The Test-Retest Reliability of New Generation Power Indices of Wingate All-Out Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Procedures
2.4. Familiarization Sessions
2.5. Wingate All-Out Test Administrations
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bar-Or, O. The Wingate Anaerobic Test: An Update on Methodology, Reliability and Validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.F.; Carriere, L.; Hebestreit, H.; Bar, O. Anaerobic Endurance and Peak Muscle Power in Children with Spastic Cerebral Palsy. Am. J. Dis. Child. 1992, 146, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Miszko, T.A.; Cress, M.E.; Slade, J.M.; Covey, C.J.; Agrawal, S.K.; Doerr, C.E. Effect of Strength and Power Training on Physical Function in Community-Dwelling Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, M171–M175. [Google Scholar] [CrossRef]
- Lewis, S.F.; Haller, R.G. Physiologic Measurement of Exercise and Fatigue with Special Reference to Chronic Fatigue Syndrome. Clin. Infect. Dis. 1991, 13, S98–S108. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Epstein, S.; Einbinder, M.; Weinstein, Y. A Comparison Between the Wingate Anaerobic Power Test to Both Vertical Jump and Line Drill Tests in Basketball Players. J. Strength Cond. Res. 2000, 14, 261. [Google Scholar] [CrossRef]
- Chia, M.; Armstrong, N.; Childs, D. The Assessment of Children’s Anaerobic Performance Using Modifications of the Wingate Anaerobic Test. Pediatr. Exerc. Sci. 1997, 9, 80–89. [Google Scholar] [CrossRef]
- Armstrong, N.; Welsman, J.R.; Kirby, B.J. Performance on the Wingate Anaerobic Test and Maturation. Pediatr. Exerc. Sci. 1997, 9, 253–261. [Google Scholar] [CrossRef]
- Evans, J.A.; Quinney, H.A. Determination of resistance settings for anaerobic power testing. Can. J. Appl. Sport Sci. 1981, 6, 53–56. [Google Scholar] [PubMed]
- Hachana, Y.; Attia, A.; Nassib, S.; Shephard, R.J.; Chelly, M.S. Test-Retest Reliability, Criterion-Related Validity, and Minimal Detectable Change of Score on an Abbreviated Wingate Test for Field Sport Participants. J. Strength Cond. Res. 2012, 26, 1324–1330. [Google Scholar] [CrossRef] [PubMed]
- Inbar, O.; Bar-Or, O.; Skinner, J.S. The Development of the Wingate Anaerobic Test. In The Wingate Anaerobic Test; Human Kinetics: Champaign, IL, USA, 1996; pp. 1–7. ISBN 0873229460. [Google Scholar]
- Patton, J.F.; Duggan, A. An evaluation of tests of anaerobic power. Aviat. Space Environ. Med. 1987, 58, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Mora-Rodríguez, R. Validity of cycling peak power as measured by a short-sprint test versus the Wingate anaerobic test. Appl. Physiol. Nutr. Metab. 2006, 31, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Kaczkowski, W.; Montgomery, D.L.; Taylor, A.W.; Klissouras, V. The relationship between muscle fiber composition and maximal anaerobic power and capacity. J. Sports Med. Phys. Fitness 1982, 22, 407–413. [Google Scholar] [PubMed]
- Sands, W.A.; McNeal, J.R.; Ochi, M.T.; Urbanek, T.L.; Jemni, M.; Stone, M.H. Comparison of the Wingate and Bosco Anaerobic Tests. J. Strength Cond. Res. 2004, 18, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Stannarius, R.; Li, J.; Weissflog, W. Ferroelectric Smectic Phase Formed by Achiral Straight Core Mesogens. Phys. Rev. Lett. 2003, 90, 025502. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.C.; Sargeant, T.L. Laboratory and on-ice test comparisons of anaerobic power of ice hockey players. Can. J. Appl. Sport Sci. 1986, 11, 218–224. [Google Scholar] [PubMed]
- Jaafar, H.; Rouis, M.; Coudrat, L.; Attiogbé, E.; Vandewalle, H.; Driss, T. Effects of Load on Wingate Test Performances and Reliability. J. Strength Cond. Res. 2014, 28, 3462–3468. [Google Scholar] [CrossRef] [PubMed]
- Gullstrand, L.; Larsson, L. The Wingate Test; Monark Exercise AB: Eskilstuna, Sweden, 1999. [Google Scholar]
