Acute Static Stretching Results in Muscle-Specific Alterations amongst the Hamstring Muscles
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Measurements
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bandy, W.D.; Irion, J.M. The effect of time on static stretch on the flexibility of the hamstring muscles. Phys. Ther. 1994, 74, 842–845. [Google Scholar] [CrossRef]
- Kokkonen, J.; Nelson, A.G.; Eldredge, C.; Winchester, J.B. Chronic static stretching improves exercise performance. Med. Sci. Sports Exerc. 2007, 39, 1825–1831. [Google Scholar] [CrossRef]
- Herda, T.J.; Cramer, J.T.; Ryan, E.D.; Mchugh, M.P.; Stout, J.R. Acute effects of static versus dynamic stretching on isometric peak torque, electromyography, and mechanomyography of the biceps femoris muscle. J. Strength Cond. Res. 2008, 22, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Babault, N.; Kouassi, B.Y.L.; Desbrosses, K. Acute effects of 15 min static or contract-relax stretching modalities on plantar flexors neuromuscular properties. J. Sci. Med. Sport 2010, 13, 247–252. [Google Scholar] [CrossRef]
- Avela, J.; Kyröläinen, H.; Komi, P. Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J. Appl. Physiol. 1999, 86, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Opplert, J.; Genty, J.-B.; Babault, N. Do Stretch Durations Affect Muscle Mechanical and Neurophysiological Properties? Int. J. Sports Med. 2016, 37, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Matsumoto, M.; Umemura, Y. Decrements in stiffness are restored within 10 min. Int. J. Sports Med. 2013, 34, 484–490. [Google Scholar] [CrossRef]
- Kubo, K.; Kanehisa, H.; Kawakami, Y.; Fukunaga, T. Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J. Appl. Physiol. 2001, 90, 520–527. [Google Scholar] [CrossRef]
- Bouvier, T.; Opplert, J.; Cometti, C.; Babault, N. Acute effects of static stretching on muscle–tendon mechanics of quadriceps and plantar flexor muscles. Eur. J. Appl. Physiol. 2017, 117, 1309–1315. [Google Scholar] [CrossRef]
- Babault, N.; Bazine, W.; Deley, G.; Paizis, C.; Lattier, G. Direct relation of acute effects of static stretching on isokinetic torque production with initial flexibility level. Int. J. Sports Physiol. Perform. 2015, 10, 117–119. [Google Scholar] [CrossRef]
- Abellaneda, S.; Guissard, N.; Duchateau, J. The relative lengthening of the myotendinous structures in the medial gastrocnemius during passive stretching differs among individuals. J. Appl. Physiol. 2009, 106, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Hirata, K.; Miyamoto-Mikami, E.; Kanehisa, H.; Miyamoto, N. Muscle-specific acute changes in passive stiffness of human triceps surae after stretching. Eur. J. Appl. Physiol. 2016, 116, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Ikezoe, T.; Takeno, Y.; Ichihashi, N. Acute and prolonged effect of static stretching on the passive stiffness of the human gastrocnemius muscle tendon unit in vivo. J. Orthop. Res. 2011, 29, 1759–1763. [Google Scholar] [CrossRef] [PubMed]
- Lieber, R.L.; Brown, C.G.; Trestik, C.L. Model of muscle-tendon interaction during frog semitendinosis fixed-end contractions. J. Biomech. 1992, 25, 421–428. [Google Scholar] [CrossRef]
- Winter, S.L.; Challis, J.H. The Force-Length Curves of the Human Rectus Femoris and Gastrocnemius Muscles in Vivo. J. Appl. Biomech. 2010, 26, 45–51. [Google Scholar] [CrossRef][Green Version]
