, 188–195. [Google Scholar] [CrossRef]
- Ahmed, R. Brain Drain: Out of Bound Mobility of International Students in Bangladesh. J. Digit. Learn. Distance Educ. 2025, 3, 1319–1326. [Google Scholar] [CrossRef]
- Chand, M. Brain Drain, Brain Circulation, and the African Diaspora in the United States. J. Afr. Bus. 2019, 20, 6–19. [Google Scholar] [CrossRef]
- Ullah, A.A. Skill Drain from ASEAN Countries: Can Sending Countries Afford? Int. J. Dev. Issues 2018, 17, 205–219. [Google Scholar] [CrossRef]
- Dohlman, L.; DiMeglio, M.; Hajj, J.; Laudanski, K. Global Brain Drain: How Can the Maslow Theory of Motivation Improve Our Understanding of Physician Migration? Int. J. Environ. Res. Public Health 2019, 16, 1182. [Google Scholar] [CrossRef]
- Kaplan, D.; Höppli, T. The South African Brain Drain: An Empirical Assessment. Dev. S. Afr. 2017, 34, 497–514. [Google Scholar] [CrossRef]
- Panagiotakopoulos, A. Investigating the Factors Affecting Brain Drain in Greece: Looking beyond the Obvious. World J. Entrep. Manag. Sustain. Dev. 2020, 16, 207–218. [Google Scholar] [CrossRef]
- UNDESA. International Migrant Stock; UNDESA: New York, NY, USA, 2020. [Google Scholar]
- Koser, K.; Salt, J. The Geography of Highly Skilled International Migration. Int. J. Popul. Geogr. 1997, 3, 285–303. [Google Scholar] [CrossRef]
- Massey, D.S.; Arango, J.; Hugo, G.; Kouaouci, A.; Pellegrino, A.; Taylor, J.E. Theories of International Migration: A Review and Appraisal. Popul. Dev. Rev. 1993, 19, 431. [Google Scholar] [CrossRef]
- Atmaca, T. An Examination of Academically Successful Secondary School Students’ Aspirations with Regard to Potential Human Capital Flight (Brain Drain). Int. J. Contemp. Educ. Res. 2022, 7, 280–299. [Google Scholar] [CrossRef]
- Aytac, S. Analysis of the Effects of Pull and Push Factors on Brain Drain: An Example of Turkey. J. Soc. Econ. Res. 2019, 6, 74–84. [Google Scholar] [CrossRef]
- Rüzgar, M.E. To Return, or Not to Return, That Is the Question. J. Qual. Res. Educ. 2020, 8, 1080–1115. [Google Scholar] [CrossRef]
- Metin, F.; Ertan, H.T. The Brain Drain of IT Professionals: Register Evidence of Non-Return Graduates from Türkiye. Bogazici J. 2022, 36, 80–99. [Google Scholar] [CrossRef]
- Incekas, A.B.; Kadaifci, C. Brain Drain: A Multi-Criteria Decision Model. In Industrial Engineering in the Internet-of-Things World; Springer: Cham, Germany, 2022; pp. 271–282. [Google Scholar] [CrossRef]
- Erdoğan Kaya, A.; Erdoğan Aktürk, B.; Aslan, E. Factors Predicting the Motivation to Study Abroad in Turkish Medical Students: A Causal Investigation into the Problem of Brain Drain. J. Health Sci. Med. 2023, 6, 526–531. [Google Scholar] [CrossRef]
- Milošević, M.R.; Milošević, D.M.; Stević, D.M.; Stanojević, A.D. Smart City: Modeling Key Indicators in Serbia Using IT2FS. Sustainability 2019, 11, 3536. [Google Scholar] [CrossRef]
