Bayesian Estimation of the Variation in Strength and Aerobic Physical Performances in Young Eumenorrheic Female College Students during a Menstrual Cycle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedure and Instruments
2.3.1. Experimental Protocol
2.3.2. Anthropometry
2.3.3. Warm-Up and Testing Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Aerobic Capacity Time Trial Performance
4.2. Maximal Strength or Strength Endurance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McNulty, K.L.; Elliott-Sale, K.J.; Dolan, E.; Swinton, P.A.; Ansdell, P.; Goodall, S.; Thomas, K.; Hicks, K.M. The Effects of Menstrual Cycle Phase on Exercise Performance in Eumenorrheic Women: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 1813–1827. [Google Scholar] [CrossRef]
- Oosthuyse, T.; Bosch, A.N. The effect of the menstrual cycle on exercise metabolism: Implications for exercise performance in eumenorrhoeic women. Sports Med. 2010, 40, 207–227. [Google Scholar] [CrossRef]
- Mihm, M.; Gangooly, S.; Muttukrishna, S. The normal menstrual cycle in women. Anim. Reprod. Sci. 2011, 124, 229–236. [Google Scholar] [CrossRef]
- Ling-Ling, E.; Xu, W.-H.; Feng, L.; Liu, Y.; Cai, D.-Q.; Wen, N.; Zheng, W.-J. Estrogen enhances the bone regeneration potential of periodontal ligament stem cells derived from osteoporotic rats and seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Int. J. Mol. Med. 2016, 37, 1475–1486. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M. Female hormones: Do they influence muscle and tendon protein metabolism? Proc. Nutr. Soc. 2018, 77, 32–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, D. Adaptations to anaerobic training programs. In Essentials of strength Training and Conditioning, 4th ed.; Haff, G.G., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2016; pp. 87–114. [Google Scholar]
- Chidi-Ogbolu, N.; Baar, K. Effect of Estrogen on Musculoskeletal Performance and Injury Risk. Front. Physiol. 2019, 9, 1834. [Google Scholar] [CrossRef]
- Elliott-Sale, K.; Pitchers, G. Considerations for coaches training female athletes. Prof. Strength Cond. 2019, 55, 19–30. [Google Scholar]
- Ida, A.H.; Arja, L.T.U.; Trent, S.; Dan, B.; Antti, A.M.; Louise, M.B. Low Energy Availability Is Difficult to Assess but Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Giacomoni, M.; Bernard, T.; Gavarry, O.; Altare, S.; Falgairette, G. Influence of the menstrual cycle phase and menstrual symptoms on maximal anaerobic performance. Med. Sci. Sports Exerc. 2000, 32, 486–492. [Google Scholar] [CrossRef]
- Smekal, G.; von Duvillard, S.P.; Frigo, P.; Tegelhofer, T.; Pokan, R.; Hofmann, P.; Tschan, H.; Baron, R.; Wonisch, M.; Renezeder, K.; et al. Menstrual cycle: No effect on exercise cardiorespiratory variables or blood lactate concentration. Med. Sci. Sports Exerc. 2007, 39, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, M.M.; Shultz, S.J. Isometric knee-extension and knee-flexion torque production during early follicular and postovulatory phases in recreationally active women. J. Athl. Train. 2010, 45, 586–593. [Google Scholar] [CrossRef] [Green Version]
- Tsampoukos, A.; Peckham, E.A.; James, R.; Nevill, M.E. Effect of menstrual cycle phase on sprinting performance. Eur. J. Appl. Physiol. 2010, 109, 659–667. [Google Scholar] [CrossRef]