- LaVoie, N.; Dallaire, J.; Brayne, S.; Barrett, D. Anaerobic testing using the Wingate and Evans-Quinney protocols with and without toe stirrups. Can. J. Appl. Sport Sci. 1984, 9, 1–5. [Google Scholar] [PubMed]
- McLester, J.R.; Green, J.M.; Chouinard, J.L. Effects of Standing vs. Seated Posture on Repeated Wingate Performance. J. Strength Cond. Res. 2004, 18, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Dorel, S.; Couturier, A.; Lacur, J.-R.; Vandewalle, H.; Hautier, C.; Hug, F. Force-Velocity Relationship in Cycling Revisited. Med. Sci. Sports Exerc. 2009, 42, 1174–1183. [Google Scholar] [CrossRef] [PubMed]
- Ozkaya, O. Familiarization effects of an elliptical all-out test and the Wingate test based on mechanical power indices. J. Sports Sci. Med. 2013, 12, 521–525. [Google Scholar] [PubMed]
- Martin, J.C.; Wagner, B.M.; Coyle, E.F. Inertial-load method determines maximal cycling power in a single exercise bout. Med. Sci. Sports Exerc. 1997, 29, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Buttelli, O. Effect of fatigue on maximal velocity and maximal torque during short exhausting cycling. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Kyle, C.R.; Mastropaolo, J. Predicting racing bicyclist performance using the unbraked flywheel method of bicycle ergometry. In Biomechanics of Sport and Kinanthropometry; Landry, F, Orban, W., Eds.; Symposia Specialist: Miami, FL, USA, 1976; pp. 211–220. [Google Scholar]
- Sargeant, A.J.; Hoinville, E.; Young, A. Maximum leg force and power output during short-term dynamic exercise. J. Appl. Physiol. 1981, 51, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Hintzy, F.; Belli, A.; Grappe, F.; Rouillon, J.D. Optimal pedalling velocity characteristics during maximal and submaximal cycling in humans. Eur. J. Appl. Physiol. Occup. 1999, 79, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, A.J.; Casius, L.J.R. Which factors determine the optimal pedal rate in sprint cycling. Med. Sci. Sports Exerc. 2000, 32, 1927–1934. [Google Scholar] [CrossRef] [PubMed]
- Hautier, C.A.; Linossier, M.T.; Belli, A.; Lacour, J.R.; Arsac, L.M. Optimal velocity for maximal power production in non-isokinetic cycling is related to muscle fibre type composition. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 74, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Barfield, J.-P.; Sells, P.D.; Rowe, D.A.; Hanningan-Downs, K. Practice Effect of the Wingate Anaerobic Test. J. Strength Cond. Res. 2002, 16, 472–473. [Google Scholar] [CrossRef] [PubMed]
- Wittekind, A.L.; Micklewright, D.; Beneke, R. Teleoanticipation in all-out short duration cycling. Br. J. Sports Med. 2009, 45, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Ozkaya, O.; Colakoglu, M.; Ozgonenel, O.; Fowler, D.; Colakoglu, S.; Tekat, A. Wingate anaerobic testing with a modified electromagnetically braked elliptical trainer. Part I: Methodological considerations. Isokinet. Exerc. Sci. 2009, 17, 107–113. [Google Scholar] [CrossRef]
- Campanini, I.; Merlo, A. Reliabilty, smallest real difference and concurrent validity of indices computed from GRF components in gait of stroke patients. Gait Posture 2009, 30, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Martin Bland, J.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Schabort, E.J.; Hawley, J.A. Reliability of Power in Physical Performance Tests. Sports Med. 2001, 31, 211–234. [Google Scholar] [CrossRef] [PubMed]
- Monark Exercise, AB. Available online:. Available online: http://monarkexercise.se/support/all-models/?lang=en (accessed on 1 November 2017).
- Zajac, A.; Jarzabek, R.; Wařkiewicz, Z. The Diagnostic Value of the 10- and 30-Second Wingate Test for Competitive Athletes. J. Strength Cond. Res. 1999, 13, 16–19. [Google Scholar] [CrossRef]