- Ryazantsev, S.V.; Afzali, M.; Rostovskaya, T.K. Current Factors of Iran’s Brain Drain, Analysis, Reasons and Influences. DEStech Trans. Soc. Sci. Educ. Hum. Sci. 2020. [Google Scholar] [CrossRef]
- Rasool, F.; Botha, C.J.; Bisschoff, C.A. Push and Pull Factors in Relation to Skills Shortages in South Africa. J. Soc. Sci. 2012, 30, 11–20. [Google Scholar] [CrossRef]
- Obokata, R.; Veronis, L.; McLeman, R. Empirical Research on International Environmental Migration: A Systematic Review. Popul. Environ. 2014, 36, 111–135. [Google Scholar] [CrossRef]
- Vogler, M.; Rotte, R. Determinants of International Migration: Empirical Evidence for Migration from Developing Countries to Germany. SSRN Electron. J. 1998, 166340. [Google Scholar] [CrossRef]
- Urbański, M. Comparing Push and Pull Factors Affecting Migration. Economies 2022, 10, 21. [Google Scholar] [CrossRef]
- Zhatkanbaeva, A.; Zhatkanbaeva, J.; Zhatkanbaev, E. The Impact of Globalization on “Brain Drain” in Developing Countries. Procedia—Soc. Behav. Sci. 2012, 47, 1490–1494. [Google Scholar] [CrossRef]
- Khalid, B.; Urbański, M. Approaches to Understanding Migration: A Multi-Country Analysis of the Push and Pull Migration Trend. Econ. Sociol. 2021, 14, 242–267. [Google Scholar] [CrossRef]
- Brown, L.A.; Lawson, V.A. Migration in Third World Settings, Uneven Development, and Conventional Modeling: A Case Study of Costa Rica. Ann. Assoc. Am. Geogr. 1985, 75, 29–47. [Google Scholar] [CrossRef]
- Castelli, F. Drivers of Migration: Why Do People Move? J. Travel Med. 2018, 25, tay040. [Google Scholar] [CrossRef]
- El-Khawas, M.A. Brain Drain: Putting Africa between a Rock and a Hard Place. Mediterr. Q. 2004, 15, 37–56. [Google Scholar] [CrossRef]
- Tansel, A.; Gungor, N.D. “Brain Drain” from Turkey: Survey Evidence of Student Non-Return. SSRN Electron. J. 2003, 8, 52–69. [Google Scholar] [CrossRef]
- Demet Güngör, N.; Tansel, A. Brain Drain from Turkey: The Case of Professionals Abroad. Int. J. Manpow. 2008, 29, 323–347. [Google Scholar] [CrossRef]
- Karaduman, H.A.; Çoban, E. Brain Drain in Turkey: An Investigation on Leading Motives of Skilled Migration. Avrasya Sos. Ekon. Araştırmaları Derg. 2019, 6, 322–339. [Google Scholar]
- Garner, S.L.; Conroy, S.F.; Bader, S.G. Nurse Migration from India: A Literature Review. Int. J. Nurs. Stud. 2015, 52, 1879–1890. [Google Scholar] [CrossRef]
- Sanguan, N.; Tangcharoensathien, V. Thailand: Private Health Care out of Control? Health Policy Plan. 1994, 9, 31–40. [Google Scholar]
- Docquier, F. The Brain Drain from Developing Countries: The Brain Drain Produces Many More Losers than Winners in Developing Countries; IZA World of Labor: Bonn, Germany, 2014. [Google Scholar]