- Shaharudin, S.; Ghosh, A.K.; Ismail, A.A. Anaerobic capacity of physically active eumenorrheic females at mid-luteal and mid-follicular phases of ovarian cycle. J. Sports Med. Phys. Fit. 2011, 51, 576–582. [Google Scholar]
- Vaiksaar, S.; Jürimäe, J.; Mäestu, J.; Purge, P.; Kalytka, S.; Shakhlina, L.; Jürimäe, T. No effect of menstrual cycle phase and oral contraceptive use on endurance performance in rowers. J. Strength Cond. Res. 2011, 25, 1571–1578. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Dalui, R. Endurance capacity and cardiorespiratory responses in sedentary females during different phases of menstrual cycle. Kathmandu Univ. Med. J. 2012, 10, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Janse, D.E.J.X.A.; Thompson, M.W.; Chuter, V.H.; Silk, L.N.; Thom, J.M. Exercise performance over the menstrual cycle in temperate and hot, humid conditions. Med. Sci. Sports Exerc. 2012, 44, 2190–2198. [Google Scholar] [CrossRef]
- Gordon, D.; Hughes, F.; Young, K.; Scruton, A.; Keiller, D.; Caddy, O.; Baker, J.; Barnes, R. The effects of menstrual cycle phase on the development of peak torque under isokinetic conditions. Isokinet. Exerc. Sci. 2013, 21, 285–291. [Google Scholar] [CrossRef]
- Casey, E.; Hameed, F.; Dhaher, Y.Y. The muscle stretch reflex throughout the menstrual cycle. Med. Sci. Sports Exerc. 2014, 46, 600–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenan, M.S.; Hackney, A.C.; Griffin, L. Maximal force and tremor changes across the menstrual cycle. Eur. J. Appl. Physiol. 2016, 116, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Wiecek, M.; Szymura, J.; Maciejczyk, M.; Cempla, J.; Szygula, Z. Effect of sex and menstrual cycle in women on starting speed, anaerobic endurance and muscle power. Physiol. Int. 2016, 103, 127–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallavi, L.C.; UJ, D.S.; Shivaprakash, G. Assessment of Musculoskeletal Strength and Levels of Fatigue during Different Phases of Menstrual Cycle in Young Adults. J. Clin. Diagn. Res. 2017, 11, cc11–cc13. [Google Scholar] [CrossRef]
- Gordon, D.; Scruton, A.; Barnes, R.; Baker, J.; Prado, L.; Merzbach, V. The effects of menstrual cycle phase on the incidence of plateau at VO2max and associated cardiorespiratory dynamics. Clin. Physiol. Funct. Imaging 2018, 38, 689–698. [Google Scholar] [CrossRef]
- Otaka, M.; Chen, S.-M.; Zhu, Y.; Tsai, Y.-S.; Tseng, C.-Y.; Fogt, D.L.; Lim, B.-H.; Huang, C.-Y.; Kuo, C.-H. Does ovulation affect performance in tennis players? BMJ Open Sport Exerc. Med. 2018, 4, e000305. [Google Scholar] [CrossRef] [PubMed]
- Tounsi, M.; Jaafar, H.; Aloui, A.; Souissi, N. Soccer-related performance in eumenorrheic Tunisian high-level soccer players: Effects of menstrual cycle phase and moment of day. J. Sports Med. Phys. Fit. 2018, 58, 497–502. [Google Scholar] [CrossRef]
- Ansdell, P.; Brownstein, C.G.; Škarabot, J.; Hicks, K.M.; Simoes, D.C.M.; Thomas, K.; Howatson, G.; Hunter, S.K.; Goodall, S. Menstrual cycle-associated modulations in neuromuscular function and fatigability of the knee extensors in eumenorrheic women. J. Appl. Physiol. 2019, 126, 1701–1712. [Google Scholar] [CrossRef]
- Rodrigues, P.; de Azevedo Correia, M.; Wharton, L. Effect of Menstrual Cycle on Muscle Strength. J. Exerc. Physiol. Online 2019, 22, 89–96. [Google Scholar]