- Kellis, E.; Galanis, N.; Natsis, K.; Kapetanos, G. Validity of architectural properties of the hamstring muscles: Correlation of ultrasound findings with cadaveric dissection. J. Biomech. 2009, 42, 2549–2554. [Google Scholar] [CrossRef]
- Le Sant, G.; Ates, F.; Brasseur, J.-L.; Nordez, A. Elastography Study of Hamstring Behaviors during Passive Stretching. PLoS ONE 2015, 10, e0139272. [Google Scholar] [CrossRef]
- Kumazaki, T.; Ehara, Y.; Sakai, T. Anatomy and physiology of hamstring injury. Int. J. Sports Med. 2012, 33, 950–954. [Google Scholar]
- Magnusson, S.P.; Aagaard, P.; Nielson, J.J. Passive energy return after repeated stretches of the hamstring muscle-tendon unit. Med. Sci. Sports Exerc. 2000, 32, 1160–1164. [Google Scholar] [CrossRef]
- Kellis, E. Biceps femoris and semitendinosus tendon/aponeurosis strain during passive and active (isometric) conditions. J. Electromyogr. Kinesiol. 2016, 26, 111–119. [Google Scholar] [CrossRef]
- Ryan, E.D.; Herda, T.J.; Costa, P.B.; Defreitas, J.M.; Beck, T.W.; Stout, J.; Cramer, J.T. Determining the minimum number of passive stretches necessary to alter musculotendinous stiffness. J. Sports Sci. 2009, 27, 957–961. [Google Scholar] [CrossRef]
- Morse, C.I.; Degens, H.; Seynnes, O.R.; Maganaris, C.N.; Jones, D.A. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J. Physiol. 2008, 586, 97–106. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Chaabene, H.; Behm, D.G.; Negra, Y.; Granacher, U. Acute Effects of Static Stretching on Muscle Strength and Power: An Attempt to Clarify Previous Caveats. Front. Physiol. 2019, 10, 1468. [Google Scholar] [CrossRef] [PubMed]
- Cannavan, D.; Coleman, D.R.; Blazevich, A.J. Lack of effect of moderate-duration static stretching on plantar flexor force production and series compliance. Clin. Biomech. 2012, 27, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Kay, A.D.; Blazevich, A.J. Moderate-duration static stretch reduces active and passive plantar flexor moment but not Achilles tendon stiffness or active muscle length. J. Appl. Physiol. 2009, 106, 1249–1256. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, N.; Hirata, K.; Kanehisa, H. Effects of hamstring stretching on passive muscle stiffness vary between hip flexion and knee extension maneuvers. Scand. J. Med. Sci. Sports 2017, 27, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Konrad, A.; Budini, F.; Tilp, M. Acute effects of constant torque and constant angle stretching on the muscle and tendon tissue properties. Eur. J. Appl. Physiol. 2017, 117, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.J. The integrated function of muscles and tendons during locomotion. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2002, 133, 1087–1099. [Google Scholar] [CrossRef]
- Hollville, E.; Nordez, A.; Guilhem, G.; Lecompte, J.; Rabita, G. Interactions between fascicles and tendinous tissues in gastrocnemius medialis and vastus lateralis during drop landing. Scand. J. Med. Sci. Sports 2019, 29, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Arnold, E.M.; Ward, S.R.; Lieber, R.L.; Delp, S.L. A Model of the Lower Limb for Analysis of Human Movement. Ann. Biomed. Eng. 2010, 38, 269–279. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, C.; Zhang, Z. Non-uniform Stiffness within Gastrocnemius-Achilles tendon Complex Observed after Static Stretching. J. Sports Sci. Med. 2019, 18, 454–461. [Google Scholar] [PubMed]