- Ciarniene, R.; Kumpikaite, V. International Labour Migration: Students Viewpoint. Eng. Econ. 2011, 22, 527–533. [Google Scholar] [CrossRef]
- Panicacci, A. Does Expressing Emotions in the Local Language Help Migrants Acculturate? Int. J. Lang. Cult. 2019, 6, 279–304. [Google Scholar] [CrossRef]
- Panicacci, A. Do the Languages Migrants Use in Private and Emotional Domains Define Their Cultural Belonging More than the Passport They Have? Int. J. Intercult. Relat. 2019, 69, 87–101. [Google Scholar] [CrossRef]
- Cerna, L. Attracting High-Skilled Immigrants: Policies in Comparative Perspective. Int. Migr. 2014, 52, 69–84. [Google Scholar] [CrossRef]
- Vega-Muñoz, A.; González-Gómez-del-Miño, P.; Contreras-Barraza, N. The Determinants of Brain Drain and the Role of Citizenship in Skilled Migration. Soc. Sci. 2025, 14, 132. [Google Scholar] [CrossRef]
- Brain Drain and Brain Gain; Boeri, T., Brücker, H., Docquier, F., Rapoport, H., Eds.; Oxford University Press: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Erguvan, D. Transnational Education in Turkey. J. Educ. Soc. Res. 2015, 5, 227–240. [Google Scholar] [CrossRef]
- Süoğlu, B.B. Trends in Student Mobility from Turkey to Germany. Percept. J. Int. Aff. 2012, 17, 61–84. [Google Scholar]
- Cattaneo, M.; Malighetti, P.; Paleari, S. The Italian Brain Drain: Cream and Milk. High. Educ. 2019, 77, 603–622. [Google Scholar] [CrossRef]
- Çetinkaya, C.; Özceylan, E.; Erbaş, M.; Kabak, M. GIS-Based Fuzzy MCDA Approach for Siting Refugee Camp: A Case Study for Southeastern Turkey. Int. J. Disaster Risk Reduct. 2016, 18, 218–231. [Google Scholar] [CrossRef]
- Denekos, S.N.; Koutsoukis, N.-S.; Fakiolas, E.T.; Konstantopoulos, I.; Rachaniotis, N.P. Siting Refugee Camps in Mainland Greece Using Geographic Information Systems-Based Multi-Criteria Decision-Making. J. Humanit. Logist. Supply Chain Manag. 2021, 11, 457–480. [Google Scholar] [CrossRef]
- Rashid, M.F.A. Capabilities of a GIS-Based Multi-Criteria Decision Analysis Approach in Modelling Migration. GeoJournal 2019, 84, 483–496. [Google Scholar] [CrossRef]
- Arandarenko, M.; Corrente, S.; Jandrić, M.; Stamenković, M. Multiple Criteria Decision Aiding as a Prediction Tool for Migration Potential of Regions. Eur. J. Oper. Res. 2020, 284, 1154–1166. [Google Scholar] [CrossRef]
- Blouchoutzi, A.; Manou, D.; Papathanasiou, J. A Promethee Mcdm Application in Social Inclusion: The Case of Foreign-Born Population in the EU. Systems 2021, 9, 45. [Google Scholar] [CrossRef]
- Martín, J.C.; Indelicato, A. A Dea Mcdm Approach Applied to ESS8 Dataset for Measuring Immigration and Refugees Citizens’ Openness. J. Int. Migr. Integr. 2022, 23, 1941–1961. [Google Scholar] [CrossRef]