- Romero-Moraleda, B.; Coso, J.D.; Gutiérrez-Hellín, J.; Ruiz-Moreno, C.; Grgic, J.; Lara, B. The Influence of the Menstrual Cycle on Muscle Strength and Power Performance. J. Hum. Kinet. 2019, 68, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Shalfawi, S.A.I.; Elkailani, G.M.K.; Khemesh, Z. The effects of menstrual cycle phases on strength and aerobic exercise performance in female physical education students. In Proceedings of the 12th Conference of Baltic Society of Sport Sciences, Vilnius, Lithuania, 25–26 April 2019; pp. 128–129. [Google Scholar]
- Mattu, A.T.; Iannetta, D.; MacInnis, M.J.; Doyle-Baker, P.K.; Murias, J.M. Menstrual and oral contraceptive cycle phases do not affect submaximal and maximal exercise responses. Scand. J. Med. Sci. Sports 2020, 30, 472–484. [Google Scholar] [CrossRef]
- Julian, R.; Hecksteden, A.; Fullagar, H.H.K.; Meyer, T. The effects of menstrual cycle phase on physical performance in female soccer players. PLoS ONE 2017, 12, e0173951. [Google Scholar] [CrossRef] [Green Version]
- Romero-Parra, N.; Barba-Moreno, L.; Rael, B.; Alfaro-Magallanes, V.M.; Cupeiro, R.; Díaz, Á.E.; Calderón, F.J.; Peinado, A.B. Influence of the Menstrual Cycle on Blood Markers of Muscle Damage and Inflammation Following Eccentric Exercise. Int. J. Environ. Res. Public Health 2020, 17, 1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sipavičienė, S.; Daniusevičiutė, L.; Klizienė, I.; Kamandulis, S.; Skurvydas, A. Effects of estrogen fluctuation during the menstrual cycle on the response to stretch-shortening exercise in females. Biomed. Res. Int. 2013, 2013, 243572. [Google Scholar] [CrossRef] [PubMed]
- Kruschke, J.K. Bayesian Estimation supersedes the t test. J. Exp. Psychol. Gen. 2013, 142, 573–603. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.E.; Angus, D.J.; Febbraio, M.A. Glucose kinetics and exercise performance during phases of the menstrual cycle: Effect of glucose ingestion. Am. J. Physiol. Endocrinol. Metab. 2001, 281, E817–E825. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, J.J.; Reilly, T. The effect of menstrual cycle on 2000-m rowing ergometry performance. Eur. J. Sport Sci. 2008, 8, 351–357. [Google Scholar] [CrossRef]
- Oosthuyse, T.; Bosch, A.N.; Jackson, S. Cycling time trial performance during different phases of the menstrual cycle. Eur. J. Appl. Physiol. 2005, 94, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Buffenstein, R.; Poppitt, S.D.; McDevitt, R.M.; Prentice, A.M. Food intake and the menstrual cycle: A retrospective analysis, with implications for appetite research. Physiol. Behav. 1995, 58, 1067–1077. [Google Scholar] [CrossRef]
- Miller, R.M.; Chambers, T.L.; Burns, S.; Godard, M. Validating InBody® 570 Multi-frequency Bioelectrical Impedance Analyzer versus DXA for Body Fat Percentage Analysis: 3576 Board #15 June 4, 8: 00 AM–9: 30 AM. Med. Sci. Sports Exerc. 2016, 48 (Suppl. 1), 991. [Google Scholar]
- Moir, G.L. Muscular strength. In NSCA’s Guide to Tests and Assessments; Miller, T., Ed.; Human Kinetics: Champaign, IL, USA, 2012; pp. 147–191. [Google Scholar]
- Moir, G.L. Muscular endurance. In NSCA’s Guide to Tests and Assessments, Miller, T., Ed.; Human Kinetics: Champaign, IL, USA, 2012; pp. 193–216. [Google Scholar]
- Disch, J.; Frankiewicz, R.; Jackson, A. Construct validation of distance run tests. Res. Q. 1975, 46, 169–176. [Google Scholar] [CrossRef]
- Shalfawi, S.A.I. Bayesian Estimation of Correlation between Measures of Blood Pressure Indices, Aerobic Capacity and Resting Heart Rate Variability Using Markov Chain Monte Carlo Simulation and 95% High Density Interval in Female School Teachers. Int. J. Environ. Res. Public Health 2020, 17, 6750. [Google Scholar] [CrossRef]