- Pekünlü, E.; Ozkaya, O.; Yapicioglu, B. Drop in mechanical work: A highly reliable fatigue-related output in Wingate All-out Test. Isokinet. Exerc. Sci. 2016, 24, 25–31. [Google Scholar] [CrossRef]
- Ozkaya, O.; Colakoglu, M.; Kuzucu, E.O.; Delextrat, A. An Elliptical Trainer May Render the Wingate All-out Test More Anaerobic. J. Strength Cond. Res. 2014, 28, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Beneke, R.; Pollmann, C.; Bleif, I.; Leithäuser, R.M.; Hütler, H. How anaerobic is the wingate anaerobic test for humans? Eur. J. Appl. Physiol. 2002, 87, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Flansbjer, U.-B.; Holmbäck, A.M.; Downham, D.; Patten, C.; Lexell, J. Reliability of gait performance tests in men and women with hemiparesis after stroke. J. Rehabil. Med. 2005, 37, 75–82. [Google Scholar] [CrossRef] [PubMed]
Variable | Session 1 | Session 2 | ICC (95% CL) | Cohen’s d | SEM | SRD | SRD% | CV (95% CL) | SWC |
---|---|---|---|---|---|---|---|---|---|
PP5s (W) | 1060.33 ± 122.70 | 1065.92 ± 127.32 | 0.987 (0.974–0.994) | −0.05 | 9.95 | 0.28 | 2.69 | 0.97 (0.45–1.49) | 2.81 |
AP5s (W) | 710.90 ± 82.41 | 728.02 ± 88.83 | 0.984 (0.967–0.992) | −0.20 | 11.04 | 0.31 | 4.27 | 1.54 (0.58–2.12) | 3.12 |
LP5s (W) | 457.69 ± 74.29 | 472.52 ± 77.37 | 0.966 (0.931–0.984) | −0.20 | 12.28 | 0.34 | 7.66 | 2.77 (1.56–3.97) | 3.47 |
PD5s (W·s−1) | 20.09 ± 3.63 | 19.78 ± 3.29 | 0.970 (0.938–0.985) | 0.09 | 0.45 | 0.01 | 6.38 | 2.30 (1.29–3.31) | 0.13 |
FI5s (%) | 56.63 ± 6.53 | 55.59 ± 5.79 | 0.948 (0.893–0.975) | 0.17 | 1.08 | 0.03 | 5.23 | 1.89 (1.05–2.72) | 0.30 |
Variable | Session-1 | Session-2 | ICC (95% CL) | Cohen’s d | SEM | SRD | SRD% | CV (95% CL) | SWC |
---|---|---|---|---|---|---|---|---|---|
PP (W) | 1169.35 ± 142.57 | 1165.15 ± 142.16 | 0.986 (0.972–0.993) | −0.03 | 11.82 | 0.33 | 2.89 | 1.04 (0.52–1.56) | 3.34 |
tPP (s) | 1.17 ± 0.16 | 1.23 ± 0.20 | 0.730 (0.447–0.868) | −0.33 | 0.06 | 0.01 | 12.56 | 4.53 (2.07–7.00) | 0.02 |
AP (W) | 760.54 ± 84.68 | 764.41 ± 92.55 | 0.988 (0.976–0.994) | −0.04 | 6.97 | 0.19 | 2.48 | 0.89 (0.48–1.31) | 1.97 |
LP (W) | 401.46 ± 74.42 | 403.45 ± 73.02 | 0.944 (0.886–0.973) | −0.03 | 12.00 | 0.33 | 8.78 | 4.28 (0.74–7.81) | 4.52 |
PD (W·s−1) | 25.60 ± 4.47 | 25.08 ± 4.01 | 0.973 (0.945–0.987) | 0.12 | 0.53 | 0.01 | 5.92 | 3.21 (−0.07–6.49) | 0.24 |
FI (%) | 65.43 ± 6.41 | 64.48 ± 5.63 | 0.938 (0.873–0.970) | 0.15 | 1.09 | 0.03 | 4.64 | 2.82 (−0.52–6.15) | 0.07 |
vmax (rpm) | 148.54 ± 5.59 | 148.55 ± 5.71 | 0.957 (0.911–0.979) | −0.01 | 0.76 | 0.01 | 1.42 | 1.68 (−1.69–5.05) | 0.70 |
P@vmax (W) | 1240.90 ± 180.46 | 1238.16 ± 184.42 | 0.755 (0.498–0.880) | 0.02 | 63.01 | 1.75 | 14.63 | 6.55 (2.81–10.28) | 22.74 |
t@vmax (ms) | 2.30 ± 0.51 | 2.31 ± 0.61 | 0.730 (0.508–0.883) | −0.02 | 0.18 | 0.01 | 22.43 | 8.88 (3.89–13.86) | 0.06 |
Pdec (W) | 747.33 ± 138.10 | 740.86 ± 123.59 | 0.967 (0.932–0.984) | 0.05 | 17.30 | 0.48 | 6.41 | 3.43 (0.05–6.81) | 3.43 |
etot (kJ) | 21.47 ± 2.51 | 21.33 ± 2.73 | 0.968 (0.934–0.984) | 0.05 | 0.37 | 10.36 | 4.81 | 1.74 (1.15–2.33) | 0.11 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozkaya, O.; Balci, G.A.; As, H.; Vardarli, E. The Test-Retest Reliability of New Generation Power Indices of Wingate All-Out Test. Sports 2018, 6, 31. https://doi.org/10.3390/sports6020031
Ozkaya O, Balci GA, As H, Vardarli E. The Test-Retest Reliability of New Generation Power Indices of Wingate All-Out Test. Sports. 2018; 6(2):31. https://doi.org/10.3390/sports6020031
Chicago/Turabian StyleOzkaya, Ozgur, Gorkem Aybars Balci, Hakan As, and Emre Vardarli. 2018. "The Test-Retest Reliability of New Generation Power Indices of Wingate All-Out Test" Sports 6, no. 2: 31. https://doi.org/10.3390/sports6020031
APA StyleOzkaya, O., Balci, G. A., As, H., & Vardarli, E. (2018). The Test-Retest Reliability of New Generation Power Indices of Wingate All-Out Test. Sports, 6(2), 31. https://doi.org/10.3390/sports6020031