- Khaw, K.W.; Thurasamy, R.; Al-Abrrow, H.; Alnoor, A.; Tiberius, V.; Abdullah, H.O.; Abbas, S. Influence of Generational Status on Immigrants’ Entrepreneurial Intentions to Start New Ventures: A Framework Based on Structural Equation Modeling and Multicriteria Decision-Making. J. Entrep. Emerg. Econ. 2023, 15, 589–634. [Google Scholar] [CrossRef]
- Chang, Y.-W.; Lai, Y.-H. What Attracts Young Talent from Taiwan to Start Businesses in Mainland China? A Fuzzy Analytic Hierarchy Process Study. Technol. Anal. Strateg. Manag. 2023, 35, 394–408. [Google Scholar] [CrossRef]
- Guo, L.; Wu, C.-L. The Importance of Factors Influencing the Brain Drain of IT Employee. In Proceedings of the 2016 International Conference on Management Science and Management Innovation, Guilin, China, 13–14 August 2016; Atlantis Press: Paris, France, 2016. [Google Scholar] [CrossRef]
- Oreški, D.; Klačmer Čalopa, M.; Šlibar, B. Push and Pull Factors in Brain Drain among University Students. Management 2023, 28, 65–80. [Google Scholar] [CrossRef]
- Mukhtarov, S.; Dinçer, H.; Baş, H.; Yüksel, S. Policy Recommendations for Handling Brain Drains to Provide Sustainability in Emerging Economies. Sustainability 2022, 14, 16244. [Google Scholar] [CrossRef]
- Vrtagić, S.; Softić, E.; Subotić, M.; Stević, Ž.; Dordevic, M.; Ponjavic, M. Ranking Road Sections Based on MCDM Model: New Improved Fuzzy Swara (IMF SWARA). Axioms 2021, 10, 92. [Google Scholar] [CrossRef]
- Keršulienė, V.; Zavadskas, E.K.; Turskis, Z. Selection of Rational Dispute Resolution Method by Applying New Step-Wise Weight Assessment Ratio Analysis (SWARA). J. Bus. Econ. Manag. 2010, 11, 243–258. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Mavi, R.K.; Goh, M.; Zarbakhshnia, N. Sustainable Third-Party Reverse Logistic Provider Selection with Fuzzy SWARA and Fuzzy MOORA in Plastic Industry. Int. J. Adv. Manuf. Technol. 2017, 91, 2401–2418. [Google Scholar] [CrossRef]
- Binti Jauhar, J.; Abdul Ghani, A.B.; Islam, R. Brain Drain; Springer: Singapore, 2016. [Google Scholar] [CrossRef]
- Akyıldız, İ.E.; Başkol, M.O.; Eryiğit, K.Y. The Relationship between Brain Drain and Human Capital: Evidence from Turkey. Int. J. Manpow. 2025, 46, 1546–1562. [Google Scholar] [CrossRef]
Linguistic Scale | Fuzzy Numbers |
---|---|
Absolutely less significant (ALS) | (1, 1, 1) |
Dominantly less significant (DLS) | (0.50, 0.67, 1) |
Much less significant (MLS) | (0.40, 0.50, 0.67) |
Really less significant (RLS) | (0.33, 0.40, 0.50) |
Less significant (LS) | (0.29, 0.33, 0.40) |
Moderately less significant (MDLS) | (0.25, 0.29, 0.33) |
Weakly less significant (WLS) | (0.22, 0.25, 0.29) |
Equally significant (ES) | (0, 0, 0) |
DM | Degree | Work Experience (Year) | Duration of Migration (Year) | DM | Degree | Work Experience (Year) | Duration of Migration (Year) |
---|---|---|---|---|---|---|---|
DM1 | Master | 10+ | 2–5 | DM9 | Bachelor | 10+ | 6–10 |