- Santos Fernandez, E.; Wu, P.; Mengersen, K. Bayesian statistics meets sports: A comprehensive review. J. Quant. Anal. Sports 2019, 15, 289–312. [Google Scholar] [CrossRef]
- Plummer, M. JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), Vienna, Austria, 20–22 March 2003. [Google Scholar]
- Kruschke, J.K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, 2nd ed.; Elsevier: Oxford, UK, 2015. [Google Scholar]
- Gelman, A.; Shirley, K. Inference from simulations and monitoring convergence. In Handbook of Markov Chain Monte Carlo; Brooks, S., Gelman, A., Jones, G., Meng, X., Eds.; Chapm an & Hall/CRC: Boca Raton, FL, USA, 2011; pp. 163–174. [Google Scholar]
- Kruschke, J.K.; Liddell, T.M. Bayesian data analysis for newcomers. Psychon. Bull. Rev. 2018, 25, 155–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruschke, J.K. Rejecting or Accepting Parameter Values in Bayesian Estimation. Adv. Methods Pract. Psychol. Sci. 2018, 1, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Gordon, D.; Hopkins, S.; King, C.; Keiller, D.; Barnes, R.J. Incidence of the plateau at VO2max is dependent on the anaerobic capacity. Int. J. Sports Med. 2011, 32, 1–6. [Google Scholar] [CrossRef]
- Shalfawi, S.A.I. Statistical Use in Applied Sport Research: Methodological and Ethical Challenges. Strength Cond. J. 2016, 38, 88–91. [Google Scholar] [CrossRef]
- McLay, R.T.; Thomson, C.D.; Williams, S.M.; Rehrer, N.J. Carbohydrate loading and female endurance athletes: Effect of menstrual-cycle phase. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 189–205. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.J.; Keel, J.C.; Greenberg, B.D.; Adams, L.F.; Schmidt, P.J.; Rubinow, D.A.; Wassermann, E.M. Menstrual cycle effects on cortical excitability. Neurology 1999, 53, 2069–2072. [Google Scholar] [CrossRef]
Variable | T1 | T2 | T3 | T4 |
---|---|---|---|---|
Body mass (kg) | 61.1 ± 11.7 | 61.2 ± 11.8 | 61.0 ± 11.6 | 61.4 ± 11.6 |
1RM bench press (kg) | 33.2 ± 7.4 | 35.4 ± 7.1 | 32.1 ± 5.6 | 33.7 ± 8.7 |
1RM leg press (kg) | 98.1 ± 30.2 | 104.7 ± 36.0 | 95.3 ± 3.98 | 101.6 ± 35.7 |
Push-ups (n) | 20.3 ± 7.1 | 21.3 ± 9.7 | 21.2 ± 7.2 | 19.3 ± 7.6 |
Leg press (n) | 15.3 ± 6.4 | 15.9 ± 4.8 | 16.0 ± 8.4 | 13.4 ± 7.7 |
1600 m (s) | 613 ± 104 | 589 ± 80 | 617 ± 94 | 612 ± 76 |
Variable | Mean Deff. ± (95% HDI) | SD Diff. ± (95% HDI) | ES | Rope (OR%) |
---|---|---|---|---|
Body mass (T1 vs. T2) (kg) | −0.14 (−11.2–10.7) | 0.22 (−9.9–9.7) | −0.01 | 51.2 < 0 < 48.8 |
Body mass (T1 vs. T3) (kg) | 0.02 (−10.7–10.9) | −0.056 (−9.5–9.6) | 0.02 | 49.9 < 0 < 50.1 |
Body mass (T1 vs. T4) (kg) | −0.31 (−11–10.7) | 0.05 (−9.4–9.9) | 0.00 | 52.3 < 0 < 47.7 |
Body mass (T2 vs. T3) (kg) | 0.12 (−10.5–11.4) | −0.09 (−9.6–9.8) | 0.02 | 49.2 < 0 < 50.8 |
Body mass (T2 vs. T4) (kg) | −0.14 (−11.1–10.9) | 0.05 (−9.3–10.1) | −0.01 | 51.4 < 0 < 48.6 |
Body mass (T3 vs. T4) (kg) | 0.29 (−11–10.7) | 0.04 (−9.9–9.3) | 0.02 | 52.1 < 0 < 47.9 |
1RM BP (T1 vs. T2) (kg) | −2.13 (−9.1–4.7) | 0.58 (−5.6–6.3) | −0.27 | 73.7 < 0 < 26.3 |
1RM BP (T1 vs. T3) (kg) | 1.31 (−4.9–7.5) | 1.52 (−3.2–7.53) | 0.17 | 33 < 0 < 67 |
1RM BP (T1 vs. T4) (kg) | −0.16 (−7.8–7.4) | −1.2 (−8.1–5.3) | −0.03 | 51.5 < 0 < 48.5 |
1RM BP (T2 vs. T3) (kg) | 3.39 (−2.7–9.4) | 1.28 (−3.4–7.1) | 0.44 | 12.7 < 0 < 87.3 |
