The Relationships between Hip and Knee Extensor Cross-Sectional Area, Strength, Power, and Potentiation Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. 1RM Back Squat Testing Session
2.3. 1RM Concentric-Only Half-Squat Testing Session
2.4. Potentiation Testing Session
2.5. Ultrasonography
2.6. Data and Statistical Analyses
3. Results
3.1. Static Jump Potentiation
3.2. CSA, Strength, Power, and Potentiation Relationships
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Minetti, A.E. On the mechanical power of joint extensions as affected by the change in muscle force (or cross-sectional area), ceteris paribus. Eur. J. Appl. Physiol. 2002, 86, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Zamparo, P.; Minetti, A.; di Prampero, P. Interplay among the changes of muscle strength, cross-sectional area and maximal explosive power: Theory and facts. Eur. J. Appl. Physiol. 2002, 88, 193–202. [Google Scholar] [PubMed]
- DeWeese, B.H.; Hornsby, G.; Stone, M.; Stone, M.H. The training process: Planning for strength–power training in track and field. Part 1: Theoretical aspects. J. Sport Health Sci. 2015, 4, 308–317. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 2—Training considerations for improving maximal power production. Sports Med. 2011, 41, 125–146. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Lamont, H.S.; Moir, G.L. Understanding vertical jump potentiation: A deterministic model. Sports Med. 2016, 46, 809–828. [Google Scholar] [CrossRef] [PubMed]
- Seitz, L.B.; Haff, G.G. Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: A systematic review with meta-analysis. Sports Med. 2016, 46, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef] [PubMed]
- Weeks, B.K.; Gerrits, T.; Horan, S.A.; Beck, B.R. Muscle size not density predicts variance in muscle strength and neuromuscular performance in healthy adult men and women. J. Strength Cond. Res. 2016, 30, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Gorsuch, J.; Long, J.; Miller, K.; Primeau, K.; Rutledge, S.; Sossong, A.; Durocher, J.J. The effect of squat depth on multiarticular muscle activation in collegiate cross-country runners. J. Strength Cond. Res. 2013, 27, 2619–2625. [Google Scholar] [CrossRef] [PubMed]
- Caterisano, A.; Moss, R.E.; Pellinger, T.K.; Woodruff, K.; Lewis, V.C.; Booth, W.; Khadra, T. The effect of back squat depth on the emg activity of 4 superficial hip and thigh muscles. J. Strength Cond. Res. 2002, 16, 428–432. [Google Scholar] [PubMed]
- Pereira, G.R.; Leporace, G.; das Virgens Chagas, D.; Furtado, L.F.L.; Praxedes, J.; Batista, L.A. Influence of hip external rotation on hip adductor and rectus femoris myoelectric activity during a dynamic parallel squat. J. Strength Cond. Res. 2010, 24, 2749–2754. [Google Scholar] [CrossRef] [PubMed]
- Bryanton, M.A.; Kennedy, M.D.; Carey, J.P.; Chiu, L.Z.F. Effect of squat depth and barbell load on relative muscular effort in squatting. J. Strength Cond. Res. 2012, 26, 2820–2828. [Google Scholar] [CrossRef] [PubMed]
- Bellar, D.; Judge, L.W.; Turk, M.; Judge, M. Efficacy of potentiation of performance through overweight implement throws on male and female collegiate and elite weight throwers. J. Strength Cond. Res. 2012, 26, 1469–1474. [Google Scholar] [CrossRef] [PubMed]
- Duthie, G.M.; Young, W.B.; Aitken, D.A. The acute effects of heavy loads on jump squat performance: An evaluation of the complex and contrast methods of power development. J. Strength Cond. Res. 2002, 16, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Judge, L.W.; Bellar, D.; Craig, B.; Gilreath, E.; Cappos, S.; Thrasher, A. Influence of post activation potentiation on shot put performance of collegiate throwers. J. Strength Cond. Res. 2016, 30, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Sato, K.; DeWeese, B.H.; Ebben, W.P.; Stone, M.H. Potentiation following ballistic and non-ballistic complexes: The effect of strength level. J. Strength Cond. Res. 2016, 30, 1825–1833. [Google Scholar] [CrossRef] [PubMed]
- Seitz, L.B.; de Villarreal, E.S.S.; Haff, G.G. The temporal profile of postactivation potentiation is related to strength level. J. Strength Cond. Res. 2014, 28, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Jo, E.; Judelson, D.A.; Brown, L.E.; Coburn, J.W.; Dabbs, N.C. Influence of recovery duration after a potentiating stimulus on muscular power in recreationally trained individuals. J. Strength Cond. Res. 2010, 24, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, N.; Wakahara, T.; Ema, R.; Kawakami, Y. Further potentiation of dynamic muscle strength after resistance training. Med. Sci. Sports Exerc. 2013, 45, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Seitz, L.B.; Trajano, G.S.; Haff, G.G.; Dumke, C.C.L.S.; Tufano, J.J.; Blazevich, A.J. Relationships between maximal strength, muscle size, and myosin heavy chain isoform composition and postactivation potentiation. Appl. Physiol. Nutr. Metab. 2016, 41, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Sato, K.; DeWeese, B.H.; Ebben, W.P.; Stone, M.H. Relationships between potentiation effects following ballistic half-squats and bilateral symmetry. Int. J. Sports Physiol. Perform. 2015, 11, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Sato, K.; DeWeese, B.H.; Ebben, W.P.; Stone, M.H. Potentiation effects of half-squats performed in a ballistic or non-ballistic manner. J. Strength Cond. Res. 2016, 30, 1652–1660. [Google Scholar] [CrossRef] [PubMed]
- Reardon, D.; Hoffman, J.R.; Mangine, G.T.; Gonzalez, A.M.; Wells, A.J.; Fukuda, D.H.; Fragala, M.S.; Stout, J.R. Do acute changes in muscle architecture affect post-activation potentiation? J. Sports Sci. Med. 2014, 13, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. A Scale of Magnitude for Effect Statistics. Available online: http://sportsci.org/resource/stats/effectmag.html (accessed on 7 August 2014).