DM2 | Master | 10+ | 10+ | DM10 | Bachelor | 10+ | 2–5 |
DM3 | Master | 2–5 | 2–5 | DM11 | Master | 0–2 | 6–10 |
DM4 | Master | 2–5 | 6–10 | DM12 | Bachelor | 0–2 | 0–2 |
DM5 | Master | 2–5 | 0–2 | DM13 | Master | 10+ | 6–10 |
DM6 | PhD | 10+ | 10+ | DM14 | PhD | 6–10 | 2–5 |
DM7 | Bachelor | 6–10 | 2–5 | DM15 | PhD | 2–5 | 0–2 |
DM8 | Bachelor | 2–5 | 2–5 | DM16 | Bachelor | 6–10 | 2–5 |
Criteria | Sj Values | Coefficient Kj (Sj + 1) | Recalculated Weight Qj | Fuzzy Weight | Crisp Weight | Final Weight | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 1 | 1 | 1 | 1 | 1 | 1 | 0.304 | 0.313 | 0.326 | 0.314 | 0.314 | |||
E | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.000 | 1.000 | 1.000 | 0.304 | 0.313 | 0.326 | 0.314 | 0.314 |
G | 0.33 | 0.4 | 0.5 | 1.33 | 1.40 | 1.50 | 0.667 | 0.714 | 0.752 | 0.203 | 0.224 | 0.245 | 0.224 | 0.224 |
P | 0.40 | 0.5 | 0.67 | 1.40 | 1.50 | 1.67 | 0.399 | 0.476 | 0.537 | 0.121 | 0.149 | 0.175 | 0.149 | 0.149 |
Sub Criteria | Sj Values | Coefficient Kj (Sj + 1) | Recalculated Weight Qj | Fuzzy Weight | Aggregated Fuzzy Weight | Crisp Weight | Final Weight | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C2 | 1 | 1 | 1 | 1 | 1 | 1 | 0.293 | 0.306 | 0.324 | 0.089 | 0.096 | 0.106 | 0.097 | 0.306 | |||
C3 | 0.22 | 0.25 | 0.29 | 1.22 | 1.25 | 1.29 | 0.775 | 0.800 | 0.820 | 0.227 | 0.245 | 0.265 | 0.069 | 0.077 | 0.087 | 0.077 | 0.245 |
C1 | 0.22 | 0.25 | 0.29 | 1.22 | 1.25 | 1.29 | 0.601 | 0.640 | 0.672 | 0.176 | 0.196 | 0.218 | 0.054 | 0.061 | 0.071 | 0.062 | 0.196 |
C5 | 0.33 | 0.4 | 0.5 | 1.33 | 1.4 | 1.5 | 0.401 | 0.457 | 0.505 | 0.117 | 0.140 | 0.164 | 0.036 | 0.044 | 0.053 | 0.044 | 0.140 |
C4 | 0.22 | 0.25 | 0.29 | 1.22 | 1.25 | 1.29 | 0.311 | 0.366 | 0.414 | 0.091 | 0.112 | 0.134 | 0.028 | 0.035 | 0.044 | 0.035 | 0.112 |
E1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.265 | 0.274 | 0.288 | 0.081 | 0.086 | 0.094 | 0.086 | 0.274 | |||
E5 | 0 | 0 | 0 | 1 | 1 | 1 | 1.000 | 1.000 | 1.000 | 0.265 | 0.274 | 0.288 | 0.081 | 0.086 | 0.094 | 0.086 | 0.274 |
E2 | 0.29 | 0.33 | 0.4 | 1.29 | 1.33 | 1.4 | 0.714 | 0.752 | 0.775 | 0.189 | 0.206 | 0.223 | 0.058 | 0.065 | 0.073 | 0.065 | 0.206 |
E4 | 0.33 | 0.4 | 0.5 | 1.33 | 1.4 | 1.5 | 0.476 | 0.537 | 0.583 | 0.126 | 0.147 | 0.168 | 0.038 | 0.046 | 0.055 | 0.046 | 0.147 |
E3 | 0.40 | 0.5 | 0.67 | 1.4 | 1.5 | 1.67 | 0.285 | 0.358 | 0.416 | 0.076 | 0.098 | 0.120 | 0.023 | 0.031 | 0.039 | 0.031 | 0.098 |
G1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.229 | 0.242 | 0.260 | 0.047 | 0.054 | 0.064 | 0.055 | 0.242 | |||
G3 | 0.33 | 0.4 | 0.5 | 1.33 | 1.4 | 1.5 | 0.667 | 0.714 | 0.752 | 0.153 | 0.173 | 0.196 | 0.031 | 0.039 | 0.048 | 0.039 | 0.173 |
G4 | 0 | 0 | 0 | 1 | 1 | 1 | 0.667 | 0.714 | 0.752 | 0.153 | 0.173 | 0.196 | 0.031 | 0.039 | 0.048 | 0.039 | 0.173 |