- Magnusson, S.P.; Narici, M.V.; Maganaris, C.N.; Kjaer, M. Human tendon behaviour and adaptation, in vivo. J. Physiol. 2008, 586, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Kellis, E. Biceps femoris fascicle length during passive stretching. J. Electromyogr. Kinesiol. 2018, 38, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Garrett, W.E.; Califf, J.C.; Bassett, F.H. Histochemical correlates of hamstring injuries. Am. J. Sports Med. 1984, 12, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): A prospective cohort study. Br. J. Sports Med. 2016, 50, 1524–1535. [Google Scholar] [CrossRef] [PubMed]
- Rehorn, M.R.; Blemker, S.S. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J. Biomech. 2010, 43, 2574–2581. [Google Scholar] [CrossRef]
- Kay, A.D.; Blazevich, A.J. Effect of acute static stretch on maximal muscle performance: A systematic review. Med. Sci. Sports Exerc. 2012, 44, 154–164. [Google Scholar] [CrossRef]
- Behm, D.G.; Chaouachi, A. A review of the acute effects of static and dynamic stretching on performance. Eur. J. Appl. Physiol. 2011, 111, 2633–2651. [Google Scholar] [CrossRef]
- Trajano, G.S.; Nosaka, K.; Blazevich, A.J. Neurophysiological Mechanisms Underpinning Stretch-Induced Force Loss. Sports Med. 2017, 47, 1531–1541. [Google Scholar] [CrossRef]
Parameter | Effect | F | p | Partial η2 | Power |
---|---|---|---|---|---|
MVIT | Session | 0.955 | 0.3493 | 0.079 | 0.145 |
Time | 13.553 | 0.0036 * | 0.552 | 0.917 | |
Session × Time | 2.033 | 0.1816 | 0.156 | 0.256 | |
Passive torque | Session | 2.832 | 0.120 | 0.204 | 0.336 |
Time | 25.613 | 0.0003 * | 0.699 | 0.996 | |
Session × Time | 4.796 | 0.051 | 0.303 | 0.515 | |
MTJ displacement | Muscle | 10.803 | 0.0072 * | 0.495 | 0.848 |
Time | 0.205 | 0.659 | 0.018 | 0.069 | |
Muscle × Time | 8.260 | 0.0151 * | 0.429 | 0.744 |
Parameter | Session | PRE | POST | % Change |
---|---|---|---|---|
MVIT (N.m) * | Biceps femoris | 106.3 ± 18.7 | 100.0 ± 19.9 | −5.9 ± 10.3 |
(95% CI) | (94.4; 118.2) | (87.3; 112.6) | (−12.4; 0.7) | |
Semitendinosus | 114.7 ± 21.7 | 101.7 ± 19.6 | −10.7 ± 10.5 | |
(95% CI) | (100.9; 128.5) | (89.2; 114.1) | (−17.4; −4.1) | |
Passive torque (N.m) * | Biceps femoris | 46.3 ± 15.8 | 29.6 ± 12.8 | −34.8 ± 18.2 |
(95% CI) | (36.3; 56.4) | (21.5; 37.8) | (−46.4; −23.2) | |
Semitendinosus | 45.9 ± 12.8 | 35.8 ± 12.4 | −22.1 ± 14.4 | |
(95% CI) | (37.7; 54.0) | (27.9; 43.7) | (−31.2; −13.0) | |
MTJ displacement (mm) | Biceps femoris | 18.6 ± 3.6 | 22.1 ± 4.8 | 22.4 ± 31.6 |
(95% CI) | (16.2; 20.9) | (19.1; 25.2) | (2.3; 42.5) | |
Semitendinosus | 27.0 ± 5.2 † | 24.3 ± 4.3 | −8.4 ± 17.9 † | |
(95% CI) | (23.7; 30.3) | (21.5; 27.0) | (−19.7; 2.9) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riccetti, M.; Opplert, J.; Durigan, J.L.Q.; Cometti, C.; Babault, N. Acute Static Stretching Results in Muscle-Specific Alterations amongst the Hamstring Muscles. Sports 2020, 8, 119. https://doi.org/10.3390/sports8090119
Riccetti M, Opplert J, Durigan JLQ, Cometti C, Babault N. Acute Static Stretching Results in Muscle-Specific Alterations amongst the Hamstring Muscles. Sports. 2020; 8(9):119. https://doi.org/10.3390/sports8090119
Chicago/Turabian StyleRiccetti, Manon, Jules Opplert, Joao L. Q. Durigan, Carole Cometti, and Nicolas Babault. 2020. "Acute Static Stretching Results in Muscle-Specific Alterations amongst the Hamstring Muscles" Sports 8, no. 9: 119. https://doi.org/10.3390/sports8090119
APA StyleRiccetti, M., Opplert, J., Durigan, J. L. Q., Cometti, C., & Babault, N. (2020). Acute Static Stretching Results in Muscle-Specific Alterations amongst the Hamstring Muscles. Sports, 8(9), 119. https://doi.org/10.3390/sports8090119