- Stone, M.H.; O’Bryant, H.; Garhammer, J.; McMillan, J.; Rozenek, R. A theoretical model of strength training. Strength Cond. J. 1982, 4, 36–39. [Google Scholar] [CrossRef]
- Kawakami, Y.; Abe, T.; Fukunaga, T. Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J. Appl. Physiol. 1993, 74, 2740–2744. [Google Scholar] [PubMed]
- Campos, G.E.; Luecke, T.J.; Wendeln, H.K.; Toma, K.; Hagerman, F.C.; Murray, T.F.; Ragg, K.E.; Ratamess, N.A.; Kraemer, W.J.; Staron, R.S. Muscular adaptations in response to three different resistance-training regimens: Specificity of repetition maximum training zones. Eur. J. Appl. Physiol. 2002, 88, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, K.; Komi, P.V.; Tesch, P.A. Effect of combined concentric and eccentric strength training and detraining on force-time, muscle fiber and metabolic characteristics of leg extensor muscles. Scand. J. Med. Sci. Sports 1981, 3, 50–58. [Google Scholar]
- Wickiewicz, T.L.; Roy, R.R.; Powell, P.L.; Edgerton, V.R. Muscle architecture of the human lower limb. Clin. Orthop. Relat. Res. 1983, 179, 275–283. [Google Scholar] [CrossRef]
Characteristic | VL CSA (mm2) | BF CSA (mm2) | 1RM BS (kg) | 1RM COHS (kg) | SJ PP (W) | Max PAP (%) |
---|---|---|---|---|---|---|
Mean ± SD | 32.5 ± 5.8 | 18.1 ± 3.5 | 164.7 ± 29.9 | 195.0 ± 28.2 | 4867.2 ± 638.4 | 3.9 ± 3.6 |
Characteristic | VL CSA | BF CSA | 1RM BS | 1RM COHS | SJ PP | Max PAP |
---|---|---|---|---|---|---|
VL CSA | 1.000 | |||||
BF CSA | 0.669 * | 1.000 | ||||
1RM BS | 0.643 * | 0.643 * | 1.000 | |||
1RM COHS | 0.625 * | 0.462 | 0.897 * | 1.000 | ||
SJ PP | 0.396 | 0.683 * | 0.548 * | 0.407 | 1.000 | |
Max PAP | −0.229 | −0.239 | −0.013 | 0.149 | −0.297 | 1.000 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchomel, T.J.; Stone, M.H. The Relationships between Hip and Knee Extensor Cross-Sectional Area, Strength, Power, and Potentiation Characteristics. Sports 2017, 5, 66. https://doi.org/10.3390/sports5030066
Suchomel TJ, Stone MH. The Relationships between Hip and Knee Extensor Cross-Sectional Area, Strength, Power, and Potentiation Characteristics. Sports. 2017; 5(3):66. https://doi.org/10.3390/sports5030066
Chicago/Turabian StyleSuchomel, Timothy J., and Michael H. Stone. 2017. "The Relationships between Hip and Knee Extensor Cross-Sectional Area, Strength, Power, and Potentiation Characteristics" Sports 5, no. 3: 66. https://doi.org/10.3390/sports5030066
APA StyleSuchomel, T. J., & Stone, M. H. (2017). The Relationships between Hip and Knee Extensor Cross-Sectional Area, Strength, Power, and Potentiation Characteristics. Sports, 5(3), 66. https://doi.org/10.3390/sports5030066