1RM BP (T2 vs. T4) (kg) | 1.95 (−5.5–9.4) | −1.41 (−8.0–4.9) | 0.22 | 29.2 < 0 < 70.8 |
1RM BP (T3 vs. T4) (kg) | −1.42 (−8.2–5.4) | −2.64 (−9.4–2.5) | −0.16 | 66.4 < 0 < 33.6 |
1RM LP (T1 vs. T2) (kg) | −5.28 (−36.6–24.9) | −3.66 (−31.5–23.4) | −0.17 | 64 < 0 < 36 |
1RM LP (T1vs. T3) (kg) | 3.79 (−28.9–37.4) | −7.59 (−39.7–18.1) | 0.15 | 40.7 < 0 < 59.3 |
1RM LP (T1 vs. T4) (kg) | −2.87 (−34.3–28) | −4.68 (−33.5–20.6) | −0.03 | 57.4 < 0 < 42.6 |
1RM LP (T2 vs. T3) (kg) | 9.3 (−25.9–43.5) | −3.97 (−36–25.8) | 0.26 | 28.8 < 0 < 71.2 |
1RM LP (T2 vs. T4) (kg) | 2.59 (−30.4–35.4) | −0.76 (−31.1–27.8) | 0.11 | 43.4 < 0 < 56.6 |
1RM LP (T3 vs. T4) (kg) | −6.54 (−41.5–29.6) | 1.9 (−26.8–35.5) | −0.16 | 64.7 < 0 < 35.3 |
PU (T1 vs. T2) (n) | −0.66 (−8.5–7.2) | −2.31 (−10–3.8) | −0.10 | 56.7 < 0 < 43.3 |
PU (T1 vs. T3) (n) | −0.73 (−7.1–5.7) | −0.34 (−5.9–5.7) | −0.09 | 59.1 < 0 < 40.9 |
PU (T1 vs. T4) (n) | 0.62 (−6.1–7.5) | −0.70 (−6.8–5.2) | −0.09 | 42.9 < 0 < 57.1 |
PU (T2 vs. T3) (n) | −0.11 (−8.0–7.6) | 2.38 (−4.0–9.8) | −0.03 | 51.5 < 0 < 48.5 |
PU (T2 vs. T4) (n) | 1.31 (−6.9–9.3) | 1.84 (−4.8–9.4) | 0.13 | 37.5 < 0 < 62.5 |
PU (T3 vs. T4) (n) | 1.34 (−5.4–8.3) | −0.63 (−6.8–5.3) | 0.19 | 34.8 < 0 < 65.2 |
LP (T1 vs. T2) (n) | −0.92 (−5.8–3.4) | 0.74 (−3.6–5.7) | −0.17 | 65.9 < 0 < 34.1 |
LP (T1 vs. T3) (n) | −0.46 (−7.2–6.2) | −2.22 (−9.0–3.3) | −0.06 | 54.6 < 0 < 45.4 |
LP (T1 vs. T4) (n) | 2.26 (−3.4–8.0) | −1.16 (−7.0–4.0) | 0.34 | 20.7 < 0 < 79.3 |
LP (T2 vs. T3) (n) | 0.21 (−6.4–6.5) | −3.26 (−9.8–1.3) | 0.03 | 46.6 < 0 < 53.4 |
LP (T2 vs. T4) (n) | 2.97 (−2.9–8.7) | −2.27 (−8.0–2.5) | 0.41 | 14.7 < 0 < 85.3 |
LP (T3 vs. T4) (n) | 2.61 (−4.6–10.1) | 1.03 (−5.5–7.8) | 0.29 | 22.9 < 0 < 77.1 |
1600 m (T1 vs. T2) (s) | 24.9 (−65.5–112) | 21.1 (−48.6–103) | 0.26 | 28.4 < 0 < 71.6 |
1600 m (T1 vs. T3) (s) | −2.60 (−95.6–93.8) | 8.33 (−69.8–94) | −0.02 | 52.2 < 0 < 47.8 |
1600 m (T1 vs. T4) (s) | 0.04 (−88.8–85.4) | 29.4 (−38.9–111) | 0.04 | 49.7 < 0 < 50.3 |
1600 m (T2 vs. T3) (s) | −27.5 (−113–53.6) | −12.1 (−87.8–55.5) | −0.32 | 75.2 < 0 < 24.8 |
1600 m (T2 vs. T4) (s) | −25.1 (−99.1–50.8) | 5.38 (−58.7–69.8) | 0.30 | 75.4 < 0 < 24.6 |
1600 m (T3 vs. T4) (s) | 2.45 (−76.6–85.5) | 17.8 (−49.2–91.9) | 0.04 | 47.6 < 0 < 52.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shalfawi, S.A.I.; El Kailani, G.M.K. Bayesian Estimation of the Variation in Strength and Aerobic Physical Performances in Young Eumenorrheic Female College Students during a Menstrual Cycle. Sports 2021, 9, 130. https://doi.org/10.3390/sports9090130
Shalfawi SAI, El Kailani GMK. Bayesian Estimation of the Variation in Strength and Aerobic Physical Performances in Young Eumenorrheic Female College Students during a Menstrual Cycle. Sports. 2021; 9(9):130. https://doi.org/10.3390/sports9090130
Chicago/Turabian StyleShalfawi, Shaher A. I., and Ghazi M. K. El Kailani. 2021. "Bayesian Estimation of the Variation in Strength and Aerobic Physical Performances in Young Eumenorrheic Female College Students during a Menstrual Cycle" Sports 9, no. 9: 130. https://doi.org/10.3390/sports9090130
APA StyleShalfawi, S. A. I., & El Kailani, G. M. K. (2021). Bayesian Estimation of the Variation in Strength and Aerobic Physical Performances in Young Eumenorrheic Female College Students during a Menstrual Cycle. Sports, 9(9), 130. https://doi.org/10.3390/sports9090130