G6 | 0 | 0 | 0 | 1 | 1 | 1 | 0.667 | 0.714 | 0.752 | 0.153 | 0.173 | 0.196 | 0.031 | 0.039 | 0.048 | 0.039 | 0.173 |
G5 | 0.40 | 0.5 | 0.67 | 1.4 | 1.5 | 1.67 | 0.399 | 0.476 | 0.537 | 0.092 | 0.115 | 0.140 | 0.019 | 0.026 | 0.034 | 0.026 | 0.115 |
G2 | 0.33 | 0.4 | 0.5 | 1.33 | 1.4 | 1.5 | 0.444 | 0.510 | 0.565 | 0.102 | 0.124 | 0.147 | 0.021 | 0.028 | 0.036 | 0.028 | 0.124 |
P2 | 1 | 1 | 1 | 1 | 1 | 1 | 0.256 | 0.276 | 0.306 | 0.031 | 0.041 | 0.054 | 0.042 | 0.275 | |||
P3 | 0.33 | 0.4 | 0.5 | 1.33 | 1.4 | 1.5 | 0.667 | 0.714 | 0.752 | 0.171 | 0.197 | 0.230 | 0.021 | 0.029 | 0.040 | 0.030 | 0.197 |
P1 | 0.40 | 0.5 | 0.67 | 1.4 | 1.5 | 1.67 | 0.399 | 0.476 | 0.537 | 0.102 | 0.132 | 0.165 | 0.012 | 0.020 | 0.029 | 0.020 | 0.132 |
P4 | 0 | 0 | 0 | 1 | 1 | 1 | 0.399 | 0.476 | 0.537 | 0.102 | 0.132 | 0.165 | 0.012 | 0.020 | 0.029 | 0.020 | 0.132 |
P5 | 0 | 0 | 0 | 1 | 1 | 1 | 0.399 | 0.476 | 0.537 | 0.102 | 0.132 | 0.165 | 0.012 | 0.020 | 0.029 | 0.020 | 0.132 |
P6 | 0.00 | 0 | 0.00 | 1 | 1 | 1 | 0.399 | 0.476 | 0.537 | 0.102 | 0.132 | 0.165 | 0.012 | 0.020 | 0.029 | 0.020 | 0.132 |
DM1 | DM2 | DM3 | DM4 | DM5 | DM6 | DM7 | DM8 | DM9 | DM10 | DM11 | DM12 | DM13 | DM14 | DM15 | DM16 | Mean | Weight | Rank | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 0.062 | 0.029 | 0.030 | 0.083 | 0.030 | 0.066 | 0.156 | 0.094 | 0.051 | 0.052 | 0.045 | 0.026 | 0.085 | 0.036 | 0.071 | 0.0350 | 0.052 | 0.058 | 4 |
C2 | 0.096 | 0.046 | 0.092 | 0.047 | 0.083 | 0.050 | 0.093 | 0.028 | 0.071 | 0.092 | 0.059 | 0.060 | 0.046 | 0.080 | 0.089 | 0.0730 | 0.065 | 0.073 | 1 |
C3 | 0.077 | 0.037 | 0.073 | 0.083 | 0.059 | 0.037 | 0.067 | 0.063 | 0.021 | 0.069 | 0.045 | 0.060 | 0.064 | 0.054 | 0.034 | 0.0251 | 0.051 | 0.056 | 5 |
C4 | 0.035 | 0.037 | 0.055 | 0.031 | 0.042 | 0.028 | 0.040 | 0.042 | 0.031 | 0.039 | 0.032 | 0.043 | 0.034 | 0.026 | 0.051 | 0.0487 | 0.038 | 0.042 | 12 |
C5 | 0.044 | 0.018 | 0.041 | 0.063 | 0.020 | 0.099 | 0.033 | 0.063 | 0.016 | 0.026 | 0.079 | 0.019 | 0.085 | 0.019 | 0.051 | 0.0189 | 0.036 | 0.040 | 14 |
E1 | 0.086 | 0.058 | 0.039 | 0.073 | 0.047 | 0.136 | 0.087 | 0.076 | 0.054 | 0.028 | 0.039 | 0.031 | 0.033 | 0.085 | 0.045 | 0.0390 | 0.054 | 0.060 | 3 |
E2 | 0.065 | 0.058 | 0.039 | 0.073 | 0.063 | 0.070 | 0.052 | 0.046 | 0.036 | 0.028 | 0.052 | 0.031 | 0.020 | 0.085 | 0.075 | 0.0390 | 0.048 | 0.054 | 7 |
E3 | 0.031 | 0.033 | 0.013 | 0.033 | 0.020 | 0.038 | 0.019 | 0.017 | 0.018 | 0.028 | 0.021 | 0.019 | 0.020 | 0.057 | 0.075 | 0.0196 | 0.026 | 0.029 | 21 |
E4 | 0.046 | 0.058 | 0.028 | 0.073 | 0.034 | 0.052 | 0.032 | 0.022 | 0.022 | 0.028 | 0.016 | 0.039 | 0.033 | 0.038 | 0.056 | 0.0261 | 0.035 | 0.039 | 16 |
E5 | 0.086 | 0.044 | 0.020 | 0.055 | 0.012 | 0.097 | 0.087 | 0.033 | 0.013 | 0.028 | 0.028 | 0.019 | 0.042 | 0.057 | 0.045 | 0.0196 | 0.035 | 0.039 | 15 |
G1 | 0.054 | 0.080 | 0.070 | 0.060 | 0.038 | 0.025 | 0.041 | 0.012 | 0.087 | 0.047 | 0.037 | 0.095 | 0.064 | 0.038 | 0.042 | 0.0812 | 0.049 | 0.054 | 6 |
G2 | 0.028 | 0.043 | 0.070 | 0.023 | 0.059 | 0.018 | 0.018 | 0.017 | 0.044 | 0.019 | 0.037 | 0.063 | 0.043 | 0.023 | 0.032 | 0.0542 | 0.033 | 0.037 | 17 |
G3 | 0.039 | 0.080 | 0.087 | 0.045 | 0.059 | 0.018 | 0.030 | 0.042 | 0.145 | 0.063 | 0.052 | 0.063 | 0.043 | 0.023 | 0.042 | 0.0388 | 0.048 | 0.053 | 8 |
G4 | 0.039 | 0.060 | 0.045 | 0.034 | 0.059 | 0.034 | 0.068 | 0.026 | 0.058 | 0.026 | 0.028 | 0.063 | 0.031 | 0.023 | 0.023 | 0.0388 | 0.038 | 0.042 | 11 |
G5 | 0.026 | 0.043 | 0.037 | 0.034 | 0.034 | 0.034 | 0.030 | 0.012 | 0.032 | 0.036 | 0.021 | 0.042 | 0.021 | 0.023 | 0.016 | 0.0388 | 0.028 | 0.031 | 19 |
G6 | 0.039 | 0.029 | 0.056 | 0.034 | 0.047 | 0.012 | 0.022 | 0.021 | 0.035 | 0.018 | 0.020 | 0.038 | 0.022 | 0.014 | 0.015 | 0.0292 | 0.026 | 0.029 | 20 |
P1 | 0.020 | 0.043 | 0.014 | 0.019 | 0.024 | 0.016 | 0.015 | 0.157 | 0.022 | 0.021 | 0.095 | 0.035 | 0.075 | 0.028 | 0.027 | 0.0316 | 0.031 | 0.034 | 18 |
P2 | 0.041 | 0.043 | 0.023 | 0.013 | 0.082 | 0.024 | 0.025 | 0.026 | 0.059 | 0.117 | 0.046 | 0.059 | 0.075 | 0.104 | 0.068 | 0.0585 | 0.046 | 0.051 | 9 |
P3 | 0.029 | 0.043 | 0.058 | 0.052 | 0.082 | 0.032 | 0.025 | 0.094 | 0.099 | 0.088 | 0.127 | 0.059 | 0.054 | 0.069 | 0.041 | 0.1313 | 0.060 | 0.067 | 2 |
P4 | 0.020 | 0.043 | 0.058 | 0.025 | 0.055 | 0.059 | 0.025 | 0.057 | 0.040 | 0.066 | 0.068 | 0.059 | 0.054 | 0.046 | 0.027 | 0.0875 | 0.046 | 0.051 | 10 |
P5 | 0.020 | 0.034 | 0.039 | 0.035 | 0.036 | 0.044 | 0.025 | 0.035 | 0.029 | 0.047 | 0.033 | 0.059 | 0.023 | 0.046 | 0.054 | 0.0420 | 0.036 | 0.040 | 13 |
P6 | 0.020 | 0.043 | 0.014 | 0.009 | 0.015 | 0.012 | 0.011 | 0.019 | 0.017 | 0.032 | 0.022 | 0.021 | 0.032 | 0.028 | 0.020 | 0.0238 | 0.019 | 0.022 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayçin, E.; Erarslan, E. Should I Stay or Should I Go? Mapping the Key Drivers of Skilled Migration Using Fuzzy Multi-Criteria Decision Methodology. Societies 2025, 15, 269. https://doi.org/10.3390/soc15100269
Ayçin E, Erarslan E. Should I Stay or Should I Go? Mapping the Key Drivers of Skilled Migration Using Fuzzy Multi-Criteria Decision Methodology. Societies. 2025; 15(10):269. https://doi.org/10.3390/soc15100269
Chicago/Turabian StyleAyçin, Ejder, and Esra Erarslan. 2025. "Should I Stay or Should I Go? Mapping the Key Drivers of Skilled Migration Using Fuzzy Multi-Criteria Decision Methodology" Societies 15, no. 10: 269. https://doi.org/10.3390/soc15100269
APA StyleAyçin, E., & Erarslan, E. (2025). Should I Stay or Should I Go? Mapping the Key Drivers of Skilled Migration Using Fuzzy Multi-Criteria Decision Methodology. Societies, 15(10), 269. https://doi.org/10.3390/soc15100269